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Abstract

Space weather at Earth, driven by the solar activity, poses
growing risks to satellites around our planet as well as to crit-
ical ground-based technological infrastructure. Major space
weather contributors are the solar wind and coronal mass
ejections whose variable density, speed, temperature, and
magnetic field make the automated classification of those
structures challenging. In this work, we adapt a foundation
model for solar physics, originally trained on Solar Dynam-
ics Observatory imagery, to create embeddings suitable for
solar wind structure analysis. These embeddings are concate-
nated with the spacecraft position and solar magnetic con-
nectivity encoded using Fourier features which generates a
neural field-based model. The full deep learning architecture
is fine-tuned bridging the gap between remote sensing and in
situ observations. Labels are derived from Parker Solar Probe
measurements, forming a downstream classification task that
maps plasma properties to solar wind structures. Although
overall classification performance is modest, likely due to
coarse labeling, class imbalance, and limited transferability
of the pretrained model, this study demonstrates the feasibil-
ity of leveraging foundation model embeddings for in situ so-
lar wind tasks. As a first proof-of-concept, it lays the ground-
work for future improvements toward more reliable space
weather predictions. The code and configuration files used in
this study are publicly available to support reproducibility.

Introduction

The solar wind is the continuous outflow of charged particles
from the Sun into the interplanetary space (Parker 1958).
It is composed of a variety of structures that differ in den-
sity, speed, temperature, magnetic field, and other proper-
ties depending on their source region on the Sun. Particu-
larly, the fast component of the solar wind, otherwise known
as high speed streams, that originates from coronal holes

“These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

on the Sun, can cause medium- to large-scale geomagnetic
storms (Richardson, Cliver, and Cane 2001; Echer, Tsuru-
tani, and Gonzalez 2013). Such storms can disrupt satel-
lites and pose radiations risks to astronauts. Within the so-
lar wind, more extreme and transient phenomena frequently
propagate such as coronal mass ejections (CMEs). CMEs
are large expulsions of plasma and magnetic field from the
Sun’s corona (Forbes 2000; Webb and Howard 2012) that
produce variations in the solar wind and, in turn, cause vari-
ations in the Earth’s magnetic field as well (Richardson,
Cliver, and Cane 2000). CMEs can cause large-scale geo-
magnetic storms which cannot only severely damage satel-
lites (Baruah et al. 2024) and pose even higher risks than
high speed streams to astronauts’ life, but they can also dis-
rupt terrestrial power grids (Hamrin et al. 2023) leading to
significant economic consequences (Eastwood et al. 2017).
Reliably forecasting both solar wind and CMEs remains
highly challenging as our understanding of their structure
and evolution is still incomplete (Owens et al. 2022).

Classifying solar wind structures (from now on when re-
ferring to solar wind we mean solar wind and CMEs to-
gether), is central to space weather research as solar wind
structures originating from different sources (e.g., coro-
nal holes, streamer belts, active regions, etc.) have distinct
plasma and magnetic properties that determine their geo-
effectiveness (Borovsky 2018). Being able to distinguish
and predict these structures is key to reliably forecast ge-
omagnetic activity and mitigate risks related to satellites,
power grids, and astronauts. Several studies have attempted
to predict solar wind properties directly from solar disk im-
ages. For example, Upendran et al. (2020) used EUV images
to forecast wind speed, while Lin et al. (2023) employed
magnetograms. More recently, Wang et al. (2025) predicted
solar-wind-driven geomagnetic activity from EUV images.
While these studies show promise, they typically rely on
physics-based preprocessing of solar images before using
them in neural networks. This step introduces uncertainty
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Figure 1: Architecture of the proposed model. The framework combines two input streams: (i) solar images processed by a
pretrained MAE backbone (SDO-FM) to obtain an embedding layer, and (ii) positional information from the Parker Solar
Probe and its magnetic footpoints, encoded through Fourier features. The embeddings and encoded positions are concatenated
and passed through the classification head (either a simple linear head or a skip-connection variant), producing logits over the
available solar wind classes. During training, predictions are compared with ground-truth labels using the focal loss function.

from model choices and may discard valuable information
contained in the raw data.

Recent progress in self-supervised learning has enabled
the training of foundation models, namely, large neural
networks pretrained on raw, unlabeled data, learn general-
purpose representations useful for many tasks (Darcet et al.
2023). Notable examples include SimCLR (Chen et al.
2020), DINO (Caron et al. 2021), and MAE (He et al. 2022)
foundation models. Specifically for MAE, it learns compact
latent embeddings by reconstructing masked portions of the
input. These embeddings can then be reused in downstream
applications. MAE has already demonstrated strong trans-
fer performance in fields like Earth observation (Allen et al.
2023; Gallego-Mejia et al. 2023), motivating their use in so-
lar physics.

In this work, our goal is to design a deep learning frame-
work to connect solar imagery with in situ solar wind obser-
vations (see overall architecture in Figure 1). We leverage
the SDO Foundation Model (SDO-FM) (Walsh et al. 2024),
a pretrained masked autoencoder (MAE) trained on solar
images as a foundation model backbone for the downstream
task of solar wind classification. To enhance representational
power, we incorporate a neural field-based head architec-
ture that encodes positional information in a high-frequency
space, exploring both simple linear heads and more expres-
sive variants based on ResNet (He et al. 2016) and NeRF
(Mildenhall et al. 2021) skip connections. Recent work has
highlighted the importance of enriching models with posi-
tional information. Incorporating this idea into our setup en-
ables solar wind classification to take into account the geo-

metric context of the heliosphere, beyond what is available
in the image embeddings alone. Solar wind structures are
labeled using in situ plasma measurements mapped to the
Xu and Borovsky (2015) scheme. Although overall classifi-
cation performance is modest, the model appears to capture
meaningful structure in the solar wind data, suggesting that
foundation model embeddings can encode relevant physi-
cal information. Taken together, our results demonstrate that
combining foundation models with in situ labeling schemes
offers a first step toward effectively linking solar imagery
with heliospheric plasma data, being a nontrivial step toward
unifying solar physics and space weather forecasting.

Observational datasets

To close the gap in our knowledge of the solar wind, the
Parker Solar Probe (PSP) (Fox et al. 2016; Szabo 2018)
was launched in August 2018. One of the main objectives
of this mission is the measurement of the solar wind prop-
erties at distances closer to the Sun than any other mission
has achieved before (as close as ~ 9 Solar Radii (Rgy,) or
=~ 0.04 Astronomical Units (AU)). That makes it the only
spacecraft that has recorded in situ properties of the solar
wind at an extended radial range within the inner heliosphere
(= 0.04AU to =~ 1.0AU; see (Raouafi et al. 2023) for a
summary of findings from PSP’s initial mission). PSP car-
ries four instrument suites—FIELDS, SWEAP, WISPR, and
ISGIS—designed to measure different aspects of the solar
wind. In this study, we use the FIELDS instrument (Bale
et al. 2016), which measures the in situ magnetic field com-



ponents and the SWEAP instrument (Kasper et al. 2016),
which measures the properties of the solar wind plasma.

In order to try to connect PSP in situ measurements
to their solar source regions, we use remote-sensing im-
ages from the Solar Dynamics Observatory (SDO) (Pes-
nell, Thompson, and Chamberlin 2012). SDO was launched
in 2010 and observes the solar atmosphere with a suite of
instruments, including the Atmospheric Imaging Assembly
(AIA) (Lemen et al. 2012) and the Helioseismic and Mag-
netic Imager (HMI) (Schou et al. 2012). AIA acquires 10-
channel images of the solar disk (the full visible surface
of the Sun as seen from Earth) at two ultraviolet (UV),
seven extreme ultraviolet (EUV), and one visible wave-
length (Lemen et al. 2011), while HMI observes the solar
disk to derive global photospheric velocity, intensity, and
magnetic field measurements (Hoeksema et al. 2014).

Although AJIA and HMI provide high-resolution
4096 x 4096 images, such data is not yet well-suited for
direct application in multi-modal learning with machine
learning or deep learning algorithms (Jarolim et al. 2025).
To address this, Galvez et al. (2019) introduced the SDOML
dataset, a clean and machine-learning-oriented version of
SDO observations downscaled to 512 x 512, resulting in the
reduction of computational demands. The SDOML dataset
was designed to provide solar physicists and data scientists
with a standardized, machine-learning-ready collection of
SDO observations. To achieve this, raw Level-1 data from
the three instruments on board SDO were first corrected
to remove known instrumental artifacts such as flat-field
irregularities, exposure variations, and bad pixels. Spatial
and temporal downsampling was then applied to reduce
the very high resolution of the original data to a more
computationally manageable scale, while still preserving
structures of interest for scientific and machine learning
tasks. All image sequences were temporally aligned and
co-registered across wavelengths to ensure that simulta-
neous multi-channel observations correspond to the same
solar disk region and time frame, which is critical given
the varying cadences of SDO instruments. Metadata,
including helioprojective coordinates, solar ephemeris, and
instrumental context, were retained in standardized formats,
allowing downstream tasks to connect observations across
physical domains. The resulting dataset therefore eliminates
the need for extensive preprocessing at the user level,
offering “analysis-ready” images where instrumental and
observational inconsistencies have already been corrected.
By leveraging SDOML, we can directly use compact em-
beddings from foundation models without repeating ad-hoc
preprocessing pipelines (Walsh et al. 2024), which reduces
uncertainty and ensures reproducibility across experiments.
We use images from SDOML provided at a cadence of 12
minutes, matching the downsampled format described in
(Galvez et al. 2019), sufficient to capture large-scale coronal
structures relevant to solar wind origin while keeping the
dataset computationally manageable.

Models
Backbone: SDO-FM

Several approaches have been proposed to build foundation
models with SDO data. The SDO-FM model (Walsh et al.
2024) utilizes SDOML and leverages Masked Autoencoder
(MAE) (He et al. 2022) and the Nouveau Variational Au-
toencoder (NVAE) (Vahdat and Kautz 2020) to construct
the backbone. We build upon the SDO-FM (Walsh et al.
2024), a large-scale masked autoencoder (MAE) trained on
the SDOML dataset from 2010-2023 using TPU clusters.
This model serves as a pretrained backbone that encodes rich
spatiotemporal representations of solar structures. During
pretraining, random patches of the input images are masked,
and the encoder learns to produce a compact latent repre-
sentation that allows the decoder to reconstruct the missing
regions. This self-supervised approach enables MAE to cap-
ture meaningful spatial and structural features of the solar
corona (He et al. 2022; Walsh et al. 2024). The output em-
bedding layer from the encoder is used with a custom head
neural network to do the downstream task of solar wind clas-
sification.

The SDO-FM model used in this work was previously
trained with AIA data from the SDOML dataset. Given the
nature of its training, it is expected that it will primarily cap-
ture coronal intensity features rather than magnetic topolog-
ical ones, which may limit its ability to identify potential
magnetic drivers of the solar wind. The specific model was
selected as it was already pretrained, allowing us to explore
downstream solar wind classification while acknowledging
its limitations.

Architecture of the Classification Head

To enhance the model’s representational power, we incor-
porate neural fields, positional information from the helio-
spheric PSP’s latitude and longitude and the photospheric
footpoint of the magnetic field line that PSP is connected
to based on Wang-Sheeley-Arge (WSA) (Arge and Pizzo
2000) predictions, through sinusoidal (Fourier) features into
a high-dimensional spectral space (Rahimi and Recht 2007;
Mildenhall et al. 2021). The mapping of a coordinate x is
defined in Equation , where L is the number of frequency
bands. This encoding captures both low- and high-frequency
variations, providing richer information about the space-
craft’s position and its connection to the solar surface.

v(z) = [sin(207m"), cos(2°7x),. ..,
sin(2L-17x), cos(ZL’lmc)} ,

The MAE embeddings and positional encodings are con-
catenated to form a unified representation, which serves as
the input to the classification head. Two head variants were
explored.

Linear head. The linear head consists of three fully con-
nected layers with ReLU activations and dropout. The sec-
ond and third layers use half the number of neurons of the
preceding layer, respectively.



Skip-connection head. The skip-connection head follows
the strategy of NeRF (Mildenhall et al. 2021), where inter-
mediate layers receive both the hidden activations and the
original input through skip connections every k layers. This
allows the model to preserve fine-grained positional infor-
mation across deeper transformations and enables richer in-
teractions between pretrained embeddings and positional en-
codings. All the head’s layers have the same number of neu-
rons.

Both architectures produce a final layer with four logits
corresponding to the classes. Together, these two variants
allow us to assess the trade-off between simplicity and ex-
pressive capacity in integrating positional information into
the solar wind classification pipeline.

Training strategy

Our training follows a two-stage transfer learning and fine-
tuning strategy:

1. Transfer learning stage: we initialize the backbone with
the pretrained SDO-FM weights and freeze all its layers,
training only the newly added classification head (and
positional embedding layers) to adapt the representations
to the solar wind classification task.

2. Fine-tuning stage: after convergence of the head, we
unfreeze the entire network, including the MAE trans-
former backbone, allowing joint optimization of all pa-
rameters to refine the representations for in situ plasma
classification.

Training is performed with the Adam optimizer (Kingma
and Ba 2014) and a plateau learning rate scheduler. To han-
dle class imbalance, we use the focal loss (Lin et al. 2017),
defined as F'L(p;) = —ay(1 — p;)” log(p:), where p; is the
predicted probability for the true class, ay; balances class
weights, and v emphasizes hard-to-classify samples (Lin
et al. 2017). This loss encourages the model to learn dis-
criminative features even for underrepresented solar wind
categories. As shown in Figure 1, the concatenated features
are passed through the classification head, where the focal
loss is applied during both training stages.

Experiment

In this section, we describe the preprocessing steps and eval-
uation protocols used to assess our model.

Preprocessing of PSP datasets

PSP measurements from the FIELDS and SWEAP instru-
ments were first resampled to a common one-minute ca-
dence via binning and averaging. SWEAP has a native ca-
dence of approximately 25 seconds, while FIELDS mea-
sures at = 3 ms; thus, each one-minute bin contains roughly
20,000 FIELDS and 2-3 SWEAP measurements. Minutes
with missing data were linearly interpolated and flagged per
instrument to allow later filtering if necessary. Additional
parameters were calculated from PSP measurements to en-
rich the dataset. As mentioned earlier, the magnetic foot-
point of PSP on the solar surface and the corresponding solar
wind travel time were obtained using the WSA model (Arge

and Pizzo 2000). These footpoints allow each measurement
to be linked to the region of the Sun from which the mea-
sured solar wind parcel originated from. WSA was used for
ease of calculation and as a baseline for image selection.

Solar wind structure labels were derived using a four-class
segmentation scheme based on solar wind plasma conditions
(Xu and Borovsky 2015). This classification partitions solar
wind into fast plasma originating from coronal holes (Shee-
ley, Harvey, and Feldman 1976), slower wind plasma from
the streamer belt region (Crooker et al. 2012), dense and
cold sector reversal plasma forming the heliospheric current
sheet (Susino et al. 2008), and ejecta which are linked to
CMEs and magnetic clouds (Richardson, Cliver, and Cane
2000; Zhao, Zurbuchen, and Fisk 2009). Labels are based
on proton temperature, proton specific entropy, and Alfvén
speed, providing a notional link to the solar origin of each
wind parcel. These four structural classes serve as the la-
bels for the classification algorithm developed in this study.
The structure of the algorithm is easily adaptable to other
classification schemas; this one was chosen for its compu-
tational simplicity and notional link to the approximate area
the solar wind originated from. It should be acknowledged,
however, that this scheme presents challenges and has big
uncertainties because of the fact that (1) the connectivity of
the ejectas’ footpoints back to the Sun based on the WSA
model are not reliable since the WSA model predicts only
solar wind and no transient structures, and (2) the fact that
the streamer belt and sector reversal categories often display
overlapping properties resulting in some inconsistencies and
overlapping in earlier classifications (Camporeale, Care, and
Borovsky 2017).

Connectivity of PSP measurements with SDOML
images

In order to connect PSP measurements with an SDOM-
L/ATA image, we assumed that WSA produces a good es-
timate of the solar wind at each PSP location. Then, for each
such PSP location, we traced back to the photosphere the
magnetic field line that the spacecraft was connected to. This
is how each PSP measurement was paired with a SDOM-
L/AIA image, producing a dataset of image-PSP position-
footpoint-label. A single SDOML image can be associated
with multiple PSP observations due to higher PSP dataset
cadence when compared it against SDOML dataset. How-
ever, this does not introduce label noise into the dataset,
since each pairing corresponds to a distinct heliospheric po-
sition and magnetic footpoint. In practice, this provides the
model with complementary views of different source regions
from the same solar image enhancing the diversity of spatial
information available during training.

The training set includes data from April to December
between 2019-2023. The validation set uses data from Jan-
uary to March between 2019-2022. The test set consists of
data from January to March of 2023. Overall, the training,
validation, and test sets comprise approximately 92%, 6%,
and 2% of the dataset, respectively, ensuring temporal sep-
aration to avoid potential leakage due to solar rotation. De-
spite representing about 2% of the total dataset, the test split
remains statistically meaningful given the overall dataset



size of nearly one million samples, each composed of 10-
channel ATA imagery. This corresponds to over 13,000 test
instances, which provides a sufficiently large sample to eval-
uate model generalization with low variance in performance
metrics. The choice of using approximately three months
of data for testing was deliberate: by reserving a contigu-
ous temporal segment, the evaluation avoids data leakage
across solar rotations and ensures that the test period is un-
seen both spatially and temporally. This design prioritizes
independence and realism over uniform proportional split-
ting, which is critical in temporally correlated heliophysics
datasets.

Table 1 summarizes the dataset partitions and class dis-
tributions. Figure 2 shows the inherently imbalanced nature
of the data: streamer belt wind and sector reversal dominate,
while coronal hole and ejecta are underrepresented, motivat-
ing the use of focal loss during training.

Training setup and evaluation

To evaluate model performance in the imbalanced multi-
class classification task, we report accuracy, precision, and
F1-score, all computed per class and averaged with a macro
strategy. To mitigate class imbalance, we tuned the a and
~ parameters of the focal loss. Models were trained for 50
epochs with a batch size of 32, and hyperparameters (in-
cluding learning rate, weight decay, and scheduler) were
selected based on focal loss validation. The full hyperpa-
rameter search space is summarized in Table 2. All experi-
ments were implemented in PyTorch (FP32) and executed
on Google Cloud Platform using four c2-standard-8 VM
instances (8 vCPUs, 32 GB RAM) with 10 TB SSD stor-
age and four NVIDIA A100 GPUs. The full codebase sup-
porting this work is available at https://github.com/spaceml-
org/CORONA-FIELDS.

Results

Figure 3 compares training loss across three configurations.
The model with random initialization of the MAE backbone
exhibits consistently higher loss across all epochs compared
to the other two configurations. This outcome is expected,
as leveraging a pretrained backbone provides prior knowl-
edge about the image domain and avoids retraining it from
scratch on potentially massive datasets, thereby facilitating
faster and more effective optimization. Among the models
with lower loss, the configuration with a fine-tuned pre-
trained backbone achieves the best performance, indicating
that adapting pretrained features with new task-specific in-
formation leads to more effective learning. Overall, the com-
parison highlights the value of pretraining for stable and effi-
cient optimization. Training was stopped early based on val-
idation loss, as part of an early-stopping criterion to prevent
overfitting once performance on the validation set plateaued.

In addition to evaluating training loss, we also analyzed
how incorporating positional information affects the struc-
ture of the embedding space. After adding positional encod-
ing, the embeddings are projected into a lower-dimensional
space, as visualized in the t-SNE plots of embeddings with
and without positional encoding (Figure 4). While the dif-
ferent types of solar wind structures are not fully separable

in either case, adding positional information reveals inter-
esting patterns and a clearer organization of the embedding
space, reflecting a dimensionality reduction induced by the
positional encoding.

Figure 5 illustrates randomly selected correct predictions
of the coronal hole, sector reversal, and streamer belt classes.
For the coronal hole cases, the WSA-predicted magnetic
footpoints lie in dark regions in the AIA images (espe-
cially visible in the 193 A), which are coronal holes. For
the streamer belt cases, the magnetic footpoints lie in the
brighter, more dense regions of the Sun, characteristic of
streamers. In the sector reversal case, the magnetic foot-
points should lie around the area of the heliospheric current
sheet.

Table 3 summarizes the performance of the evaluated
architectures under three training regimes: training from
scratch, transfer learning, and fine-tuning. The linear head
achieves higher F1 when trained from scratch, while the
skip-connection head performs best under fine-tuning. Over-
all, the linear head yields the highest accuracy across all set-
tings. The model struggles to distinguish between streamer
belt and sector reversal plasma classes, reflecting feature
overlap and limitations of the Xu and Borovsky (2015) la-
beling scheme (Camporeale, Care, and Borovsky 2017). Ad-
ditionally, due to the scarcity of ejecta samples and WSA ca-
pabilities, the model does not learn a reliable representation
for this class.

Although overall accuracy and F1 scores remain modest,
the model appears to learn meaningful information from the
AIA images. It seems to integrate features of the solar sur-
face with the position of PSP (which is not in the field of
view of the images) and the spacecraft’s magnetic footpoints
in the photosphere to inform its predictions. This suggests
that even with limited performance, the pretrained embed-
dings capture relevant solar structures, highlighting the po-
tential of foundation models for downstream in situ tasks.

Figure 6 shows an example of one SDOML/AIA 193 A
image and its reconstructions by the pretrained MAE and
the fully fine-tuned model. Fine-tuning enhanced contrast,
making active regions brighter and coronal holes darker
compared to the pretrained MAE output, highlighting the
model’s adaptation to task-specific features.

Discussion and limitations

A primary factor limiting performance is the labeling
scheme itself. The Xu and Borovsky (2015) scheme pro-
vides a simple empirical segmentation, but its use of fixed
thresholds introduces ambiguity near transitional regimes
where plasma properties overlap, a common limitation of
threshold-based classification methods in the continuously
varying solar wind environment. This ambiguity is particu-
larly evident between the streamer belt and sector reversal
plasma classes, whose boundaries are not sharply defined,
and is further compounded by the scarcity of ejecta sam-
ples, preventing the model from learning a robust represen-
tation for that class. As a result, overall classification accu-
racy remains modest (=30%). The high similarity between
the streamer belt and sector reversal classes suggests that
some apparent misclassifications may not reflect a lack of
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Set Total Streamer Belt

Sector Reversal Coronal Hole  Ejecta

Train 953,821 415,870
Validation 66,245 38,799
Test 13,148 6,235

423,960 89,206 24,785
20,444 6,319 683
3,675 3,102 136

Table 1: Dataset partition and class distribution. Each sample corresponds to a 10-channel AIA image and its associated plasma
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Figure 3: Training loss curves for a linear head with skip-
connection. Three model configurations are compared: (1)
head only, with a frozen, pretrained backbone, (2) backbone
& head with a pretrained backbone fine-tuned during train-
ing, and (3) backbone & head with random initialization.

learned structure, but rather the intrinsic ambiguity of the la-
bels. The model exhibits a tendency to predict the streamer
belt category, which is expected given its high prevalence in
the dataset and the intrinsic similarity with the sector rever-
sal class. While combining the high prevalence classes has
not been explicitly tested, it indicates that the model could be
capturing meaningful relationships between coronal features
and in situ plasma measurements beyond merely predicting
the majority class.

Another factor potentially limiting performance is the
backbone itself. The SDO-FM model used here was pre-
trained exclusively on AIA images, capturing primarily
coronal intensity features rather than magnetic topology. As
aresult, the model may have limited ability to fully represent
the magnetic drivers of the solar wind. While this choice was
dictated by the availability of pretrained foundation models,
it highlights an avenue for future work where incorporating
HMI magnetograms could improve downstream classifica-
tion.

The mapping of PSP measurements to photospheric foot-
points via the WSA model is inherently approximate, and
the subsequent resampling of data from 8-hour to 1-minute
cadence may introduce interpolation artifacts and noise.
Also, as mentioned earlier, the WSA backmapping does not
apply for the ejecta category. These approximations affect
the fidelity of the positional encoding, which could in turn
limit the discriminative power of the head architectures.

Overall, while this model is not intended as an opera-
tional or immediately deployable system, it provides a valu-
able proof of concept and diagnostic tool. Its limited per-
formance helps reveal where current assumptions, such as
coarse threshold-based labeling, fall short, offering insights
that can guide future developments in both modeling and
data annotation. In this sense, the present work contributes



Parameter Search Space

Head Type Linear layers, Linear layers with skip-connection
Optimizer Adam

Hidden Layer Size 64, 128, 256, 512, 1024

Learning Rate 1x107%,1x107%,1x1077,1x 1078
Weight Decay 3x10741x107%41x1073

Scheduler Cosine Annealing, Reduce on Plateau

Loss Function
Focal Loss o
Focal Loss v
Sampling Strategy

Cross-Entropy, Focal Loss

[0.45, 0.30, 0.15, 0.10], [0.45, 0.35, 0.10, 0.10]
2,3

No modification, Under-sampling

Table 2: Hyperparameter search space for the solar wind classification task.
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Figure 4: t-SNE on a randomly selected balanced set of embeddings produced by SDO-FM with PSP’s position included (top
row) and without PSP’s position included (bottom row) at five different perplexities. With positional information included, the
embeddings are projected into a lower-dimensional space, as evidenced by the strip-like structure in the t-SNE visualization.

not only a methodology, but also a critical reflection on ex-
isting empirical schemes in heliophysics.

Conclusion

In this work, we adapted a foundation model for solar
physics, combining MAE embeddings with neural field-
based head architectures, to bridge remote-sensing imagery
from the SDO with in situ plasma measurements from PSP
for the classification of solar wind structures. Although
the classification performance remains modest, the results
demonstrate a proof of concept that positional encodings
of spacecraft location and magnetic connectivity can enrich
pretrained embeddings for downstream heliospheric tasks.
This study demonstrates that foundation models can serve
as a bridge between solar imagery and heliospheric in situ
observations, an essential and nontrivial step toward uni-
fied models for solar physics and space weather forecast-
ing. The presented pipeline represents a first stone in ex-
ploring how foundation model embeddings can be extended
from solar remote sensing to in situ applications. While cur-
rent results are limited, they reveal that embeddings learned
from coronal imagery capture meaningful physical informa-

tion that can inform solar wind classification. This connec-
tion between modalities highlights a promising pathway to-
ward more robust, interpretable, and data-driven approaches
to space weather analysis.

Future Work

Several avenues could be explored to address the limitations
identified in this study. First, improving the labeling scheme
by incorporating hybrid or probabilistic methods could re-
duce ambiguity near transitional regimes and better capture
the diversity of solar wind structures. Second, extending the
foundation model pretraining to include additional magnetic
field data, such as HMI magnetograms, could enhance the
transferability of embeddings for in situ tasks. Third, larger
and more balanced test and validation splits, along with met-
rics tailored for class imbalance, would provide a more ro-
bust assessment of model performance. Finally, optimizing
data storage and loading pipelines could improve training
scalability for larger datasets and more complex models, en-
abling more comprehensive experimentation.



Streamer Belt
2023-03-19
18:51:14

2023-01-20
15:52:52

Sector Reversal
2021-01-16
20:33:58

2023-02-13
12:31:10

Coronal Hole

2023-01-03
22:50:05

= = = = -
=T S S S
8 g 8 8
B > > >
B¢

X

Correctly Predicted Entries from Test Set

WSA-predicted magnetic footpoint of PSP in photosphere

Figure 5: Examples of correct predictions on the test set for three solar wind classes: coronal hole, sector reversal, and streamer
belt. Each column shows an SDOML/AIA image, with crosses indicating the predicted magnetic footpoints from PSP.

Head Type Training Strategy Accuracy Precision Recall Fl-score
Head Only (Frozen Backbone, Pretrained) 0.305 0.261 0.305 0.242

Skip-connection Backbone & Head (Pretrained, Fine-tuned) 0.345 0.304 0.345 0.308
Backbone & Head (Random Initialization) 0.291 0.296 0.291 0.288
Head Only (Frozen Backbone, Pretrained) 0.314 0.287 0.314 0.288

Linear Backbone & Head (Pretrained, Fine-tuned) 0.325 0.293 0.325 0.298

Backbone & Head (Random Initialization) 0.320 0.327 0.320 0314

Table 3: Test set performance of linear and skip-connection heads under three training strategies: frozen pretrained backbone,
fine-tuned pretrained backbone, and random initialization. Metrics include Accuracy, Precision, Recall, and F1-score.
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