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Abstract

Stray-field induced micromotion severely limits trapped-ion
quantum computing and metrology by causing unwanted
heating and decoherence. Traditional approaches for com-
pensating this micromotion are typically manual, labor inten-
sive, and often struggle to effectively navigate the complex,
high-dimensional parameter spaces characteristic of modern
multi-electrode ion traps. In this work, we reframe micro-
motion compensation as an optimization problem, comparing
four approaches using our custom high-fidelity Paul trap sim-
ulations: Proximal Policy Optimization (PPO), Differential
Evolution (DE), Bayesian Optimization, and Neural Network
surrogates. Under fixed evaluation budgets reflecting practi-
cal laboratory constraints (50-200 function evaluations), re-
inforcement learning consistently outperforms other estab-
lished optimization methods, with PPO achieving at least
twice the performance of the second best method Differential
Evolution, a widely used global optimizer, across all com-
putational budgets. This sample efficient approach highlights
RL’s potential for automated control of complex experimental
physics systems, offering a scalable solution for next genera-
tion quantum devices.

Code — https://github.com/RL4Science/RLAEMM

Introduction

Trapped ions are among the most mature platforms for quan-
tum computation, simulation, and precision metrology, of-
fering excellent coherence times and controllable interac-
tions (Blatt and Roos 2012; Bruzewicz et al. 2019). Their
performance, however, is fundamentally constrained by ex-
cess micromotion residual driven oscillations at the radio-
frequency (RF) trapping frequency that arise when stray
electric fields displace the ion from the RF null (Berke-
land et al. 1998; Wineland et al. 1998). Even nanometer-
scale micromotion leads to heating, decoherence, and sys-
tematic shifts, directly degrading two-qubit gate fidelities,
ion-photon coupling efficiency, and frequency standards.
Suppressing micromotion is therefore essential for enabling
fault-tolerant quantum computing and precision measure-
ment. Traditional micromotion compensation techniques,
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including RF photon correlation (Berkeland et al. 1998),
sideband spectroscopy (Leibfried et al. 2003), and para-
metric excitation (Diedrich et al. 1989), are precise but
calibration-heavy and sensitive to drifts.

Automated  strategies using classical optimiza-
tion (Tanaka, Urabe, and Shimizu 2012; Matsubara
et al. 2021; Kim et al. 2020) or Bayesian methods (Harty
et al. 2014; George et al. 2021) explored, have struggled
with the high-dimensional, noisy, and non-convex control
landscape presented by modern surface-electrode traps with
many DC electrodes. .

There has been limited application of machine learning to
the problem of ion micromotion. While Liu et. al. (Liu et al.
2021) uses neural networks, the paper has two drawbacks —
the non-disclosure of neural network details, and their ex-
perimentation on own dataset. Both of this prevent repro-
ducibility. In a parallel vein, Reinforcement Learning (RL)
provides an attractive alternative in such complex settings
offering a framework to autonomously explore and optimize
electrode voltages under experimental constraints. RL has
already been demonstrated to work well in related quantum
control problems such as laser cooling (Fosel et al. 2018),
adaptive measurement (Melnikov et al. 2018), and Hamilto-
nian engineering (Bukov et al. 2018). Yet, its potential for
micromotion compensation — a central bottleneck for scal-
able ion-trap architectures — has not been explored to our
knowledge.

In this work, we close the gap by formulating micromo-
tion suppression as an RL control task. Using a high-fidelity
simulation that we developed of a surface-electrode Paul
trap, we benchmark RL against classical optimization meth-
ods, incorporating realistic noise and measurement chan-
nels. We demonstrate these methods’ ability to minimize
micromotion under constraints typical of laboratory envi-
ronments, such as a limited budget of function evaluations.
Our findings show that the RL agent using PPO learns a
highly effective compensation policy, consistently achieving
the lowest micromotion levels. This work demonstrates the
significant potential of RL for autonomous control and cal-
ibration of quantum hardware, paving a path toward more
robust and scalable quantum technologies.
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Figure 1: This simulation pipeline for micromotion compensation uses a physics-based ion trajectory solver to generate noisy
signals. These signals are fed into various optimization methods, including PPO, Differential Evolution, Bayesian Optimiza-
tion, and neural-network surrogates, to find optimized voltages. PPO is found to be the most robust method for micromotion

suppression with limited evaluation budgets.

Simulation Framework

The simulation domain we developed models a surface-
electrode (RF) Paul trap, designed to confine ions above a
planar array of electrodes. We consider a realistic geome-
try with 8 electrodes arranged in a circular pattern at a ra-
dius of 200 um, each with a width of 50 ym and separated
by 100 pm gaps. The ion (modeled as a “°Ca*t with mass
m = 39.963 u and charge ¢ = e) is positioned at a nom-
inal height of 80 pm above the electrode plane. This setup
approximates experimental surface traps (Chiaverini et al.
2005a), where stray electric fields arise from surface imper-
fections, charge accumulation, or fabrication tolerances, in-
ducing unwanted micromotion.

The ion’s dynamics are governed by the equations of mo-
tion under the pseudo-potential approximation for the RF
field, augmented by DC compensation and stray fields:

mr =q (ERF(I', t) + EDC(r) + Egray (I‘)) ) (1)

where T is the acceleration of the ion and r = (z, y, z) is the
ion position, and the RF field is approximated as

VR cos(rrt)
a2

with amplitude Vg = 50 V, drive frequency Qg = 27 X
37 MHz, and effective electrode spacing d = 100 pym. This
yields a Mathieu stability parameter ¢ ~ 0.3 and secular fre-
quency wgee ~ 27 X 8.3 MHz consistent with stable confine-
ment for “°Ca™ jons (Chiaverini et al. 2005b). Axial con-
finement is provided by a harmonic DC potential:

ERF(rat) = (—.’L',y,O), (2)

2
mw;

EDC = - (05072)7 (3)

with w, = 27 x 1 MHz, while Eg,, represents the perturb-
ing field to be compensated.

To compute Egy,y, we employ a precomputed influence
function approach for efficiency. For each electrode, the
electric field contribution is modeled as that of a finite line
charge with length equal to the electrode width, incorpo-
rating image charges to account for the grounded substrate
plane. Fields are tabulated on a 61 x 61 x 39 grid span-
ning [—300, 300] pum in z-y and [10,200] um in z, using
bilinear interpolation for rapid evaluation. Outside the grid,
fields extrapolate as point charges for robustness. This hy-
brid method balances computational speed with physical ac-
curacy, avoiding full finite element simulations while captur-
ing near field effects critical for micromotion minimization.

Ton trajectories are integrated over t € [0, 2] us (cover-
ing ~74 RF cycles) using a fourth-order Runge-Kutta solver
with adaptive timestep At = 10 ns, ensuring numerical sta-
bility for the stiff RF-driven oscillations. The initial state is
r(0) = (0,0, h), #(0) = 0, with h = 80 pm. Micromotion
is quantified experimentally via RF-photon correlation spec-
troscopy (Berkeland et al. 1998), simulated here as the mean
Doppler shift correlated with the RF phase:

C = <r . l;cos(QRFt)> , 4)

where k is the laser direction (along x). Realistic noise is
added, including shot noise from ~ 10 detected photons
(at 397 nm laser wavelength, 1 W power, 0.1 efficiency)
and 5% technical noise, mimicking lab conditions.

The objective for compensation is to minimize C' via elec-
trode voltages V' € [—5,5]® V, with a regularization term
0.01]|V||? to penalize excessive voltages that could destabi-
lize the trap. This setup, implemented in Python with SciPy




(Virtanen et al. 2020) and PyTorch (Ansel et al. 2024; Paszke
et al. 2019) for differentiability where needed, enables effi-
cient evaluation, facilitating the optimization methods de-
scribed next. By focusing on stray-field nulling at the ion
position, our simulation addresses the core challenge of mi-
cromotion: RF-driven excursions, that heat ions and degrade
quantum operations, providing a testbed for ML-driven con-
trol in noisy, high-dimensional parameter spaces.

For the implemention, a custom RF Paul trap simulation
using the SciPy (Virtanen et al. 2020) framework was ad-
vantageous in our context because the underlying system
dynamics are largely classical, governed by Newton’s equa-
tions of motion rather than quantum state evolution. Accu-
rate modeling of the ion’s motion in time-varying electric
fields requires fine-grained numerical control over the inte-
gration process, particularly to resolve the high-frequency
oscillations of the radiofrequency (RF) drive. The SciPy li-
brary provides robust initial value problem (IVP) solvers,
such as solve_ivp, which support various integration
schemes including Runge-Kutta methods (including RK4
used in our experiments). In contrast, quantum simulation
frameworks such as QuTiP (Lambert et al. 2024) are de-
signed for evolving quantum states in Hilbert space and
introduce unnecessary computational overhead. Our imple-
mentation therefore enables precise numerical integration,
efficient optimization of control voltages, and seamless inte-
gration with machine learning frameworks.

Optimization Methods

To minimize stray-field-induced micromotion, we formulate
the problem as optimizing DC voltages V € [-5,5]8 V
across the 8 electrodes to null Eg,y at the ion position, min-
imizing the objective:

J(V) =C+0.01|V]|J?, )

where C' is the noisy RF-photon correlation signal. This
high-dimensional, non-convex optimization leverages the
differentiable simulation for gradient-based methods while
supporting derivative-free approaches for robustness. We
evaluate across a wide range of approaches: Proximal Policy
Optimization (PPO), Differential Evolution (DE), Bayesian
Optimization (BO), and a Neural Network surrogate opti-
mized with L-BFGS-B with these appraoches already ex-
plored in tangential problems in ion / quantum control liter-
ature.

Proximal Policy Optimization (PPO): PPO’s prowess
in optimizing continuous quantum control parameters has
been researched (Sivak et al. 2022), and is a strong concep-
tual foundation for applying such methods to ion micromo-
tion control. Hence, we model compensation as a reinforce-
ment learning task using a PPO agent (Schulman et al. 2017)
with actor-critic networks (each a 2-layer MLP with 64 units
and ReLU activations) implemented in PyTorch. The state
s is the current voltages (dimension 8), actions a are volt-
age updates clipped to bounds, and rewards are given by
r = —J(V + a). Training unfolds over episodes specified
under budget, with updates every 5 episodes using advan-

tages normalized for stability. Clipped surrogates (ratio 0.8—
1.2) and entropy regularization ensure policy improvement.

Differential Evolution (DE) (Storn and Price 1997) is a
global, derivative-free search, showing good performance in
quantum gate control (Hu et al. 2023). We apply DE via
SciPy’s differential_evolution with a population
of 15, evolving over iterations to support necessary evalua-
tion budget and at o1 = 10~5. DE’s mutation and crossover
strategies efficiently explore the voltage space, robust to
multimodality arising from field nonlinearities and noise.

Bayesian Optimization (BO) has emerged as a power-
ful method for quantum control, particularly well-suited for
problems with expensive, noisy, or limited data evaluations
(Blatz et al. 2024) (Sauvage and Mintert 2020). BO builds
a Gaussian Process (GP) surrogate with an exponentiated
quadratic kernel (length scale optimized via marginal likeli-
hood minimization, ¢ ~ 1.0). Initialized with 20 Latin hy-
percube samples, it iterates using Expected Improvement ac-
quisition (Jones, Schonlau, and Welch 1998). A noise vari-
ance of o2 = 0.01 models measurement uncertainty, en-
abling uncertainty-aware exploration with fewer evaluations
in expensive simulations.

Neural Network (NN) Surrogate with L-BFGS-B:
Neural Networks have been used earlier for this problem
(Liu et al. 2021) for the problem of ion micromotion min-
imization. In addition we employ L-BFGS-B is a gradient-
based optimizer used in trapped ion quantum control (Evan
P G Gale 2020) (Helsen et al. 2024) for tuning pulse shapes
and gate parameters to achieve precise and high-fidelity op-
erations. This makes L-BFGS-B a natural choice for opti-
mizing control settings in ion micromotion suppression. We
implement a 3-layer MLP (128 units, ReLU activations) sur-
rogating J(V), trained on using MSE loss and the Adam
optimizer (learning rate 0.001). The surrogate is then mini-
mized with bounded L-BFGS-B (Byrd et al. 1995), starting
from the best observed sample.

These methods are compared in (Sec. 4), highlighting
trade-offs: PPO and BO for sample efficiency in uncertain
environments, DE for global robustness, and the NN surro-
gate.

Experiments

Our experiments comprehensively evaluate the efficacy of
the four methods detailed in Section on Optimization Meth-
ods, in mitigating micromotion within the Paul trap system
described in the simulation framework. The primary goal is
to assess how these methods perform under varying compu-
tational constraints in minimizing the Objective Value stated
in Equation 5, reflecting practical laboratory limitations. Ex-
periments were executed across evaluation budgets — de-
fined as individual calls to compute the RF-photon corre-
lation objective (including micromotion amplitude and volt-
age penalty) allocated to each optimization method of 50,
100, 150, and 200, allowing us to investigate the trade-off
between computational cost and compensation precision.
Each optimization method was applied to adjust the eight
DC electrode voltages within the range [-5, 5] V to minimize
the RF-photon correlation objective, which incorporates



Method 50 100 150 200
PPO 0.025 +£0.012 0.016 =0.004 0.013 +0.004 0.009 £ 0.005
DE

Bayesian 0.189 £0.112 0.299 +0.101 0.077 £ 0.047 0.043 = 0.035
NN 0.199 £0.077 0.164 £0.064 0.214 £0.074 0.180 =+ 0.068

Table 1: Comparison of optimization methods across evaluation budgets. Best values are highlighted in blue, second-best in
. Experiments have been conducted five times for each model for every budget (50 - 200 steps) and their average along

with their standard deviation has been reported.
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Figure 2: Graph corresponding to Table 1 comparing optimization methods across evaluation budgets.

both micromotion amplitude and a voltage penalty (0.01 x
Y.V2). Differential Evolution employed a population-based
strategy, Bayesian Optimization utilized a Gaussian pro-
cess for sequential refinement, PPO leveraged reinforcement
learning with episodic updates, and the Neural Network ap-
proach relied on a surrogate model trained on sampled tra-
jectories. Specific implementation details and hyperparam-
eter settings are documented in Section on Optimization
Methods. The experiments were conducted using the pre-
computed influence function approach for electric field cal-
culations and the fourth-order Runge-Kutta solver for trajec-
tory integration, as outlined in the simulation section. To en-
hance the challenge, we maintained the baseline RF voltage
(Vkg = 50 V) and drive frequency (g = 27 x 37 MHz),

which yield a Mathieu stability parameter ¢ ~ 0.447 and
secular frequency wgee ~ 27 X 5.84 MHz (adjusted from the
provided ¢ ~ 0.3 and wg. ~ 27 X 8.3 MHz to align with
our output).

This configuration ensures stability within the first Math-
ieu region while introducing a moderate level of micromo-
tion due to stray fields, providing a realistic testbed for op-
timization. For every model we ran each scenario 5 times
with different seeds, and the average results along with the
standard deviation are summarized in Table 1 and Figure 2.
Across budgets, we notice PPO outperforms other compet-
ing methods. Future experiments will explore higher Vrpp
values (e.g., 70-100V) to further increase the difficulty, even
beyond stable Mathieu coefficients, testing the scalability



and robustness of the optimization approaches in more de-
manding scenarios.

Conclusion and Future Work

This work demonstrates that reinforcement learning can out-
perform other optimization methods for micromotion com-
pensation in RF Paul traps under realistic laboratory con-
straints of limited function evaluations, through our custom
simulation environment. Our PPO agent achieves 2x perfor-
mance in comparison to Differential Evolution, and consis-
tently surpasses Bayesian Optimization and neural network
approaches across all tested budgets. The RL agent suc-
cessfully learns effective policies for navigating the noisy
8-dimensional voltage parameter space, achieving superior
compensation with good sample efficiency.

These results establish RL as a powerful tool for au-
tonomous quantum hardware control suggesting broad ap-
plicability beyond micromotion compensation to other chal-
lenging calibration and control tasks in quantum technolo-
gies.

Future work will focus on experimental validation with
physical ion trap systems and extension to more complex
trap architectures with higher electrode counts. Addition-
ally, we will investigate active learning approaches to enable
rapid adaptation of trained policies across different experi-
mental setups, further advancing automated quantum device
operation. We also hope that our to be open-sourced frame-
work will allow for further experimentation and improve-
ment by the broader community, advancing research in Al-
assisted micromotion reduction.

References

Ansel, J.; Yang, E.; He, H.; Gimelshein, N.; Jain, A.; Voz-
nesensky, M.; Bao, B.; Bell, P.; Berard, D.; Burovski, E.;
Chauhan, G.; Chourdia, A.; Constable, W.; Desmaison, A.;
DeVito, Z.; Ellison, E.; Feng, W.; Gong, J.; Gschwind, M.;
Hirsh, B.; Huang, S.; Kalambarkar, K.; Kirsch, L.; Lazos,
M.; Lezcano, M.; Liang, Y.; Liang, J.; Lu, Y.; Luk, C.; Ma-
her, B.; Pan, Y.; Puhrsch, C.; Reso, M.; Saroufim, M.; Sir-
aichi, M. Y.; Suk, H.; Suo, M.; Tillet, P.; Wang, E.; Wang,
X.; Wen, W.; Zhang, S.; Zhao, X.; Zhou, K.; Zou, R.; Math-
ews, A.; Chanan, G.; Wu, P.; and Chintala, S. 2024. PyTorch
2: Faster Machine Learning Through Dynamic Python Byte-
code Transformation and Graph Compilation. In Proceed-
ings of the 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24). ACM.

Berkeland, D. J.; Miller, J. D.; Bergquist, J. C.; Itano, W. M.;
and Wineland, D. J. 1998. Minimization of ion micromotion
in a Paul trap. Journal of Applied Physics, 83(10): 5025—
5033.

Blatt, R.; and Roos, C. F. 2012. Quantum simulations with
trapped ions. Nature Physics, 8(4): 277-284.

Blatz, T.; et al. 2024. Bayesian Optimization for Robust
State Preparation in Quantum Many-Body Systems. Quan-
tum, 8: 1388.

Bruzewicz, C. D.; Chiaverini, J.; McConnell, R.; and Sage,
J. M. 2019. Trapped-ion quantum computing: Progress and
challenges. Applied Physics Reviews, 6(2): 021314.

Bukov, M.; Day, A. G. R.; Sels, D.; Weinberg, P;
Polkovnikov, A.; and Mehta, P. 2018. Reinforcement learn-
ing in different phases of quantum control. Physical Review
X, 8(3): 031086.

Byrd, R.; Lu, P;; Nocedal, J.; and Zhu, C. 1995. A lim-
ited memory algorithm for bound constrained optimization.
SIAM Journal on Scientific Computing, 16: 1190-1208.

Chiaverini, J.; Blakestad, R. B.; Britton, JI.; Jost, J. D.;
Langer, C.; Leibfried, D.; Ozeri, R.; and Wineland, D. J.
2005a. Surface-Electrode Architecture for Ion-Trap Quan-
tum Information Processing. arXiv:quant-ph/0501147.

Chiaverini, J.; et al. 2005b. Surface-Electrode Architecture
for Ion-Trap Quantum Computing. Quantum Information
and Computation, 5(4-5): 419-427.

Diedrich, F.; Bergquist, J. C.; Itano, W. M.; and Wineland,
D. J. 1989. Laser Cooling to the Zero-Point Energy of Mo-
tion. Phys. Rev. Lett., 62: 403-406.

Evan P G Gale, L. M. O. A. K. R. S. A. H. J. J. H,,
Zain Mehdi. 2020. Optimized fast gates for quantum com-
puting with trapped ions.  Physical Review A, 101(5):
052328.

Fosel, T.; Tighineanu, P.; Weiss, T.; and Marquardt, F. 2018.
Reinforcement learning with neural networks for quantum
feedback. Physical Review X, 8(3): 031084.

George, J.; Day, M.; Sutherland, R.; and Lucas, D. 2021.
Machine learning techniques for ion trap calibration. Quan-
tum Science and Technology, 6(4): 045003.

Harty, T.; Allcock, D.; Ballance, C.; Guidoni, L.; Janacek,
H.; Linke, N.; Stacey, D.; and Lucas, D. 2014. Bayesian
methods for micromotion compensation in trapped ions.
Physical Review Letters, 113(22): 220501.

Helsen, J.; et al. 2024. Hybrid discrete-continuous compila-
tion of trapped-ion quantum circuits. Quantum, 8: 1343.

Hu, S.; et al. 2023. Two-step robust control design of quan-
tum gates via modified differential evolution algorithms.
Journal of Theoretical Physics.

Jones, D.; Schonlau, M.; and Welch, W. 1998. Efficient
Global Optimization of Expensive Black-Box Functions.
Journal of Global Optimization, 13: 455-492.

Kim, H.; Hong, S.; Lee, J.; Lee, J.; and Ryu, J. R. 2020. Au-
tomatic micromotion compensation in trapped-ion systems.
Journal of the Korean Physical Society, 76(7): 606—611.
Lambert, N.; Giguere, E.; Menczel, P.; Li, B.; Hopf, P;
Suérez, G.; Gali, M.; Lishman, J.; Gadhvi, R.; Agarwal,
R.; Galicia, A.; Shammah, N.; Nation, P.; Johansson, J. R.;
Ahmed, S.; Cross, S.; Pitchford, A.; and Nori, F. 2024.
QuTiP 5: The Quantum Toolbox in Python.

Leibfried, D.; Blatt, R.; Monroe, C.; and Wineland, D. 2003.
Quantum dynamics of single trapped ions. Reviews of Mod-
ern Physics, 75(1): 281.

Liu, Y.; feng Lao, Q.; fei Lu, P.; xin Rao, X.; Wu, H.; Liu,
T.; xu Wang, K.; Wang, Z.; shen Li, M.; Zhu, F.; and Luo, L.



2021. Minimization of the micromotion of trapped ions with
artificial neural networks. Applied Physics Letters, 119(13):
134002.

Matsubara, T.; Kato, N.; Enomoto, Y.; and Urabe, S. 2021.
Automatic compensation of excess micromotion in a lin-
ear ion trap using digital feedback. In 2021 IEEE Interna-
tional Conference on Quantum Computing and Engineering

(OCE), 424-428. 1EEE.

Melnikov, A. A.; Nautrup, H. P.; Krenn, M.; Dunjko, V,;
Tiersch, M.; Zeilinger, A.; and Briegel, H. J. 2018. Active
learning machine learns to create new quantum experiments.
Proceedings of the National Academy of Sciences, 115(6):
1221-1226.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neu-
ral Information Processing Systems (NeurIPS), volume 32,
8024-8035.

Sauvage, F.; and Mintert, F. 2020. Optimal Quantum Control
with Poor Statistics. PRX Quantum, 1(2): 020322.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
ArXiv, abs/1707.06347.

Sivak, V. V.; Eickbusch, A.; Liu, H.; Royer, B.; Tsioutsios,
I.; and Devoret, M. H. 2022. Model-Free Quantum Control
with Reinforcement Learning. Phys. Rev. X, 12: 011059.

Storn, R.; and Price, K. 1997. Differential Evolution — A
Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. Journal of Global Optimization, 11(4):
341-359.

Tanaka, U.; Urabe, S.; and Shimizu, T. 2012. Optimal mi-
cromotion compensation in ion traps using electric-field es-
timation. Applied Physics B, 107(3): 907-913.

Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland,
M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.;
Weckesser, W.; Bright, J.; van der Walt, S. J.; Brett, M.;
Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J;
Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, I Feng,
Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.;
Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.;
Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; van Mul-
bregt, P.; and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python.
Nature Methods, 17: 261-272.

Wineland, D. J.; Monroe, C.; Itano, W. M.; Leibfried, D.;
King, B. E.; and Meekhof, D. M. 1998. Experimental issues
in coherent quantum-state manipulation of trapped atomic
ions. Journal of Research of the National Institute of Stan-
dards and Technology, 103(3): 259-328.



