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Abstract

We introduce a novel Multi-modal Neural Operator (MNO)
architecture designed to learn solution operators for multi-
parameter non-linear boundary value problems (BVPs). Tra-
ditional neural operators primarily map either the PDE co-
efficients or source terms independently to the solution, lim-
iting their flexibility and applicability. In contrast, our pro-
posed MNO architecture generalizes these approaches by
mapping multiple parameters—including PDE coefficients,
source terms, and boundary conditions—to the solution space
in a unified manner. Our MNO is motivated by the hierarchi-
cal nested bases of the Fast Multipole Method (FMM) and is
constructed systematically through three key components: a
parameter-efficient Generalized FMM (GFMM) block, a Uni-
modal Neural Operator (UNO) built upon GFMM-blocks for
single-parameter mappings, and most importantly, a multi-
modal fusion mechanism extending these components to
learn the joint map. We demonstrate the multi-modal gener-
alization capacity of our approach on both linear and non-
linear BVPs. Our experiments show that the network effec-
tively handles simultaneous variations in PDE coefficients
and source/boundary terms.

1 Introduction
We are interested in simultaneously solving a family of
variable-coefficient partial differential equations (PDEs)
with inhomogeneous boundary conditions on a open con-
nected domain Ω for u : Ω̄ → R. Specifically, our aim is to
solve

D1(x, u; a) = c(x), x ∈ Ω, (1a)
D2(x, u; f) = g(x), x ∈ ∂Ω, (1b)

whereD1 is a nonlinear differential operator andD2 another
(not necessarily) differential operator of lower degree. Fur-
thermore the coefficients a, c, f, g will be assumed to be in
some compact set during training.

Related works In recent years, data-driven neural
network-based approaches to solve PDEs have made consid-
erable progress, of which, physics-informed neural networks
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(PINNs)(Raissi, Perdikaris, and Karniadakis 2019) and neu-
ral operators (NO) (Kovachki et al. 2023; Lu et al. 2021) are
the most popular. PINNs originally took a generic DNN ar-
chitecture and found the solution by setting the residual of
the PDE as the loss function. They have evolved since then
to be versatile and can exploit the GPU easily for solving
complex nonlinear PDEs. But they can take an unpredictable
amount of time to reduce the residual to a desired level, be-
coming very slow in some circumstances. NOs on the other
hand, are pre-trained over a compact family of coefficients
to produce the correct solution. So their training time can be
much larger than that of a PINN, but their inference time is
fixed and typically quite fast. Training NOs requires knowl-
edge of true solutions, whereas PINNs don’t have that con-
straint. Our setup is akin to NOs rather than PINNs.

Many variations of neural operators have been pro-
posed in recent years to tackle different aspects of PDEs
such as multiple scales, irregular grids(Li et al. 2020; Hao
et al. 2023; Wang et al. 2024), operator domains(Li et al.
2021; Helwig et al. 2023; Gupta, Xiao, and Bogdan 2021;
Chen et al. 2024a) and underlying neural network architec-
tures(Raoni’c et al. 2023; Wu et al. 2024). Neural opera-
tors have been applied in a variety of domains like compu-
tational fluid dynamics(Mao et al. 2021), multi-physics(Cai
et al. 2021), wave propagation(Chen et al. 2024a), weather
forecasting(Pathak et al. 2022), etc. Nevertheless, most ex-
isting neural operators either map only the operator coeffi-
cient a or the source term c of the PDE to the solution u, but
not both simultaneously. For example, Chen et al. (2024a)
used a combined FNO and U-Net (Ronneberger, Fischer,
and Brox 2015) based architecture to decouple the coeffi-
cient and source term in the Helmholtz equation to learn a
joint map. Moreover, most neural operator approaches as-
sume fixed boundary conditions (Aldirany et al. 2024; Sau
and Yin 2024) or propose complex extensions to handle in-
homogeneous boundary conditions such as BENO (Wang
et al. 2024) where the authors use separate graph neural net-
works for interior and boundary source terms through con-
necting them with a transformer(Vaswani et al. 2017) net-
work. MIONet (Jin, Meng, and Lu 2022) handles multiple
inputs, however, its examples primarily feature zero bound-
ary conditions (BCs) or zero right-hand sides (RHS) similar
to FNO and DeepONet.

We refer to the operators that map only a 7→ u or c 7→ u



Figure 1: A schematic overview of the multi-modal neural operator (MNO).

as uni-modal operators, and operators that map both i.e.,
a, c 7→ u, or more, as multi-modal operators. The lack of
truly multi-modal neural operators in the literature partly
stems from the mismatch between the types of objects be-
ing mapped: a, f parametrizes a family of operators that can
act on u, whereas c, g parametrizes the range space of these
operators. They typically correspond to different physical
quantities with different units. The design of models that ef-
fectively handle both relations is highly useful in engineer-
ing applications. In inverse scattering, the Helmholtz equa-
tion ∆u + k2(1 + a(x))u(x) = c(x) is routinely solved
multiple times for different scattering potentials a and exci-
tations c (Chen et al. 2024a). In structural mechanics, elas-
ticity problems require repeated solving of PDEs to retrieve
displacement fields u for varying material properties a and
load configurations c. Thus, a multi-modal operator that can
generalize across both material and forcing variations could
reduce simulation costs and enable real-time feedback dur-
ing design iterations.

Our contributions In this work, we propose a novel multi-
modal neural operator (MNO) architecture that learns so-
lution operators mapping multiple parameters of PDEs,
boundary equations and their right hand sides (RHS) to the
solution. That is, our network learns the following general
solution operator for (1):

A† : a, c, f, g 7→ u.

Our proposed architecture is rigorously motivated by the
hierarchical nested bases of the fast multipole method
(FMM)(Greengard and Rokhlin 1987). While previous
works (Fan et al. 2019; Sushnikova, Kharyuk, and Oseledets
2022; Li et al. 2020) have proposed FMM-based architec-
tures for unimodal operators that map either a or c to u for
fixed boundary conditions, ours is the first to extend this ar-
chitecture to the multi-modal paradigm where all the coeffi-
cients of the PDE are inputs of the network. To achieve this
functionality, our MNO is systematically built up in increas-
ing levels of complexity as follows:

• GFMM-block: a parameter-efficient feed-forward net-
work that generalizes the FMM signal flow graph for
multiple parameter inputs with nonlinear activations, re-
ferred to as the Generalized FMM (GFMM) block (sec-
tion 2.1).

• UNO: a Uni-modal Neural Operator (UNO) built on top
of Generalized FMM-blocks for learning solution oper-
ators of PDEs with one parameter (e.g., a or c) as input
(section 2.2).

• Multi-modal Fusion: a multi-linear extension of the
UNO and GFMM-blocks called multi-modal fusion to
learn the joint map a, c 7→ u (section 2.3).

We evaluate the performance of our approach on both lin-
ear and nonlinear boundary value problems (BVPs), con-
sidering both uni-modal and multi-modal scenarios. For the
linear case, we use Darcy’s flow, which simplifies to the
Poisson equation under constant parameters. For the nonlin-
ear case, we test our method on a first-order BVP featuring
an absolute value nonlinearity. While we compare the per-
formance of our UNO model against existing architectures
such as FNO and DeepONet—showing improved general-
ization—we focus primarily on demonstrating the effective-
ness of our MNO architecture. In particular, we show that
MNO can achieve multi-modal generalization without a sig-
nificant performance drop compared to its uni-modal (UNO)
counterpart.

In our experiments, we put explicit effort into testing the
generalization ability of our network to out-of-distribution
data. Training neural operators requires ground-truth solu-
tions for different input parameter functions. In most cases,
training data is generated by constructing examples using a
classical solver (Lu et al. 2021; Li et al. 2021; Long et al.
2018; Wang, Wang, and Perdikaris 2021) which might be
prohibitively expensive, especially for high-dimensional and
nonlinear PDEs(Gómez-Castro 2024). Given that it is much
easier to sample the solution directly by using the PDE’s
differential operator to compute the RHS (Hasani and Ward
2024), there is much scope for training the neural operators
on this synthetic data and employ them on unseen parameter
distributions and PDEs (Hasani and Ward 2024; Chen et al.
2024b; Totounferoush et al. 2025; Shen, Marwah, and Tal-
walkar 2024). The residuals of the predicted solution when
trained using this synthetic data, however, can exhibit a dif-
ferent distribution compared to the actual distributions ob-
served during testing (Lerer, Ben-Yair, and Treister 2024).
This discrepancy has an impact on the generalization capac-
ity of the network.



Figure 2: A schematic depiction of a one-dimensional GFMM-block. If the activation function ϕ is set to the identity map, the
GFMM-block reduces to a linear block.

2 The multi-modal neural operator (MNO)
The overview of our multi-modal neural operator (MNO)
is shown in Figure 1. It consists of multiple GFMM-blocks
stacked along two branches. The top branch (coefficient-
branch) accepts a, f as inputs and the bottom branch (RHS-
branch) takes in c, g as inputs. The hierarchical nested struc-
ture of each GFMM-block produces intermediate basis rep-
resentations of the respective PDE parameter inputs, shown
as latent outputs in the figure and described in detail in the
next section. In section 2.2, we develop the uni-modal neural
operator (UNO) that learns the map c 7→ u for fixed coef-
ficient PDEs. Finally, in section 2.3, we present the multi-
fusion operation in MNO that updates the RHS-branch by
learning the weight corrections from the latent outputs of
the coefficient branch for variable coefficient PDEs.

2.1 The GFMM-block
Discretization transforms the linear PDE into a linear sys-
tem Au = c, with A as the discretized forward operator. In
the setting of PDE operators, it is well-known that A of-
ten exhibits low-rank structures. Analytic results, such as
in Chandrasekaran et al. (2010), provide additional theoreti-
cal backing to these observations. Starting with foundational
techniques such as FMM (Greengard and Rokhlin 1987)
and hierarchical matrices(Börm, Grasedyck, and Hackbusch
2003), various algebraic representations have been proposed
to capture the low-rank structures in A so that efficient lin-
ear algebra operations can be performed with them (Chan-
drasekaran et al. 2003; Xia et al. 2010). While most repre-

sentations have fast matrix-vector product algorithms, they
do not always have fast solvers which are essential as pre-
conditioners in iterative methods. In general, finding effi-
cient low-rank representations for inverse operators of non-
linear PDEs using classical techniques is an open problem.
Deep learning techniques provide an alternative framework,
and rank-structured representations have been proposed in
neural networks to learn inverse operators (Kovachki et al.
2023; Fan et al. 2019; Li et al. 2020; Sushnikova, Kharyuk,
and Oseledets 2022).
Linear GFMM We follow along similar lines and sug-
gest a generalized FMM feed-forward architecture. Figure
2 illustrates a one-dimensional linear GFMM-block if ϕ is
set to the identity. This block is an extension of the sig-
nal flow graph of the FMM matrix-vector product in Fig-
ure 6, but with the parameters of the FMM signal flow
graph replaced with learnable weights. Furthermore, general
banded matrices are included as additional “bridge” oper-
ators. As depicted in Figure 2, the GFMM block contains
three types of layers: down-sampling/encoder layers, up-
sampling/decoder layers, and bridge layers. Similar to the
original FMM method, the number of up-sampling(down-
sampling) layers L is a hyper-parameter for the network,
and is typically chosen based on the physics of the under-
lying PDE and also memory constraints of the FMM solver.
It defines the blocking size of the input vector and, conse-
quently, the number of learnable parameters in the network.
In its simplest form, all the layers are composed of P × P
matrices, which apply linear transformations to their input



vectors of size P , where P = D
2L

and D is the size of the
input vector c.

Algorithm 1: GFMM-block forward pass

Input: c ∈ RD

Output: u ∈ RD

Parameters:
1: L: No. of up-sampling/down-sampling layers
2: M = 2L: Number of blocks
3: P = D

M
: Block size

4: El
i,D

l
i ∈ RP×P for l = 1, . . . , L

and i = 1, . . . , M
2l

:
Encoder and decoder layer parameters

5: Bl ∈ R
M
2l

P×M
2l

P for l = 0, . . . , L:
Bridge parameters

6: procedure GFMM-BLOCK(c)
7: h0 ← [c1, c2, . . . , cM ]

8: for l = 1 to L do
9: hl

i ← BASISTRANSFORM
(
El

2i−1, h
l−1
2i−1

)
+

BASISTRANSFORM
(
El

2i, h
l−1
2i

)
for i = 1 to M

2l

10: hl ← [hl
1, h

l
2, . . . , h

l
M
2l

]

11: end for
12: zL ← BLhL

13: for l = L− 1 to 0 do

14: zl
i ← BASISTRANSFORM

(
Dl

i, z
l+1⌊
i+1
2

⌋
)

for i = 1 to M

2l

15: zl ← [zl
1, z

l
2, . . . , z

l
M
2l

]

16: zl ← zl + Blhl

17: end for
18: u← z0

19: end procedure

The full forward pass of GFMM-block is described in Al-
gorithm 1, where BasisTransform(F, y) corresponds
to the basis transformation within the feed-forward net-
work. For a single-channel GFMM-block where y is a vec-
tor and F is a P × P linear layer, this operation corre-
sponds to a matrix-vector multiply. We extend this to sup-
port multi-channel layers and inputs in Section 2.2 and
Algorithm 2. A careful count reveals a total number of
(10 × 2L − 2L − 9)P 2 learnable parameters in the linear
one-dimensional GFMM-block. To put this into contrast, a
fully dense linear layer would involve D2 = 22LP 2 parame-
ters. The one-dimensional GFMM-block can be generalized
to a two-dimensional one by applying analogous modifica-
tions to the 2D FMM signal flow graph which, in essence, is
a tensor product of 1D signal flow graph (see Appendix E).

Nonlinear GFMM While linear GFMM-blocks are suit-
able architectures to represent inverse operators of linear
PDEs, they have to be extended with nonlinear activations
to model nonlinear PDEs. Nonlinear activations are also re-
quired to map coefficients a, f of the PDE to the solution
since this relationship is nonlinear by nature. We use the
nonlinear rational function ϕ(x) = x

1+|x| as the activation
function, which is motivated by the observation that the so-
lution to a linear partial differential equation is a rational
function of its coefficients. Later in our experiments (see

Figure 3: Multi-modal fusion: Basis transformation in one
layer of the RHS-branch of MNO. Complete multi-modal
fusion across the entire MNO is shown in Figure 9 in the
Appendix.

section C), we show that this type of rational activation func-
tion seems to perform better than ReLUs.

2.2 Uni-modal Neural Operator (UNO) with
GFMM-blocks

The primary motivation for using the GFMM-block archi-
tecture is the efficient representation of inverse operators of
rank-structured linear systems. But learning the representa-
tion of a generic PDE using a single GFMM-block might
be too restrictive. Experimentally, we observed that sequen-
tially stacking multiple GFMM blocks leads to faster con-
vergence of the training error. This is not surprising given
the benefits of depth in neural networks (Telgarsky 2016)
and the increase in the number of learnable parameters. Sub-
sequently, we define the uni-modal neural operator (UNO)
as a stack of GFMM-blocks with the number of blocks be-
ing a hyper-parameter that can be tuned. Moreover, to en-
able learning the solution operator for more than one in-
put parameter, we extend the GFMM-blocks in the UNO ar-
chitecture to support multi-channel inputs and outputs. We
do this by replacing each P × P linear layer F in the en-
coder and decoder layers by a 4-dimensional tensor of size
Cout × Cin × P × P , where Cout is the number of out-
put channels desired and Cin is the number of channels in
the input. The linear transformation is applied such that each
channel in the output vector z is obtained by a matrix-vector
multiplication of input tensor y with the P × P weight ma-
trix of the corresponding channel and them summed over all
the input channels i.e. z(i) =

∑
j F(i, j, :, :)y(j).

2.3 Multi-modal Fusion
Similar to FNO and DeepONet, UNO can approximate the
solution operator of PDEs that map either the coefficients
or the RHS to the solution, while keeping other parame-
ters fixed. To extend UNO to a complete MNO network in-
volves the construction in Figure 1 with branches of stacked
GFMM-blocks corresponding, respectively, to the coeffi-
cient and RHS-branch. The RHS-branch is analogous to a
UNO that directly maps the RHS to the solution, but in or-
der to learn the simultaneous map from both coefficients and
RHS to the solution, we “fuse” the weights of the RHS-



Model Number
of params

Solution sampling RHS sampling

u = αkTk(Train) u =
∑

k αkTk(OOD) c = αkTk(OOD) c =
∑

k αkTk(OOD)

ϵrel ϵbe ϵrel ϵbe ϵrel ϵbe ϵrel ϵbe

FNO 139,713 8.24e-03 1.72e-3 4.54e-01 3.29e-2 7.56e-01 1.29e-2 9.63e-01 2.15e-2
DeepONet 132,224 2.05e-03 1.60e-3 1.09e-03 2.40e-3 2.63e-01 1.98e-2 7.31e-01 1.45e-2
UNO 73,216 5.32e-06 1.12e-4 5.72e-06 1.14e-4 8.18e-02 2.08e-3 5.76e-01 4.78e-3

Table 1: Relative error and residual error of FNO, DeepONet and UNO for 1D Poisson equation. I) For “Solution sampling”
columns, u is i) a random Tk (Chebyshev basis), scaled by random αk, which is same as training data, and ii) random linear
combinations of Tk which is out-of-training distribution (OOD). II) For “RHS sampling” columns, c is i) a random Tk (Cheby-
shev basis), scaled by random αk and ii) random linear combinations of Tk, but in this case both constitute out-of-training
distribution.

branch using the latent outputs produced by GFMM-blocks
of the coefficient branch. We describe this fusing operation
as multi-modal fusion as illustrated in Figure 3. The rationale
behind this operation can be explained as follows. Consider
a simple linear PDE described by

a(x)u′(x) + u(x) = c(x).

For the discrete version of this problem the linear operator
(including BC) that maps c to u is a rational function of the
sampled values of a. Moreover this rational dependence is
also true for the FMM representation of the inverse, though
that fact requires a careful perusal of the literature, but is
known to experts. Since it is well-known that deep networks
can generate rational functions effectively, it makes sense to
use a separate DNN to generate the FMM coefficients for
the inverse from the samples of a. Furthermore, by doing a
perturbation analysis, one can show that localized changes
to a will primarily affect the solution u in the same location.
Motivated by this reasoning it also makes sense to posit that
the DNN that maps a to the FMM weights, itself should have
an FMM-like architecture.

3 Experiments

Poisson’s Darcy flow Generic first order

Equations
Au = c

A : 1D Laplacian

−∇.(a∇u) = c

u(0) = u0;u(1) = u1

a(x)u
′
+ b(x)|u| = c(x)∫

f(x)u(x)dx = g

Linearity linear linear nonlinear

Coefficient constant coeff single variable coeff multiple variable coeffs

BC fixed BC fixed BC parametric integral BC

Map c 7→ u a, c 7→ u a, b, c, f, g 7→ u

Model UNO MNO MNO

Table 2: Summary of the experiments setup.

In this section, we train and evaluate the performance of
our UNO and MNO networks on both linear and nonlinear
BVPs, emphasizing their ability to learn solution operators
across different configurations, as shown in Table 2. We also
focus on the out-of-distribution performance of the models
trained using synthetic data.

We begin by showing that our linear UNO network can
approximate the inverse operator of discrete 1D Poisson’s
equation. We compare this with FNO and DeepONet in
learning the map between c(x) and u(x). Next we show our
MNO network learning the joint map a, c 7→ u for the case
of 1D Darcy flow with fixed boundary conditions. Finally,
we present the experiments for the case of the full map be-
tween all the parameters of the PDE and the boundary, for
multiple RHS for a generic nonlinear BVP.

3.1 Experimental setup
Training data We adopt the synthetic data approach from
Hasani and Ward (2024), constructing the synthetic solu-
tion u using the Chebyshev basis: u(x) =

∑Nα

k=1 αkTn(x),
where Tn are the Chebyshev polynomials of the first kind
(Tn(cosx) = cos(nx)), and αk is uniformly sampled from
[−1, 1]. The specific choice of PDE coefficients (a, f ) for
each problem are described in their respective sections. We
use finite difference discretization of the operators D1 and
D2 in (1) to generate c and g for a particular synthetic u. We
resample αk at every iteration, which serves as a regulariza-
tion strategy to mitigate overfitting. We refer to this scheme
as solution sampling.

Validation data We employ two types of validation data
to evaluate the out-of-distribution generalization of our mod-
els. In the first type, we sample coefficient parameters from
distributions that are different from the training distribu-
tion, while keeping u drawn from the same distribution, to
test generalization across coefficient function spaces for a.
In the second, we instead sample the RHS by constructing
c(x) =

∑Nφ

k=1 φkTn(x), with φk sampled from U [−1, 1]
and evaluated on the same grid. We refer to this scheme as
RHS sampling and evaluate the models using the residual
error (2). While most neural operator methods adopt RHS
sampling with classical solvers to obtain ground-truth u for
training and validation, such solvers are not easily available
for complex nonlinear PDEs, and can prove very costly to
operate when they are. Instead, we evaluate generalization
on RHS-sampled data, while using only solution-sampled
data for training.

Training method We use a grid of 256 points and choose
the Chebyshev basis set as T1 to T16. We use single precision
and the mean squared error of the predicted solution û as



Figure 4: (Left) Training loss and backward error during training for 1D Poisson models. Predicted vs true solutions and cor-
responding RHS on randomly scaled (middle) and random linear combinations (right) of Chebyshev polynomials representing
in-training and out-of-training distribution. The dotted lines represent the error in predictions for each model.

Model a ∈ (3b)(Quadratic) a ∈ (3c)(Log-normal)
ϵrel ϵres ϵrel ϵres

FNO (1.00±0.07)e+00 (4.73±0.01)e-03 (1.00±0.04)e+00 (3.32±0.00)e-03
DeepONet (1.05±0.03)e+00 (4.67±0.02)e-03 (1.00±0.05)e+00 (2.99±0.00)e-03
MIONet (1.07±0.01)e+02 (5.07±0.07)e-02 (1.91±0.45)e+01 (1.14±0.09)e-02
UNO-aQ (2.71±0.04)e-02 (6.86±0.07)e-04 (4.07±0.02)e+00 (1.74±0.55)e-02

UNO-aLN (1.22±0.002)e+01 (3.76±0.03)e-03 (1.95±0.002)e+01 (1.73±0.09)e-02
UNO-mix (4.94±0.01)e-01 (1.96±0.04)e-03 (5.86±0.05)e-01 (5.39±0.12)e-03

UNO-multich (5.00±0.05)e-01 (1.09±0.01)e-03 (7.01±0.04)e-01 (3.24±0.09)e-03
MNO (4.42±0.03)e-03 (3.77±0.06)e-04 (3.37±0.07)e-02 (1.53±0.01)e-03

Table 3: Relative error and residual error of models trained on 1D Darcy flow with coefficients a sampled purely from either
(3b) or (3c).

the loss function and train using the Adam (Kingma 2014)
optimizer with an initial learning rate of 1e-03. We used two
NVIDIA TITAN RTX GPUs for all the experiments.

Error metrics For the linear constant coefficient case,
where solving the discretized PDE is equivalent to solving
the linear problem Au = c where A is a D ×D matrix, we
define the normalized backward error ϵbe as in (2), where û
is the model’s predicted solution, and the norm is the stan-
dard 2-norm. For the variable coefficient and nonlinear case,
we measure the residual error, ϵres, of the forward operatorD
applied on the model’s predicted solution û, and the relative
solution error, ϵrel:

ϵbe =
∥Aû− c∥

∥A∥∥û∥+ ∥c∥
; ϵres = ∥D(x, û)− c(x)∥;

ϵrel =
∥û− u∥
∥u∥

(2)

3.2 Linear PDEs
Uni-modal: Discrete 1D Poisson’s We train UNO net-
work to approximate the inverse operator of a linear set of
equations given by Au = c, where A is the discrete 1D
Laplacian operator. Our UNO model is composed of two
linear GFMM-blocks with parameters P = 16, L = 4 se-
quentially stacked. To compare the performance of UNO,
we also train an FNO with width=32, modes=16 and
a DeepONet with 3 branch layers and 3 trunk layers, each

with width=128. We train all the models for 120k itera-
tions starting with a learning rate of 1e-03 and dropping to
1e-04 after 20k iterations on only the Chebyshev basis poly-
nomials, i.e., ui = αkTk.

Figure 4 (left) illustrates that while all models achieve
a training loss below 1e-4, UNO achieves a backward er-
ror ϵbe approximately two orders of magnitude lower than
FNO and DeepONet, despite having roughly half their num-
ber of learnable parameters. As seen from Table 1, though
all models accurately predict when u is a randomly scaled
Chebyshev polynomial similar to the training set (see Fig-
ure 4 (middle)), UNO demonstrates better generalization
compared to FNO and DeepONet when u is sampled from
out-of-training distribution (see Figure 4 (right)). But when
tested on data generated via RHS sampling (where c is sam-
pled and u is derived), all models struggled to generalize,
although UNO shows a slight advantage, particularly in its
lower backward error (also see Figure 7).

Multi-modal: 1D Darcy Flow For the multi-modal case,
we consider the steady state Darcy flow in 1D with variable
coefficient a(x) and fixed Dirichlet boundary conditions:

−∇(a(x)∇u(x)) = c(x), 0 < x < 1,

u(0) = u0, u(1) = u1.

Our goal is to learn the solution operator a, c 7→ u. We use
our multi-modal network MNO with one channel inputs for
both coefficient and RHS-branches, while the boundary con-



Figure 5: (Left) Test samples for 1D Darcy flow where the coefficient a is drawn from (3b) and (3c) shows that MNO models
can learn the simultaneous map a, c 7→ u while the UNO models cannot. (Right) MNO learns the solution map from multiple
parameters but UNO struggles for both in-distribution and out-of-distribution coefficients.

ditions are fixed. We choose L = 4 and P = 16 as the net-
work’s parameters. a is sampled from a mixture distribution
of quadratic parametric form and log-normal distributions:

a(x) = 0.5a1(x) + 0.5a2(x); (3a)

a1(x) = 1 + θ1x
2; where θ1 ∼ U(0, 1), (3b)

a2(x) = 0.1 + eθ2 ; where θ2 ∼ N (0, k(x, x′)),

k(x, x′) = e
− |x−x′|2

2(0.1D)2 .

(3c)

In subsurface flow modeling, e.g., in groundwater flow or oil
reservoir simulations governed by steady-state Darcy’s law,
the permeability field a(x) typically exhibits high hetero-
geneity. Geological layers formed by sediment deposition
have spatial correlations captured by log-normal gaussian
processes whereas certain smooth layers are approximated
by polynomial spatial variability and learning to map such
heterogeneous distributions is useful in practice.

We evaluate MNO against baselines FNO, DeepONet,
MIONet and four UNO networks. UNO-aQ and UNO-aLN
were trained with a fixed coefficient a sampled from dis-
tinct distributions, (3b) & (3c) respectively, while UNO-mix
encountered a new a (3a) in each training iteration, similar
to MNO. UNO-multich corresponds to the UNO with a, c
stacked as multiple channels in the inputs and so does the
baseline models, whereas other UNOs only receive a sin-
gle input. All models achieved a training MSE below 1e-
3 over 50k iterations with a mini-batch size of 1000. Fig-
ure 5(left) demonstrates that while UNO-aQ and UNO-aLN
only succeeded for their specific training a and UNO-mix
struggled with novel a values despite its varied training ex-
posure, MNO generalized effectively to unseen coefficients.
Furthermore, Table 3, with results averaged over 1000 so-
lution sampled test examples, shows that uni-modal net-
works failed to adapt to changes in a, whereas MNO ro-
bustly mapped both a and c simultaneously to the solution.

3.3 Nonlinear ODEs
In the section we use the following nonlinear first order BVP
with a parametric form:

a(x)u′(x) + b(x)|u(x)| = c(x); 0 < x < 1, (4a)∫
f(x)u(x)dx = g; 0 ≤ x ≤ 1 (4b)

where the boundary condition (4b) is also given in a general
parametric form. The absolute value of the solution term and
an additional variable coefficient b(x) are chosen only to test
model’s ability to handle nonlinearity and multiple coeffi-
cient parameters, which are sampled from following distri-
butions:

Ptr :


a = 1 + θx2;

b =
∑4

i=1 ϕiTi(x);

f =
∑4

i=1 ηiTi(x);where θ, ϕi, ηi ∼ U [−1, 1].

Uni-modal We train a UNO network with nonlinear ac-
tivation where all the parameters a, b, c, f, g are stacked as
multiple channels of the input to the UNO for 20k iterations.
The GFMM-blocks of UNO are initialized with P = 16
and L = 4. We evaluate the network using coefficients
sampled from both in-distribution and out-of-distribution on
batches of 1000 test samples. Table 4 shows the relative er-
ror, interior residual error and boundary residual error on
different combinations of the sampled test data distributions.
UNO achieves low relative error in the predicted solution but
higher residual errors with in-distribution test data, suggest-
ing overfitting on the solution without actually learning the
joint map from the parameters. Moreover, the UNO model
struggles further with out-of-distribution data, failing to at-
tain even low relative error. Examples of UNO model’s pre-
dictions in both cases are shown in Figure 5(right), where it
becomes evident that UNO is unable to smoothly approxi-
mate the join map from multiple parameters to the solution.
Next we discuss our multi-modal network’s performance on
the same setup.

Multi-modal We use the same nonlinear BVP in (4) to
train our MNO that learns the solution map not only from the



a, b ∼ Ptr a, b ≁ Ptr

ϵrel ϵint
res ϵbnd

res ϵrel ϵint
res ϵbnd

res

f ∼ Ptr

FNO (1.3±0.01)e-01 (9.9±0.05)e-01 (1.1±0.07)e+00 (1.2±0.02)e-01 (9.3±0.08)e-01 (1.2±0.09)e+00

DeepONet (1.0±0.03)e+00 (3.0±0.06)e+00 (5.5±0.04)e+00 (1.0±0.05)e+00 (3.3±0.01)e+00 (3.7±0.02)e+00

MIONet (7.1±0.09)e+01 (3.3±0.07)e+00 (2.0±0.02)e+01 (5.4±0.03)e+01 (3.6±0.05)e+00 (4.9±0.04)e+01

UNO (4.1±0.07)e-02 (4.8±0.04)e+00 (1.4±0.05)e-02 (1.7±0.02)e+01 (1.2±0.08)e+02 (5.6±0.03)e-02

MNO (1.13±0.02)e-02 (3.8±0.06)e-01 (8.4±0.09)e-03 (8.0±0.05)e-02 (4.4±0.01)e-01 (6.0±0.07)e-03

f ≁ Ptr

FNO (1.4±0.04)e-01 (1.3±0.02)e+00 (4.9±0.03)e-01 (1.4±0.05)e-01 (1.4±0.01)e+00 (7.1±0.06)e-01

DeepONet (1.0±0.07)e+00 (2.9±0.08)e+00 (1.0±0.06)e+00 (1.0±0.03)e+00 (3.4±0.05)e+00 (1.3±0.09)e+00

MIONet (1.6±0.05)e+01 (3.1±0.01)e+00 (1.1±0.04)e+00 (1.4±0.07)e+01 (3.3±0.08)e+00 (5.3±0.02)e+00

UNO (1.1±0.03)e+01 (1.2±0.09)e+02 (2.5±0.04)e-02 (2.8±0.06)e+01 (1.9±0.001)e+02 (7.3±0.01)e-02

MNO (1.1±0.01)e-01 (4.2±0.37)e-01 (1.6±0.30)e-03 (1.3±0.09)e-01 (5.5±0.14)e-01 (1.2±0.42)e-03

Table 4: Relative error (ϵrel), interior residual error (ϵint
res), and boundary residual error (ϵbnd

res ) of UNO, MNO, FNO, DeepONet,
and MIONet models for nonlinear BVP in (4). The errors are measured on 1000 test samples by sampling interior coefficients
(a, b) and boundary coefficient (f ) either from Ptr or from a unit normal (out-of-training) distribution.

SS RHS

FNO 3.50e-03 1.48e-01
DeepONet 1.90e-04 3.68e-01
UNO 2.83e-05 4.96e-01

(a) Poisson’s

SS RHS

UNO-aQ 4.26e-04 2.64e-01
UNO-aLN 3.99e-03 1.88e-01
UNO-mix 1.98e-03 6.19e-01
MNO 3.93e-04 9.22e-02

(b) Darcy flow

SS RHS

UNO 6.10e+00 1.12e+02
MNO 4.12e-01 2.97e+00

(c) BVP

Table 5: Residual errors computed on test data sampled using solution sampling (SS) and RHS sampling for 1D Poisson’s, 1D
Darcy flow and BVP of (4) for different models.

parameters of the interior equations (a, b, c) but also bound-
ary parametric constraints (f, g).

MNO is initialized with two nonlinear GFMM-blocks
in the coefficient branch and one nonlinear and one linear
GFMM-blocks in the RHS-branch with each block param-
eterized using P = 16 and L = 4. Figure 5 (right) shows
that MNO’s predicted solution is smoother and generalizes
better to out-of-distribution coefficients. Lower residual er-
rors across all distributions compared to UNO, as seen from
Table 4, indicates that MNO is able to learn the solution op-
erator mapping not only the coefficients and RHS but also
the parameterized boundary conditions with better general-
ization.

3.4 Out-of-distribution Generalization
Table 5 shows the mean residual errors for each experiment
when the models are tested on 1000 RHS sampled examples,
which are out-of-training distribution. We note the large in-
crease in error on RHS. To fix this, researchers have pro-
posed that the output of these networks to be refined by clas-
sical iterative solvers (Zhang et al. 2024).

4 Conclusions & Future work
We presented the Multi-modal Neural Operator (MNO) for
learning solution operators of parameterized PDEs under
simultaneous variations in coefficients, source terms, and
boundary conditions. While our current demonstrations are

primarily 1D (with preliminary 2D results in Appendix E),
future work will focus on extending MNO to higher dimen-
sions, time-evolving PDEs, and diverse domain geometries.
The demonstrated multi-modal capabilities of MNO also
suggest its potential in applications like reducing the compu-
tational cost of neural-assisted preconditioners for classical
iterative solvers. We believe our preliminary results will mo-
tivate the community to further explore and develop multi-
modal architectures, significantly broadening the scope and
utility of neural operators in scientific computing and engi-
neering applications.
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Ranade, R.; Pathak, J.; and Karniadakis, G. E. 2024. Blend-
ing neural operators and relaxation methods in PDE numer-
ical solvers. Nature Machine Intelligence, 1–11.



A FMM Matrix-vector product
Figure 6 shows the computational graph of a matrix-
vector product Ax = b using fast multiple method
(FMM)(Greengard and Rokhlin 1987). The graph shows the
input block vector x being transformed through up-sweep
and down-sweep recursions as:

gi = Vixi +
∑

j∈C(i)

Wjgj ;

fi = RC−1(i)fC−1(i) +
∑

j∈S(i)

Bi,jgj ;

bi = Dixi + Uifi;

where C(i) denote the set of child nodes of node i, C−1(i)
denote the parent nodes of node i, and S(i) denote the set of
neighbors of node i, such that the corresponding edges are
not in the tree graph. The indices are omitted from the figure
for brevity. The edges B,D correspond to bridge operators
and green and red paths correspond to encoder and decoder
of Figure 2. The FMM recursions are sparse linear equations
in x, b, f, g and so the matrix-vector product is computed
efficiently.

B Full architecture of MNO

Algorithm 2: Basis Transformation inside GFMM-block

Input: F ∈ RCout×Cin×P×P : Encoder/decoder parameters
Input: y ∈ RCin×P

Input: ε ∈ RP×P ▷ Latent outputs (for GFMM-blocks
with multi-modal fusion)

Output: z ∈ RCout×P

Parameters:
1: Cin: Number of input channels
2: Cout: Number of output channels
3: ϕ : Rd → Rd: Element-wise nonlinear activation func-

tion
4: E : True if this is a GFMM-block with multi-modal fu-

sion.
5: procedure BASISTRANSFORM(F, y, ε)
6: z = 0
7: for i = 1 to Cout do
8: for j = 1 to Cin do
9: if E then

10: Fij ← Fij + ε ▷ Additive weight
correction (multi-modal fusion)

11: end if
12: zi ← zi + Fijyj ▷ Matrix-vector product

and sum over input channels
13: end for
14: end for
15: zi ← ϕ(zi) for i = 1 to Cout ▷ nonlinear activation
16: end procedure

The full architecture of MNO for multi-channel in-
puts and multi-modal fusion between coefficient and RHS-
branches is shown in Figure 9. The illustration shows two

GFMM-blocks in the coefficient branch and one GFMM-
block in the RHS-branch. Considering the example of
multi-parameter BVP of (4), the coefficients of interior
and boundary equations, a(x), b(x) and f(x) vectors are
stacked and given as input to the coefficient branch. RHS
terms c(x), g(x) are given as input to the RHS-branch. The
weights of the RHS-branch are corrected additively with
the intermediate outputs from the coefficient branch and
the entire network is trained end-to-end. At each encoder
and decoder layer of the GFMM-blocks, the input is trans-
formed using the BasisTransform described in algo-
rithm 2 which also includes the weight correction from
multi-modal fusion for the GFMM-blocks in RHS-branch.

C ReLU vs Rational Activation
We make the observation that the solution to a linear partial
differential equation is a rational function of its coefficients.
Moreover, to achieve the multi-modal fusion, we produce
the weight corrections of the RHS-branch with the interme-
diate basis representations of the coefficient branch. Moti-
vated by these, we explore the performance of rational func-
tions as activations for our neural operator networks, in con-
trast to the traditional ReLU. We empirically observe that a
non-linear rational function such as ϕ(x) = x

1+|x| performs
better than ReLU for learning the multi-modal solution oper-
ators of both linear and non-linear BVPs. Figure 8 shows the
training loss and residual error progression of MNO models
on 1D Darcy flow and the nonlinear rational function out-
performs ReLU by a big margin. Table 7 shows the compar-
ison of errors of different models using different activation
functions. We can see that for baseline models, rational ac-
tivation did not result in consistent improvement. However,
MNO model clearly achieves best performance with ratio-
nal activation with a significant improvement, providing ev-
idence for our multi-modal fusion operation in generating
weight corrections of the RHS-branch with the intermedi-
ate basis representations of the coefficient branch. Previous
works (Molina, Schramowski, and Kersting 2019) explored
the variations of learnable rational functions as activations in
neural networks. A rigorous analysis of choice of activation
functions for MNOs is planned in our future work.

D 1D Poisson
D.1 Results from multiple training runs
We run the experiment outlined in section 3.2 by training
the FNO, DeepONet and UNO models independently three
times and aggregate the results in Table 6 which reports the
mean and standard deviation of the relative and residual er-
rors for the three models in the 1D Poisson case.

D.2 Testing on out-of-training distribution
Figure 7 shows the UNO, FNO, DeepONet models which
are trained using solution sampling using randomly scaled
Chebyshev polynomials i.e. u = αkTk(x) from 3.2, when
they are tested on out-of-training distribution examples. For
the top left plot, the example is generated by solution sam-
pling, but groundtruth u is chosen as random linear combi-
nation of T1(x) to T16(x). The figure shows that UNO and



Model Chebyshev Mixed

ϵrel ϵbe ϵrel ϵbe

FNO (8.24±0.03)e-03 (1.72±0.05)e-3 (4.54±0.07)e-01 (3.29±0.02)e-2
DeepONet (2.05±0.06)e-03 (1.60±0.09)e-3 (1.09±0.02)e-03 (2.40±0.03)e-3
UNO (5.32±0.01)e-06 (1.12±0.02)e-4 (5.72±0.03)e-06 (1.14±0.05)e-4

(a) Solution Sampled

Model Chebyshev Mixed

ϵrel ϵbe ϵrel ϵbe

FNO (7.56±0.08)e-01 (1.29±0.04)e-2 (9.63±0.01)e-01 (2.15±0.06)e-2
DeepONet (2.63±0.05)e-01 (1.98±0.07)e-2 (7.31±0.04)e-01 (1.45±0.08)e-2
UNO (8.18±0.07)e-02 (2.08±0.04)e-3 (5.76±0.09)e-01 (4.78±0.02)e-3

(b) RHS Sampled

Table 6: Same as Table 1 but with mean and standard deviations reported from 3 independent training runs of each model.

Figure 6: Computational graph of FMM matrix-vector product.

Model Rational ReLU GELU
Rel Error Residual Error Rel Error Residual Error Rel Error Residual Error

FNO 9.9469e-01 6.5013e-03 9.9754e-01 1.0742e-02 1.0053e+00 2.2008e-03
DeepONet 1.0626e+00 4.3643e-03 1.0006e+00 4.0503e-03 1.0481e+00 7.4626e-03
MIONet 1.0317e+00 8.6286e-03 2.8665e+01 6.1070e-03 1.3135e+01 5.3136e-03
MNO 2.7362e-02 5.7059e-04 9.9998e-01 2.3622e-03 1.8191e+02 5.2086e+00

Table 7: Comparison of different activation functions.



Figure 7: Examples of UNO, FNO and DeepONet evaluated on out-of-distribution 1D Poisson data. Top left sample is generated
using solution sampling with random linear combinations of Chebyshev bases. Rest of the plots show samples generated using
RHS sampling.

Figure 8: Training MSE loss and residual error of 1D Darcy flow MNO network with relu vs nonlinear rational activation
function.



Figure 9: MNO with two GFMM-blocks in the coefficient branch and one GFMM-block in the RHS-branch showing multi-
modal fusion between the two branches.



DeepONet performs better than FNO on this type of exam-
ples. In the rest of the plots, examples are generated using
RHS sampling. For the top right and bottom right plots, c is
chosen as randomly scaled Tk(x) where k = 4 for top right
and k = 16 for bottom right plot and groundtruth u is cor-
respondingly derived. For the bottom left plot, c is chosen
as a random linear combination from T1(x) to T16(x). For
all the RHS-sampled examples, every model struggles to ap-
proximate the solution, but UNO performs better with lower
residual error compared to FNO and DeepONet.

E 2D GFMM-block
E.1 Architecture
A 2D FMM computational graph is equivalent to the ten-
sor product of a 1D FMM shown in Figure 6. Analogously,
we define the 2D GFMM-block as the tensor-product of 1D
GFMM-block. A schematic of the 2D GFMM-block archi-
tecture is shown in Figure 10. For the simplest case of single
channel 2D input grid, the encoder and decoder graphs are
quadtrees as compared to the binary trees of the 1D FMM.
Each encoder node comprises of four bi-linear transforma-
tion layers that apply a tensor contraction operation on the
input blocks and add the result into the output block. Ten-
sor contraction is defined as AXBT , where A and B are the
linear weights and X is the input block.

The first encoder layer’s input blocks are block matrices
of the input 2D grid array in a fixed order. In Figure 10, we
used Z-ordering (or Morton ordering) to divide the 2D input
matrix into blocks. The rest of the encoder nodes follow the
similar quadtree structure shown. Similarly, at every decoder
layer, each input block undergoes four bi-linear transforma-
tions (tensor contraction) and the output is added to the out-
put of bridge operator, which performs the tensor contrac-
tion on the corresponding encoder output. Finally, the out-
put is obtained by adding the output of last decoder layer
with the transformed input through the outermost bridge op-
erator. For the bridge operators, the linear weights are fixed
to be block banded matrices (block tri-diagonal in our ex-
periments). Similar to 1D GFMM-block, we only store the
blocks on the banded diagonals for memory efficiency. Ad-
ditional non-linear activations can be applied after each bi-
linear transformation of the encoder and decoder layers. In
the next section, we show empirically that a 2D GFMM-
block thus constructed can approximate the inverse operator
of a discrete 2D Poisson’s equation.

E.2 2D Discrete Poisson
Similar to section 3.2, we consider the linear equation Au =
c, but here A is the 2D discrete Laplacian operator. We train
the 2D GFMM-block to learn the inverse operator of A using
solution sampling of random linear combinations of Cheby-
shev polynomials on a 128×128 uniform grid. We initialize
the 2D GFMM-block with four encoder and decoder lay-
ers and a block size of 8 and trained for 200k iterations.
Figure 11 shows the results on randomly sampled exam-
ples from 2D Chebyshev grid where the 2D GFMM-block
network is able to approximate the inverse operator on this

simple setup. It obtains a mean relative error of (4.86±0.3)e-
07 and a normalized backward error of (6.48±0.005)e-05 on
a random test set of 1000 examples.

Given the encouraging results, extending the 2D GFMM-
block architecture with multi-modal fusion and a careful
analysis of its generalization performance is the subject of
our future work.



Figure 10: Schematic of a 2D GFMM block.



Figure 11: Groundtruth solution and the predicted output of the 2D GFMM-block trained on 2D Poisson’s equation.


