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< Wafer defect analysis is critical for yield and quality < Evaluated on MixedWM38 (38k+ wafer maps) containing
control, but real-world data is unlabeled, noisy, single and mixed defects.
imbalanced, and often contains multiple defect types per “ Extracted 128-D rotation- and flip-invariant embeddings
wafer. < Applied non-parametric clustering and cluster-aware
< Existing clustering methods require manual parameter outlier detection.
tuning (number of clusters) and do not adapt well to % Assessed performance using NMI and ARl with
changing defect distributions. \dominant-label reduction for multi-label wafers. /
< Orientation variability (rotations and flips) causes identical
defect patterns to be split into different clusters.
< We provide an unsupervised, orientation-robust
clustering framework that is reliable for

production-scale inspection.

Background \

< Standard pipelines rely on learning embeddings (CAE, Same defect, difjerent orientations — one cluster
MoCo) followed by clustering (K-Means, DBSCAN, GMM).
< Parametric clustering assumes a fixed number of defect
types, which is unrealistic in manufacturing.
<+ Most embeddings are orientation-sensitive, leading to
fragmented clusters for rotated defects.
<+ DECOR addresses these issues by combining:
> Rotation- and flip-invariant embeddings (RCAE)
> Non-parametric clustering (DeepDPM)

> Cluster-aware outlier detection /

< Provides compact and
rotation-consistent clusters
which reflect true defect
structure.

% Achieves NMI =0.543 and
ARI = 0.296, surpassing
baseline clustering

Cluster-aware outlier detection ~ Pipelines.

Conclusion & Future Work \
* MixedWM38 (38k+ wafer maps containing 1 non-defect, 8 % DECOR enables unsupervised, orientation-robust wafer
single-defect and 29 mixed-defect patterns) defect clustering at production scale.
% Multi-label ground truth (mixed defects), so evaluation % Eliminates fixed cluster assumptions while improving
uses a cluster-aware dominant-label reduction for cluster consistency.
\computing NMI/ARI. / < Future work: multi-label-aware evaluation, temporal

\defect tracking, and broader manufacturing deployment./
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