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Abstract

Human-centric manufacturing demands robotic manipulators
that can autonomously grasp diverse parts without manual
supervision. We present a self-supervised affordance-guided
reinforcement learning framework that enables adaptive and
data-efficient grasp learning in simulation. A UNet-based per-
ception model predicts pixel-wise grasp affordance and orien-
tation maps from RGB-D inputs, providing visual priors for
a PPO agent. Through dynamic reward scheduling that bal-
ances perception confidence, distance, and task success, the
agent learns stable and transferable grasping strategies. Ex-
periments in cluttered scenes achieve a 78% grasp success
rate and show strong generalization across unseen objects.
The proposed approach reduces human labeling cost and en-
hances robot adaptability, offering a scalable solution for in-
telligent manipulation in flexible manufacturing systems.

Introduction
Robotic manipulators are increasingly expected to oper-
ate autonomously in dynamic and unstructured environ-
ments, collaborating safely with human workers and adapt-
ing to continuous production changes. Traditional grasp-
ing pipelines rely heavily on manually labeled data or pre-
defined task scripts, which limits their scalability and adapt-
ability in real industrial contexts. Reinforcement learning
(RL) offers a promising path toward autonomous skill ac-
quisition, but its data inefficiency and unstable training often
hinder deployment in real-world manufacturing systems.

To address these challenges, this work proposes a self-
supervised affordance-guided reinforcement learning
(AG-RL) framework that bridges perception and control
in robotic grasping. A self-supervised affordance model
trained on automatically generated RGB-D data predicts
graspable regions and orientations without human annota-
tion. These affordance priors provide structured guidance to
an RL agent, enabling efficient exploration and stable pol-
icy learning. A dynamic reward scheduling mechanism fur-
ther balances the influence of perception confidence, spatial
proximity, and task success, forming an adaptive learning
curriculum.

The proposed approach allows robots to progressively
refine grasp behaviors within simulation while maintain-
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ing strong transferability to unseen scenes. Our experi-
ments demonstrate consistent and reliable grasp perfor-
mance, showing that affordance-guided RL can serve as a
practical foundation for adaptive robotic manipulation in
flexible, human-centric manufacturing systems.

Related Work

Affordance Learning for Grasping

Learning object affordances has become a key strategy
for enabling perception-driven manipulation. Early self-
supervised methods learned pixel-wise graspability from
geometry or interaction feedback without manual labeling
(Mar, Tikhanoff, and Natale 2017). More recent works have
extended this paradigm using deep convolutional networks
to infer fine-grained affordance and grasp orientation from
RGB-D inputs (Li et al. 2024). While these approaches pro-
duce reliable visual priors, they generally lack active policy
optimization, limiting their adaptability to unseen configu-
rations and physical uncertainty.

Reinforcement Learning in Robotic Manipulation

Reinforcement learning enables autonomous skill acquisi-
tion through trial and error and has achieved remarkable
progress in continuous control tasks (Zeng et al. 2018).
However, applying RL to robotic grasping remains chal-
lenging due to sparse rewards, multy dimensional action
spaces, and poor sample efficiency. Recent advances have
explored hybrid architectures that integrate perception pri-
ors into policy learning (Yang et al. 2023; Liang, Qiao, and
Zhang 2022), improving convergence stability and reduc-
ing data requirements. Our work follows this line but intro-
duces a dynamic reward scheduling mechanism that adapts
the contribution of affordance confidence and task perfor-
mance over time, leading to more stable and generalizable
grasp learning.

Methodology
The system consists of three modules: self-supervised data
generation, affordance network training, and affordance-
guided reinforcement
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Figure 1: Overview of the proposed self-supervised
affordance-guided reinforcement learning framework. It in-
tegrates data generation, perception (affordance prediction),
and policy learning with dynamic reward scheduling.

Self-Supervised Data Generation
A simulation pipeline automatically generates grasping data
without human labeling. In each simulated scene, multiple
objects are randomly placed on a planar surface and ob-
served by a top-down RGB-D camera. Successful grasps
determined by physical interaction outcomes are labeled as
positive affordance samples. Each collected sample includes
an RGB image, a depth map, and corresponding affordance
and orientation annotations. This procedure enables scalable
and consistent data collection for subsequent self-supervised
learning.
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Figure 2: Self-supervised data generation pipeline used for
affordance learning. Each simulated scene generates RGB-D
inputs and grasp outcome labels without human annotation.

Affordance Network
The perception model follows an encoder–decoder architec-
ture with dual output heads for graspability and orientation
estimation. Given an RGB-D input, the network predicts
pixel-wise affordance heatmaps and angle distributions. A
joint loss function combines binary cross-entropy for affor-

dance prediction and angular regression loss:

L = αLaff + βLangle, (1)

where α and β are weighting coefficients controlling the
contribution of each component. After training, the network
produces dense affordance maps that guide the RL agent by
identifying candidate grasp regions and orientations.

0.0

0.2

0.4

0.6

0.8

1.0

Affordance Confidence

Figure 3: Visualization of the perception module. (a) RGB
input; (b) predicted affordance heatmap; (c) extracted grasp
candidates from affordance peaks.

Affordance-Guided Reinforcement Learning
A Proximal Policy Optimization (PPO) agent learns grasp-
ing policies informed by the predicted affordance maps. At
each timestep, the agent selects a candidate pixel and ori-
entation, executes the corresponding motion, and receives a
composite reward defined as:

Reward Formulation and Dynamic Weighting
Each grasp interaction produces a composite reward com-
posed of several interpretable terms encouraging both per-
ception alignment and task success:

Rt = w1r1 + w2r2 + w3r3 + ηsSt + ηpPt, (2)

where r1, r2, and r3 represent affordance confidence, spa-
tial proximity, and task outcome respectively; St and Pt are
shaping and penalty terms weighted by constants ηs and ηp.
Each component is defined as:

r1 = Aff(u, v), (3)

r2 = e−βdmin , (4)

r3 =

{
1, if grasp success,
0, otherwise,

(5)

St = clip(dt−1 − dt,−δ, δ), (6)

where Aff(u, v) is the predicted affordance confidence at
pixel (u, v), dmin is the minimum distance between the se-
lected grasp point and the nearest object, and δ limits the
shaping magnitude.

Dynamic weighting and curriculum adaptation. To fa-
cilitate efficient exploration at early stages and emphasize
succeed grasping attemps later, a dynamic reward schedul-
ing mechanism progressively adjusts the component weights
{w1, w2, w3} according to training progress α ∈ [0, 1]:

wi = fi(α), i ∈ {1, 2, 3}, (7)

where fi(·) are monotonic functions that decrease the in-
fluence of perception cues while increasing task success



weighting as learning proceeds. At the beginning (α ≈ 0),
w1 dominates to promote affordance-guided exploration; to-
ward convergence (α ≈ 1), w3 dominates to reinforce grasp
reliability and stability. This adaptive curriculum allows the
agent to transition smoothly from perception-guided explo-
ration to autonomous policy refinement.
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Figure 4: Dynamic reward scheduling functions fi(k) con-
trolling the weights w1, w2, and w3 for perception confi-
dence, distance, and task success. The scheduler gradually
shifts focus from perception-guided exploration to policy re-
finement.

This hierarchical design allows the policy to exploit af-
fordance priors for structured exploration while reinforce-
ment feedback ensures adaptive skill optimization. The inte-
gration of perception priors and dynamic reward scheduling
enhances convergence stability and reduces sample ineffi-
ciency, making the framework suitable for scalable deploy-
ment in human-centric manufacturing systems.

Experiments and Results
Experimental Setup
All experiments were conducted in a simulated digital-twin
environment built on PyBullet. A top-down RGB-D camera
observes a planar workspace containing multiple randomly
placed objects of varied geometry and texture. The robotic
manipulator executes grasp actions based on candidate pix-
els and orientations predicted by the affordance network.
During RL training, both the perception and control mod-
ules operate asynchronously: the perception network pro-
vides continuous affordance priors, while the PPO agent re-
fines grasp behavior through interaction feedback.

The training process was run for N episodes using the
dynamic reward scheduling scheme described in Section
3.3. No manual labeling or external supervision was used
throughout training. All parameters such as exploration rate,
policy update frequency, and reward scaling were tuned
within bounded symbolic factors (λ1, λ2, . . .) to ensure con-
vergence stability rather than numerical optimization.

Evaluation Metrics
The learned policy was evaluated on three metrics: (1)
Grasp success rate S, defined as the proportion of suc-
cessful lift actions; (2) Learning stability L, measured as

the variance of episodic return across training intervals; (3)
Generalization capability G, representing the performance
drop when tested on unseen object configurations. Each met-
ric was computed over M independent trials using the final
trained policy.

Results and Analysis
The proposed AG-RL framework achieved a high and con-
sistent success rate S across cluttered scenes, significantly
outperforming a baseline PPO agent trained without affor-
dance guidance. The reward curves showed smooth mono-
tonic convergence, indicating that dynamic weighting func-
tions fi(k) effectively stabilized the learning process. Abla-
tion experiments verified that removing either the affordance
priors or the dynamic scheduler resulted in slower conver-
gence and larger oscillations in episodic reward.
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Figure 5: Training reward curves comparing AG-RL with
baseline PPO. Our method converges faster and exhibits
lower variance, demonstrating enhanced stability.

Qualitative visualization of predicted affordance maps
demonstrated accurate localization of graspable regions,
with the RL policy refining grasp orientation and force ex-
ecution over time. The joint perception–control design en-
abled the robot to adapt to diverse object geometries without
retraining, maintaining strong generalization performance G
in unseen scenarios.
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Figure 6: Quantitative results on grasp success rate, learning
stability, and generalization to unseen objects.

Discussion
These results suggest that integrating self-supervised af-
fordance prediction with reinforcement learning substan-
tially improves both data efficiency and policy robustness.



By leveraging perception-driven priors and adaptive re-
ward modulation, the proposed framework mitigates the
exploration burden typical of sparse-reward environments.
The approach is scalable to real-world applications such
as bin-picking and part-handling in flexible manufacturing
systems, offering a deployable pathway toward intelligent,
human-centric robotic manipulation.

Conclusion and Future Work
This work presented a self-supervised affordance-guided re-
inforcement learning framework for adaptive robotic ma-
nipulation in human-centric manufacturing. By coupling
perception-based affordance prediction with reinforcement
policy optimization, the proposed system enables efficient
grasp learning without manual annotation. The dynamic
reward scheduling mechanism further balances perception
guidance and exploration, improving learning stability and
transferability. Experiments demonstrated that the integra-
tion of visual priors and reinforcement feedback allows
robots to acquire robust grasping behaviors and generalize
across unseen object configurations.

Future work will focus on extending this framework
from simulation to real robotic platforms within collab-
orative manufacturing environments. We aim to incorpo-
rate real-time sensory feedback and uncertainty modeling to
handle physical disturbances and human interaction safety.
Another direction involves establishing a continuous self-
improvement loop, where the agent updates its percep-
tion and control policies through on-site experience. Ul-
timately, this research contributes to building deployable,
data-efficient, and adaptive robotic systems capable of learn-
ing and collaborating alongside humans in flexible produc-
tion cells.

References
Li, G.; Tsagkas, N.; Song, J.; and Mon-Williams, M. 2024.
Learning Precise Affordances from Egocentric Videos for
Robotic Manipulation. arXiv:2408.10123.
Liang, C.; Qiao, L.; and Zhang, X. 2022. Learning
Affordance-Guided Grasping with Reinforcement Learning.
arXiv:2209.11359.
Mar, T.; Tikhanoff, V.; and Natale, L. 2017. What Can I
Do with This Tool? Self-Supervised Learning of Tool Af-
fordances from Their 3-D Geometry. IEEE Transactions on
Cognitive and Developmental Systems.
Yang, X.; Ji, Z.; Wu, J.; and Lai, Y. 2023. Recent Ad-
vances of Deep Robotic Affordance Learning: A Reinforce-
ment Learning Perspective. IEEE Transactions on Cognitive
and Developmental Systems.
Zeng, A.; Song, S.; Welker, S.; Lee, J.; Rodriguez, A.; and
Funkhouser, T. 2018. Learning Synergies Between Push-
ing and Grasping with Self-Supervised Deep Reinforcement
Learning. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).


