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Abstract

Time-domain surveys increasingly outpace spectroscopic
follow-up, making fast and accurate photometric classifica-
tion of supernovae a critical bottleneck for cosmology and
transient science. We present a lightweight, interpretable
machine-learning pipeline for redshift-free identification of
Type Ia supernovae tailored for operational use with the Ru-
bin Observatory’s Legacy Survey of Space and Time (LSST).
The approach couples a broker-friendly, light-curve prepro-
cessing stage with a tuned Random Forest ensemble (Ran-
dom Search and Bayesian Optimization). Because the task is
strongly class-imbalanced and errors have asymmetric costs,
we prioritize precision–recall metrics and report the SPCC
figure-of-merit (F1). On the post-challenge SPCC dataset of
21,319 simulated light curves, our final model (Bayesian op-
timization) attains F1 (SPCC) = 0.941, precision = 0.958,
recall = 0.924, and ROC-AUC = 0.886, matching strong
baselines while remaining transparent and resource-efficient.
Requiring only multi-band photometry—no host informa-
tion or redshifts—our method can triage alerts early, reduce
spectroscopic load, and accelerate construction of high-purity
SN Ia samples for distance-ladder and dark-energy analy-
ses. We discuss integration into real-time broker pipelines
and show that emphasizing interpretable ensembles and pre-
cision–recall metrics yields a robust, scalable path to AI-
accelerated discovery in time-domain astronomy.

Introduction
Supernovae (SNe) are broadly divided into hydrogen-poor
Type I and hydrogen-rich Type II (Minkowski 1979; Mor-
rell et al. 2024). Thermonuclear Type Ia SNe are standardiz-
able candles and underpin modern measurements of cosmo-
logical distances and expansion. As wide-field surveys in-
crease event rates by orders of magnitude, spectroscopy can-
not keep up (Bloom and Richards 2011); photometric typing
must carry more of the load. While Bayesian hierarchical
approaches can marginalize over uncertain types (Newling
et al. 2011; Knights et al. 2013; Rubin et al. 2015), they still
benefit from accurate probabilistic classifications.

Machine learning (ML) provides a practical route to scal-
able photometric classification and has seen growing suc-
cess across surveys (Möller et al. 2024, 2016; Reza, Wang,
and Hu 2025; Garretson et al. 2021; Möller et al. 2022; Do-
bryakov et al. 2021). However, many pipelines rely on host-

galaxy information or redshifts, which are not always avail-
able or reliable in low S/N, early-time, or crowded-field con-
ditions. We target the stricter and operationally valuable set-
ting of redshift-free classification using photometry alone.

The Rubin LSST will produce multi-band time-series
photometry and millions of alerts per night, which makes
scalable photometric typing and broker triage operationally
essential (Ivezić et al. 2019). Community-scale simula-
tions such as PLAsTiCC established a standard benchmark
for LSST-like photometric classification and informed fea-
ture/metric choices (Kessler et al. 2019).

Our goal is photometric typing of SNe Ia without any red-
shift or host-galaxy information. This choice mirrors oper-
ational constraints in Rubin/LSST alert brokers, where la-
tency and missing host metadata are common. We there-
fore ask: how far can a carefully engineered classical model
go under these constraints? This motivates a broker-ready,
redshift-free classifier that consumes photometry alone and
optimizes the SPCC F1.

Contributions.
• We analyze redshift-free photometric typing with no

host-galaxy metadata and demonstrate strong perfor-
mance with a tuned Random Forest on SPCC.

• We prioritize PR metrics and the SPCC figure-of-merit
F1 (alongside Precision/Recall and ROC–AUC), which
are more informative under class imbalance.

• Documented a simple, reproducible preprocessing recipe
(time re-zeroing to first detection, sub-hour grouping,
per-filter handling, and uncertainty propagation) suitable
for alert-stream deployment.

Related Work
Early work established the spectroscopic Type I/II di-
chotomy (Minkowski 1979). For photometric typing, model-
dependent features (e.g., SALT2 fits) combined with boosted
trees achieved strong AUC on simulated datasets (Lochner
et al. 2016; Guy et al. 2007). Gradient-boosted trees, CNNs,
and sequence models have all been explored (Möller et al.
2016; Möller and de Boissière 2020; Garretson et al. 2021).
Redshift-agnostic feature extraction using SALT2 and re-
lated formulations has proven particularly useful (Lochner
et al. 2016). Large-scale LSST simulations and SNN-based



approaches report near-saturated AUC on balanced tasks
(Möller and de Boissière 2020). Recent work demonstrates
the feasibility of training with simulations and predicting on
real photometry using only light curves (Dobryakov et al.
2021).

Model-dependent light-curve fits such as SALT2 remain
a de facto standard for SN Ia analyses (Guy et al. 2007),
and recent revisions improve calibration surfaces and UV
behavior (Taylor et al. 2021). For early-time operation and
real-time streams, deep sequence models (e.g., RAPID)
and production brokers (Fink, ALeRCE, ANTARES, La-
sair) demonstrate scalable photometric classification on
ZTF/LSST-like alerts (Möller et al. 2021; Förster et al. 2021;
Smith et al. 2019; Bellm et al. 2019; Masci et al. 2019).

Rubin LSST and Dataset
The Vera C. Rubin Observatory’s Legacy Survey of Space
and Time (LSST) will repeatedly image a wide area of
the southern sky with a 3.2 Gpix camera and a large field
of view, producing time-series photometry in griz bands
(among others)(Ivezić et al. 2019). For development and
benchmarking we use the post-challenge Supernova Pho-
tometric Classification Challenge (SPCC) dataset (Kessler
et al. 2010), which provides 21,319 simulated supernova
light curves with fluxes, uncertainties, band identifiers, sky
positions, and Milky Way extinction.

We follow LSST system nomenclature and anticipated
data products as summarized by Ivezić et al. (2019), and we
reference PLAsTiCC for LSST-like simulation and bench-
marking protocols (Kessler et al. 2019).

Preprocessing and Features
We follow a cosmology-aware preprocessing pipeline in-
spired by Charnock and Moss (2017). Times are re-zeroed
to the day of first detection per object (no negative phases),
close-in-time observations (within 1 hour) are grouped, and
per-band sequences are constructed. We retain flux and
corresponding uncertainty at each step and compute com-
pact summary features per band and globally (e.g., num-
ber of detections, rise/decline proxies). This yields a low-
dimensional, interpretable representation suitable for classi-
cal ML.

Although our features are model-agnostic, they are com-
patible with SALT2-derived summaries commonly used for
SN Ia light curves (Guy et al. 2007; Taylor et al. 2021).

Preprocessing details. For each object, let ti be the ob-
servation time (MJD), bi ∈ {g, r, i, z} the band, fi the (cal-
ibrated) flux and σi its reported uncertainty. We apply a
broker-friendly, minimal pipeline:

1. Time re-zeroing. Define t0 = mini ti (first detection).
Use τi = ti − t0 ≥ 0 to remove negative phases and
align light curves at first detection.

2. Sub-hour grouping. Within each band b independently,
sort observations by τi and form contiguous groups G
such that consecutive points satisfy ∆τ ≤ 1/24 day (1
hour).

3. Group averaging with uncertainty propagation. For
each group G use inverse-variance weights wi = σ−2

i
and compute

τ̄G =

∑
i∈G wiτi∑
i∈G wi

, f̄G =

∑
i∈G wifi∑
i∈G wi

, σ̄2
G =

1∑
i∈G wi

.

This reduces irregular sampling and noise while preserv-
ing temporal shape.

4. Per-band sequences and summaries. Build per-band
sequences {(τ̄G, f̄G, σ̄G)} and derive compact, in-
terpretable summaries (e.g., number of detections,
rise/decline proxies, per-band amplitude and timescale),
which feed the RF classifier.

If magnitudes are provided, we first convert to fluxes before
averaging; grouping is then performed in flux space to avoid
bias from magnitude nonlinearity.

Methods
We evaluate several families of models and select a Random
Forest (RF) classifier for its robustness on tabular, hetero-
geneous features and its interpretability via feature impor-
tances. Hyperparameters are tuned with Random Search and
Bayesian Optimization (Bergstra and Bengio 2012; Snoek,
Larochelle, and Adams 2012) (Table 1). Given the class im-
balance (SN Ia minority), we optimize directly for the SPCC
figure-of-merit F1 and monitor precision, recall, and ROC-
AUC.

Model selection. Under the same preprocessing, we com-
pared a linear perceptron, shallow RNNs (1–2 layers, up to
10 hidden units), and tree ensembles. Across random seeds,
Random Forest consistently achieved the highest SPCC F1
and more favorable precision–recall curves. Given broker
constraints (latency, interpretability) and the workshop’s
emphasis on deployable AI, we adopt RF as the primary
model.

Hyperparameter Random Search Bayesian Opt.
n estimators 1400 175
max features auto 0.6777
max samples None 0.9222
bootstrap False True
max depth 40 None

Table 1: Hyperparameters explored for RF. The two best set-
tings are shown.

Experimental Setup
Given class imbalance, we report Precision, Recall, F1
(SPCC), and ROC–AUC. Definitions:

Purity or Precision =
TP

TP + FP
, (1)

Completeness or Recall =
TP

TP + FN
, (2)

F1 = 2 · Precision · Recall
Precision + Recall

, (3)



F1macro =
1

K

K∑
k=1

F1k. (4)

Macro-averaging treats each class equally. In addition, we
report the SPCC figure-of-merit (eq. 5) for direct compara-
bility with the original challenge (Kessler et al. 2010).

We frame the task as binary classification (SN Ia vs. non-
SN Ia) and report the SPCC figure-of-merit

F1 =
1

TP + FN
· TP 2

TP + 3FP
, (5)

with precision TP
TP+FP and recall TP

TP+FN . We also provide
ROC-AUC for comparison with prior work (Kessler et al.
2010).

Unless noted otherwise, ‘F1’ refers to the SPCC figure-
of-merit (5).

Given class imbalance, we emphasize precision–recall
evaluation following established guidance on PR vs ROC
analysis for skewed datasets (Davis and Goadrich 2006;
Saito and Rehmsmeier 2015).

Results
Table 2 summarizes the best RF models after tuning.
Bayesian optimization yields slightly higher ROC-AUC and
precision at a small cost in recall; Random Search offers the
converse. Both reach essentially the same SPCC F1.

Metric Random Search Bayesian Opt.
ROC-AUC 0.857 0.886
F1 (SPCC) 0.944 0.941
Precision 0.925 0.958
Recall 0.963 0.924

Table 2: Random Forest performance on SPCC (post-
challenge split).

Consistent with the model selection in Methods, we take
the Bayesian-optimized configuration (right column in Ta-
ble 2) as our final model due to higher precision at essen-
tially the same SPCC F1.

Results indicate that a tuned RF over minimal preprocess-
ing remains a competitive baseline in a strictly redshift-free
regime. This is encouraging for real-time brokers where la-
tency and missing host information are typical.

Discussion
Why F1 over ROC-AUC? With skewed classes, ROC-
AUC can look strong even when the positive class (SN Ia)
suffers many false positives. The SPCC F1 explicitly penal-
izes such errors and better aligns with the operational objec-
tive: maximizing the purity and completeness of the SN Ia
set used for cosmology (Jeni, Cohn, and De La Torre 2013;
Davis and Goadrich 2006; Saito and Rehmsmeier 2015).

Why not Deep Learning? While lightweight deep learn-
ing (DL) architectures, such as shallow RNNs or 1D-CNNs,
offer the potential for end-to-end learning from raw time
series (Charnock and Moss 2017; Möller and de Boissière
2020), they present distinct challenges in this constrained
setting. First, the highly irregular cadence and large gaps
characteristic of ground-based photometry often necessitate
complex imputation methods or specialized architectures
(e.g., Phased LSTMs) that undermine the computational ef-
ficiency required for low-latency brokers. Second, on dataset
sizes typical of early survey phases or specific challenges
like SPCC, deep models are often more prone to overfitting
and instability across random seeds compared to ensemble
methods (Lochner et al. 2016). Finally, the opaque nature of
neural networks complicates the interpretability required for
vetting alert streams, whereas our Random Forest approach
provides transparent feature importance and robust perfor-
mance without extensive architectural tuning.

Interpretability and operations. RF feature importances
and saliency at the level of light-curve summaries provide
transparency useful for vetting candidates and diagnosing
failure modes in a real-time broker. Because the model con-
sumes only photometry, it can run early in the alert stream
to prioritize scarce follow-up resources.

For real-time operations, our pipeline can be integrated
into community brokers that already implement large-scale
alert ingestion, annotation and filtering (Fink, ALeRCE,
ANTARES, Lasair) (Möller et al. 2021; Förster et al. 2021;
Narayan et al. 2018; Smith et al. 2019; Sánchez-Sáez et al.
2021).

Limitations and Future Work
Our evaluation is simulation-based (SPCC); domain shift to
real surveys remains the main limitation. In particular, cal-
ibration systematics, irregular cadences, and non-stationary
alert qualities can degrade performance. Future work will
validate on ZTF-like real data and explore controlled use of
host metadata as an optional feature to quantify the trade-off
between realism and accuracy.

Conclusion
Under broker-like constraints (no redshift, no host), a
lightweight RF with minimal preprocessing yields strong F1
(SPCC) while remaining simple to deploy, making it suit-
able for Rubin-era alert triage. Emphasizing precision–recall
metrics and transparent ensembles offers a robust, scalable
route to AI-accelerated discovery in time-domain astron-
omy.

Acknowledgments
The work of I. Makarov was supported by the Min-
istry of Economic Development of the Russian Federa-
tion (agreement No. 139-10-2025-034 dd. 19.06.2025, IGK
000000C313925P4D0002)

References
Bellm, E. C.; Kulkarni, S. R.; Graham, M. J.; and et al. 2019.
The Zwicky Transient Facility: System Overview, Perfor-



mance, and First Results. Publications of the Astronomical
Society of the Pacific, 131(995): 018002.
Bergstra, J.; and Bengio, Y. 2012. Random Search for
Hyper-Parameter Optimization. Journal of Machine Learn-
ing Research, 13: 281–305.
Bloom, J.; and Richards, J. 2011. Data mining and machine-
learning in time-domain discovery & classification. Ad-
vances in Machine Learning and Data Mining for Astron-
omy, 89–112.
Charnock, T.; and Moss, A. 2017. Deep recurrent neural
networks for supernovae classification. The Astrophysical
Journal Letters, 837(2): L28.
Davis, J.; and Goadrich, M. 2006. The Relationship Be-
tween Precision-Recall and ROC Curves. In Proceedings
of the 23rd International Conference on Machine Learning
(ICML), 233–240.
Dobryakov, S.; Malanchev, K.; Derkach, D.; and Hushchyn,
M. 2021. Photometric data-driven classification of type Ia
supernovae in the open Supernova Catalog. Astronomy and
Computing, 35: 100451.
Förster, F.; Cabrera-Vives, G.; Castillo-Navarrete, E.; and
et al. 2021. The Automatic Learning for the Rapid Classifi-
cation of Events (ALeRCE) Alert Broker. The Astronomical
Journal, 161(5): 242.
Garretson, B.; Milisavljevic, D.; Reynolds, J.; Weil, K. E.;
Subrayan, B.; Banovetz, J.; and Lee, R. 2021. Supernova
host galaxy association and photometric classification of
over 10,000 light curves from the Zwicky Transient Facil-
ity. Research Notes of the AAS, 5(12): 283.
Guy, J.; Astier, P.; Baumont, S.; and et al. 2007. SALT2: Us-
ing Distant Supernovae to Improve the Use of Type Ia Su-
pernovae as Distance Indicators. Astronomy & Astrophysics,
466(1): 11–21.
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