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Abstract

In semiconductor manufacturing, early detection of wafer de-
fects is critical for product yield optimization. However, raw
wafer data from wafer quality tests are often complex, unla-
beled, imbalanced and can contain multiple defects on a sin-
gle wafer, making it crucial to design clustering methods that
remain reliable under such imperfect data conditions. We in-
troduce DECOR, a deep clustering with orientation robust-
ness framework that groups complex defect patterns from
wafer maps into consistent clusters. We evaluate our method
on the open source MixedWM38 dataset, demonstrating its
ability to discover clusters without manual tuning. DECOR
explicitly accounts for orientation variations in wafer maps,
ensuring that spatially similar defects are consistently clus-
tered regardless of its rotation or alignment. Experiments in-
dicate that our method outperforms existing clustering base-
line methods, thus providing a reliable and scalable solution
in automated visual inspection systems.

1 Introduction

Clustering is an unsupervised learning technique used to
group unlabeled data based on the underlying similarity
in their feature representations. Methods are often catego-
rized into hard clustering and soft clustering based on the
exclusivity of clusters: hard clustering assigns each data
point to exactly one cluster, whereas soft clustering allows a
data point to belong to multiple clusters with varying prob-
abilities. When dealing with high-dimensional data such
as wafer maps, autoencoder variants are commonly used
to extract the low-dimensional latent embeddings that pre-
serve structural information. These embeddings (often a 1-
dimensional vector) is subsequently clustered using well-
established approaches, including centroid-based clustering
(Eg. K-Means), density-based clustering (Eg. DBSCAN,
HDBSCAN, OPTICS), distribution-based clustering (Eg.
Gaussian Mixture Models, Expectation-Maximization) or
hierarchical clustering (Eg. Agglomerative Clustering).
Despite their effectiveness and widespread use, most clus-
tering methods rely on fixed assumptions, such as the num-
ber of clusters (k), maximum distance between points (€),
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and choice of distance metric (Eg. L1 or L2 distance). This
reliance of assumptions makes it impractical for dynamic
wafer inspection, where the wafer defect distribution can
evolve over time, and clustering needs to be applied fre-
quently to identify outlier or anomalous patterns without
prior knowledge of their prevalence or scale.

Within semiconductor manufacturing, this challenge is
compounded by the fact that wafer maps often exhibit orien-
tation variability. The same defect pattern may appear at dif-
ferent rotations due to variations of wafer placement or han-
dling. Standard clustering methods treat rotated instances as
being distinct patterns and this leads to fragmented clusters.

These challenges motivate the adoption of non-parametric
methods of clustering (Nguyen et al. 2021; Xing et al. 2021;
McConville et al. 2021) in our work which can adaptively
discover clusters in latent space without requiring prior spec-
ifications, while also aligning spatially similar wafer defects
across orientations. We refer to our approach as DECOR
(Deep Embedding Clustering with Orientation Robustness).

2 Method

We propose a novel three-step approach (Algorithm 1) for
non-parametric wafer map clustering and cluster-aware out-
lier detection (Figure 1). Our approach consists of: (A) a
rotation- and flip-invariant embedding extractor - RCAE,
(B) a non-parametric clustering module, and (C) an ensem-
ble outlier detection mechanism.

2.1 Feature Extractor

To obtain robust and well-separated embeddings from high-
dimensional wafer maps, we evaluate several architectures,
including MoCo (He et al. 2019; Chen et al. 2020b,a)
for contrastive representation learning and convolutional
autoencoders (Masci et al. 2011) for reconstruction-based
learning. While MoCo has shown effectiveness in gen-
eral contrastive learning tasks, it lacks explicit reconstruc-
tion and its architecture does not inherently enforce sym-
metry handling. However, our experiments indicate that a
rotation invariant convolutional autoencoder (CAE (Masci
et al. 2011)) with built-in symmetry handling produced more
compact and separable clusters in the reduced embedding
space (ie. RCAE). We processed wafer maps of size 128 x
128 through three rotation- and flip-equivariant blocks,
each comprising an R2Conv layer (Weiler and Cesa 2019),



Algorithm 1: DECOR: Dynamic Embedding Clustering with Orientation Robustness

Require: Images Z = {I1, ..., Iy }; embedding dimension d; initial number of clusters Kjp;;
Ensure: Soft memberships P € [0, 1]V *¥; hard labels ¢ € {1,..., K}V; outlier set O*

1: fori =1to N do

I; < NORMALIZEANDMASK(I;)

2; + FEATUREEXTRACTOR(I;) € R¢
end for
Z <+ [215...;25] € RV
A < DYNAMICCLUSTERING (Kjyit)
P + A.SOFTCLUSTER(Z) € [0, 1]V <K
C ¢ argmaxe(1,.. K} P

O* « i, OUTLIERDETECTION({z; | ¢; = k})
return c, O*
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ReLU layer for non-linearity, and PointwiseAvgPool
with stride 2. The blocks use increasing numbers of regu-
lar representation fields (8, 16, 32), achieving equivariance
to the dihedral group Dy - four discrete rotations (0°, 90°,
180°, 270°) and two mirror flips. To convert the equivariant
features into orientation-invariant descriptors, we applied
GroupPooling, which collapses all orientation channels
within each field. A Linear layer then maps the resulting
tensor to a 128-dimensional latent vector. The decoder mir-
rors the encoder, using three ConvTranspose2D+RelLU
blocks and a final Sigmoid activation to reconstruct im-
ages within [0, 1].

2.2 Non-Parametric Clustering

For clustering in the latent space, we use DeepDPM (Ronen,
Finder, and Freifeld 2022), a non-parametric deep clustering
framework based on the Dirichlet Process Mixture Model
(DPMM). Unlike parametric clustering approaches like K-
Means, which require a fixed number of clusters, DeepDPM
infers the optimal number of clusters from the data distribu-
tion. The trained clustering model is implemented as a two-
layer multilayer perceptron comprising a Linear (128,
50) layer followed by Linear (50, K), where K is
adaptively determined during training. The model produces
soft cluster membership probabilities, from which hard as-
signments are obtained.

2.3 Outlier Detection

In the latent space produced by the invariant encoder, out-
lier detection is performed with an ensemble of Isolation
Forest (IF) (Liu, Ting, and Zhou 2008, 2012) and Local
Outlier Factor (LOF) (Breunig et al. 2000). IF provides a
global, partition-based notion of isolation, while LOF cap-
tures local density deviations. Their raw scores are con-
verted to outlier decisions using robust, per-cluster thresh-
olding rule. For the score vector s, we define the decision
threshold as 7 = median(s) + k - MAD(s) where the Me-
dian Absolute Deviation (MAD) is given by MAD(s) =
median(]s — median(s)|). We use the median and MAD
rather than mean and standard deviation to ensure robust-
ness against heavy-tailed distributions and pre-existing out-
liers. To stabilize LOF across heterogeneous cluster sizes,
the neighborhood size was chosen adaptively as ko =

clip(\/ﬁ s kmin, kmax) for cluster cardinality N. IF was
trained with a conservative contamination prior (hi_cont
= 0.20) to avoid over-flagging, while the subsequent robust
cut calibrates per-cluster selectivity. Final outlier labels were
issued only when both detectors agree, 1 = 1ir A 1 oF.
This process empirically improves precision on rare, se-
mantically novel wafer defects while retaining sensitivity
through the complementary failure modes of the two detec-
tors.

3 Experiment
3.1 Dataset

We train and evaluate our method on the opensource
MixedWM38 (Wang et al. 2020) dataset, which contains
over 38,000 wafer maps with both single-defect and mixed-
defect patterns, spanning more than 38 distinct defect pattern
combinations. In particular, the dataset includes 1 normal
pattern, 8 single-defect and 29 mixed-defect patterns. The
base defect types are Center, Donut, Edge-Loc, Edge-Ring,
Loc, Near-full, Scratch, and Random. To ensure consistent
multi-label distribution across training and testing, we uti-
lize MultilabelStratifiedShuffleSplit (Sechidis, Tsoumakas,
and Vlahavas 2011), which preserves the proportion of each
defect type in both subsets. Additionally, all wafer maps are
resized to 128 x 128 pixels to balance reconstruction fidelity
and clustering performance.

3.2 Results

We evaluate the clustering quality using standard metrics
like: Normalized Mutual Information (NMI) and Adjusted
Rand Index (ARI). Since the ground truth (GT) is multi-label
(i.e. single wafer can contain multiple defects), we perform
a cluster-aware dominant label reduction of GT: for each
wafer, if multiple defect labels are present, the most frequent
within the sample’s predicted cluster is assigned. NMI and
ARI are then computed between these dominant labels and
the predicted cluster assignment. For robustness, we repeat
experiments with multiple random seeds and report mean
values and standard error across three runs.

A key challenge with this dataset is the absence of a well-
defined ground-truth number of categories since wafers may
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Figure 1: Overview of the workflow. Input wafer images are processed through an embedding extractor model, generating 128-
dimensional embeddings along with their reconstructed images. These embeddings are then fed into a trained non-parametric
clustering model based on DeepDPM (Ronen, Finder, and Freifeld 2022) to obtain cluster assignments. Finally, embeddings
within each cluster are analyzed using an ensemble outlier detection algorithm to flag potential outliers.

contain overlapping or mixed defect types. This makes com-
parisons with parametric baselines (eg. {-Means) difficult,
as their performance depends heavily on the choice of K.

Table 1 reports the performance of different embedding-
clustering combinations. Our results indicate that RCAE
embeddings, when paired with a non-parametric clustering
approach (DeepDPM), achieves highest performance in both
NMI and ARI. We observe that RCAE+DeepDPM produces
more compact and orientation-invariant clusters compared
to baselines (Figure 2). Furthermore, we find the quality
of clustering correlates with the degree of separation be-
tween defect patterns in latent space: the more distinct the
separation in 2D/3D projections (via (Mclnnes, Healy, and
Melville 2018) (Maaten and Hinton 2008)), the better the
clustering performance.

4 Conclusion

In this work, we address the challenges of reliable wafer
map clustering under complex, noisy and multi-defect con-
ditions. We propose DECOR, a novel framework that com-
bines an orientation-invariant embedding extractor, a non-
parametric clustering model and an outlier detection mecha-
nism to group wafer maps into meaningful clusters, while
flagging outlier defects. Experiments on the multi-label
MixedWM38 dataset demonstrate that our method achieves
superior clustering performance with minimal computa-
tional overhead, by leveraging lightweight yet effective
models. One limitation of the non-parametric clustering ap-
proach is the necessity of multiple runs to determine an ap-
propriate initial cluster count (ki) and the optimal num-
ber of training epochs for DeepDPM clustering that is tai-
lored to the dataset. Furthermore, evaluating clustering qual-

ity on multi-label datasets remains challenging, as metrics
like NMI and ARI require simplification to dominant labels
per image, which might not capture the full system’s perfor-
mance.

As part of future work, we plan to explore multi-label-
aware clustering metrics, and integrate temporal model-
ing, leveraging soft cluster assignments produced by non-
parametric clustering to track the evolution of defect pat-
terns across production cycles. We also plan to benchmark
DECOR against additional parametric clustering models,
including Gaussian Mixture Models and deep clustering
frameworks beyond K-means, to further assess its robust-
ness and generalization. By advancing reliable unsupervised
learning for imperfect and complex data, DECOR provides
a foundation that generalizes beyond semiconductor wafers
to other domains/datasets.

A Experimental Setup

We evaluate our method on the MixedWM38 wafer dataset
using a multilabel stratified train-test split. After normal-
ization, we applied Edge masking to prevent edge artifacts
from dominating the embeddings. We also applied Gaussian
blur transformation (kernel size 5, and sigma 1.0) to smooth
noise and highlight the main defect patterns for cluster-
ing. Our embedding feature extractor was compared against
baselines including vanilla CAE and MoCo, all trained un-
der identical conditions for fair comparison. The RCAE
model was trained using the Adam optimizer (initial learn-
ing rate: 1le™3), MSE loss, batch size of 128, and 1000
epochs. For DeeDPM clustering, we set hyper parameters
as follows: v is d + 2 (where d is the input dimension to
the clustering model or the latent dimension), k;,;: is 30,



Table 1: Performance under different experiments indicating the mean=std. dev across 3 runs. Methods marked with ? are
parametric (require K). Experiment details are provided in Appendix A-C

Embedding Clustering Final/Best K NMI 1 ARI 1

CAE K-Means? 24 0.503 £0.00 0.199 +£0.00
MoCo K-Means” 18 0.409 £0.00 0.173 +£0.01
RCAE K-Means? 30 0.529 +£0.00 0.205 +0.00
CAE DeepDPM 25 0.498 £0.05 0.218 £0.01
MoCo DeepDPM 30 0.273£0.00 0.117 £0.00

RCAE (Ours) DeepDPM 22

0.543 £0.03 0.296 £ 0.00

Figure 2: Examples of MixedWM38 images clustered together by DECOR. Each panel represents a different cluster. The

grouping of images with varying rotational orientations (scratch,

invariance.

and maximum epochs is 200. Although labels were withheld
during training, we report evaluation metrics using NMI and
ARL

All experiments were implemented in PyTorch 2.6.0 and
run on a single NVIDIA H100 GPU (80GB memory) with
32-core CPUs on a local compute cluster node.Training the
RCAE model for 1000 epochs took approximately 6 hours
per run, while training the non-parametric clustering model
required about 2 hours. Across all experiments (including
baselines), the total compute amounted to approximately
30GPU hours. Storage requirements were minimal, with
about 400MB for datasets and about 1GB for checkpoints
and logs.

B Outlier Detection

B.1 Isolation Forest (IF) and Local Outlier Factor
(LOF)

Outlier detection is an essential task in many domains, es-
pecially in wafer map analysis where it is crucial to dis-
tinguish between genuine defects and noise. Isolation For-
est (IF) (Liu, Ting, and Zhou 2008, 2012) and Local Out-
lier Factor (LOF) (Breunig et al. 2000) are both widely
used for outlier detection due to their ability to handle
high-dimensional and complex data. However, each has its
strengths and limitations, which is why an ensemble ap-
proach is adopted to leverage the advantages of both.
Isolation Forest operates by randomly partitioning the fea-
ture space and isolating data points. Outliers, being different

and local pattern) indicates that DECOR exhibits rotational

from normal points, are easier to isolate and therefore re-
ceive a lower score. On the other hand, Local Outlier Factor
(LOF) focuses on local densities, comparing the density of
a point with its neighbors. Points with significantly lower
density than their neighbors are flagged as outliers.

While these algorithms are powerful on their own, they
tend to excel in different types of data and outlier character-
istics. To take advantage of both, an ensemble approach is
employed, where outliers are flagged only if both Isolation
Forest and LOF agree on the outlier, reducing the chance of
false positives and increasing the robustness of the results.

B.2 Robust Cut and Thresholding

The performance of outlier detection algorithms depends
heavily on defining appropriate thresholds for outlier scores.
In this study, the Robust Cut approach is used to define these
thresholds in a way that adapts to the data’s underlying dis-
tribution. The Robust Cut uses the Median Absolute Devia-
tion (MAD) to ensure that the threshold is not influenced by
extreme values (outliers) in the score distribution.
The formula for the robust cut is defined as:

Threshold = Median(scores) + k x MAD(scores)

where Median(scores) is the median of the outlier scores,
MAD(scores) is the median absolute deviation, calculated
by MAD = Median(|scores — Median(scores)|), and k is a
scaling factor, which controls how aggressive the threshold-
ing is.



Table 2: Implementation details of feature extractor models.

Architecture

Loss Ir

CAE: Conv(16) - Conv(32) - Conv(64) - Conv(256) - FC(128) MSE 0.001

MoCo: ResNet18 - FC(512) - FC(128)

InfoNCE 0.03

RCAE: R2Conv(8) - R2Conv(16) - R2Conv(32) - GroupPool - FC(128) MSE 0.001

Figure 3: Examples of clusters produced by DECOR with detected outliers highlighted in red. (a) a center defect cluster
containing instances of donut defect outliers (b) a local defect cluster containing instances of random defect outliers (c) a
donut defect cluster containing instances of random and nearfull defect outliers (d) a donut + scratch defect cluster containing

instances of donut defect outliers.

Median is preferred over the mean because it is less
sensitive to extreme values, which are common in high-
dimensional data. This ensures that the threshold is robust
to noise or outliers in the data and avoids flagging too many
points as outliers when the dataset contains a few extreme
cases.

MAD provides a more robust estimate of spread, which is
particularly important when dealing with outliers. By scal-
ing the MAD with k, we can control how aggressively the
algorithm flags outliers.

The contamination parameter (hi_cont) is set to 0.20,
meaning that 20% of the data are expected to be outliers.
This is a conservative choice to ensure that true outliers are
not overlooked, especially in scenarios where outliers might
be rare or subtle. Setting a low contamination value prevents
the algorithm from being overly aggressive and helps in re-
taining the majority of the dataset as normal.

B.3 Adaptive Thresholding and LOF Parameters

The Adaptive k parameter in Local Outlier Factor (LOF)
adjusts the number of neighbors considered when evalu-
ating the density of each point. Instead of a fixed value

for k, we compute an adaptive k£ based on the size of
the dataset - specifically the square root of the number of
points in the cluster, constrained within a predefined range
[min_k, max_k]. This adaptability ensures that the LOF al-
gorithm remains sensitive to local structures regardless of
cluster size, which is essential when dealing with clusters of
varying densities.
The formula for the adaptive k is as follows:

k = Clip(V'N, min_k, maz_k)

where N is the number of data points in the cluster and
Clip(x, min_k, max_k) ensures that k remains within the
bounds of [min_k, max_k].

By choosing the appropriate k, LOF can accurately cap-
ture the local structure of the data and identify outliers that
are dense in their neighborhoods but sparse relative to other
areas.

B.4 Ensemble Outlier Detection

The ensemble approach combines the results of Isolation
Forest (IF) and Local Outlier Factor (LOF) to determine
whether an image is an outlier. The method is based on



the assumption that true outliers are detectable both glob-
ally (via IF) and locally (via LOF), so an intersection of
both methods is used for a more reliable result. The final
outlier decision is computed by the logical AND of the
outlier flags from both algorithms: Final Outlier Flag =
IF Flag N LOF Flag, where IF Flag is the result of applying
Isolation Forest to the data, LOF Flag is the result of apply-
ing Local Outlier Factor to the data. This ensemble approach
ensures that the outlier is detected by both methods before it
is flagged as a true outlier, thereby reducing false positives
and increasing the reliability of the outlier detection method.

C Clustering Results

Figure 3, shows examples of images from the MixedWM38§
Validation set that were clustered using the RCAE fea-
ture extractor and DeepDPM non-parametric clustering ap-
proach. Outliers identified by the ensemble outlier-detection
algorithm are highlighted with red outline. For outlier detec-
tion, we set the contamination prior parameters (hi_cont) of
0.20, robust cut scaling factor (k) of 3 for both IF and LOF
algorithms. For the adaptive k parameter in LOF, we use a
min_k and max_k of 10 and 50, respectively.
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