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Abstract

Geostationary hyperspectral satellites generate terabytes of
data daily, creating critical challenges for storage, transmis-
sion, and distribution to the scientific community. We present
a variational autoencoder (VAE) approach that achieves x514
compression of NASA’s TEMPO satellite hyperspectral ob-
servations (1028 channels, 290-490nm) with reconstruction
errors 1-2 orders of magnitude below the signal across all
wavelengths. This dramatic data volume reduction enables
efficient archival and sharing of satellite observations while
preserving spectral fidelity. Beyond compression, we inves-
tigate to what extent atmospheric information is retained in
the compressed latent space by training linear and nonlin-
ear probes to extract Level-2 products (NO2, O3, HCHO,
cloud fraction). Cloud fraction and total ozone achieve strong
extraction performance (R®=0.93 and 0.81 respectively),
though these represent relatively straightforward retrievals
given their distinct spectral signatures. In contrast, tropo-
spheric trace gases pose genuine challenges for extraction
(NO2 R?=0.20, HCHO R?=0.51) reflecting their weaker sig-
nals and complex atmospheric interactions. Critically, we find
the VAE encodes atmospheric information in a semi-linear
manner—nonlinear probes substantially outperform linear
ones—and that explicit latent supervision during training pro-
vides minimal improvement, revealing fundamental encod-
ing challenges for certain products. This work demonstrates
that neural compression can dramatically reduce hyperspec-
tral data volumes while preserving key atmospheric signals,
addressing a critical bottleneck for next-generation Earth ob-
servation systems.

Code — https://github.com/cfpark00/Hyperspectral- VAE

Introduction

Atmospheric monitoring from space has become essential
for understanding air quality, tracking pollution sources,
and studying climate change (Goetz et al. 1985; Thies and
Bendix 2011; Holloway et al. 2021; Yang et al. 2013;
Weng 2009). The recently launched Tropospheric Emis-
sions: Monitoring of Pollution (TEMPO) satellite (Zoogman
et al. 2017) represents a major advance in this capability,
providing hourly observations of atmospheric composition
over North America with unprecedented spatial and spec-
tral resolution. TEMPO’s hyperspectral measurements span
1028 channels across each of the UV-visible (293 - 494 nm)

and visible-near-infrared spectrum (538 - 741 nm), enabling
detailed characterization of trace gases like nitrogen dioxide
(NO>), ozone (O3), and formaldehyde (HCHO). However,
hyperspectral satellite observations generate massive data
volumes that pose significant challenges for storage, trans-
mission, and sharing. Unlike conventional imaging where
each pixel contains a small number of channels (most often
RGB), hyperspectral data encodes a full spectrum at every
spatial location, resulting in orders of magnitude larger file
sizes. TEMPO’s geostationary orbit compounds this issue
by enabling continuous hourly observations, generating ter-
abytes of data daily coming from 2.4 million spectra every
hour that must be archived, distributed to researchers, and
processed for operational products.

Traditional physics-based retrieval algorithms (Rodgers
2000; Bioucas-Dias et al. 2013) address dimensionality
through carefully selected spectral windows and prior con-
straints, but these approaches require extensive domain ex-
pertise and remain computationally intensive (Zoogman
et al. 2017; Chance et al. 2013). Deep learning offers an al-
ternative paradigm that can learn efficient compressed rep-
resentations directly from raw spectral measurements. Vari-
ational Autoencoders (VAEs) (Kingma and Welling 2013;
Higgins et al. 2017) are particularly well-suited for this
task as they provide unsupervised dimensionality reduction
while learning interpretable latent representations that can
be probed for physical quantities.

We present a VAE-based approach that achieves x514
compression of TEMPO hyperspectral data with minimal
spectral reconstruction error, addressing the critical chal-
lenge of storing and sharing massive satellite observation
volumes. Our method jointly encodes spatial and spectral di-
mensions, compressing raw [1028 x 64 x 64] radiance tiles
into compact [32 x 16 x 16] latent representations while
accurately preserving spectral features across the full 290-
490nm range. We then employ a two-stage validation strat-
egy: first training the VAE for reconstruction, then using
linear and nonlinear probes to extract Level-2 atmospheric
products (NO2, O3, HCHO, and cloud fraction) from the la-
tent space. We find that the VAE naturally encodes atmo-
spheric information in a semi-linear manner—linear probes
extract some information, but nonlinear MLP probes sub-
stantially outperform them, revealing that atmospheric prod-
ucts are not directly accessible through simple linear com-



b) Normalized NO: Troposphere c) Normalized Os Total e) Normalized Cloud Fraction

(R

2

IS

S

-
S

Mirror Step
3
Mirror Step
o
3
Mirror Step
Mirror Step
Mirror Step

3

@
g
Relative Units

)

Relative Units
°

Relative Units

E
=
T
2
2
08
o]
o

—
o
S

-
]
S

50 100 0
XTrack XTrack XTrack

100

50 50
XTrack XTrack

Figure 1: TEMPO satellite data products. Representative 131 x 131 pixel region showing (a) Level-1 radiance data as three-
channel composite (channels 100, 500, 900 out of 1028), and (b-e) Level-2 atmospheric products: tropospheric NO3, total
ozone, HCHO, and cloud fraction. All L2 products are normalized (see App. A.1). The distinct spatial patterns—from local-
ized NOy pollution to broad stratospheric ozone—illustrate the challenge of preserving multiple atmospheric signals through
compression.

binations of latent dimensions. Surprisingly, explicitly su- ear ones, and that explicit latent supervision provides
pervising the VAE latent space with L2 product predictions minimal benefit.
during training provides minimal improvement over unsu- .

We establish a framework for joint spatial-spectral com-
pression of satellite observations that maintains both
spectral fidelity and spatial coherence, and introduce
a latent-supervised architecture that enables joint opti-
mization of compression and atmospheric product ex-

pervised compression, suggesting fundamental challenges in
directly encoding certain atmospheric components regard-
less of supervision strategy.

The compression achieves excellent spectral fidelity, with
reconstruction errors 1-2 orders of magnitude smaller than

the signal across all 1028 channels. Beyond preserving tractlon.. ] ) )

spectral structure, the learned latent representations encode _ The remainder of this paper is organized as follows. Sec-
atmospheric information with varying degrees of success tion 2 TEVIEWS related.work m hyperspef:tral image angly-
across different products. Cloud fraction and total ozone sis and machine learning for atmospheric remote sensing.
achieve strong extraction performance (R?=0.92 and 0.75 Section 3 describes our methodology, including the VAE
respectively) with MLP probes, indicating that the VAE architecture, data preprocessing pipeline, and probe analy-
effectively captures cloud patterns and stratospheric com- sis framework. Section 4 presents experimental results com-
position. Tropospheric trace gases NOy and HCHO prove paring reconstruction quality and component extraction per-
more challenging (R?=0.21 and 0.50), though the substan- formance across different atmospheric products. Section 5
tial improvements from linear (R?=0.12 and 0.47) to nonlin- concludes with a discussion of implications for operational
ear probing demonstrate that information exists but requires satellite data processing and directions for future research.
nonlinear extraction. Critically, training a supervised VAE

variant that explicitly predicts L2 products from the latent Related Work

space yields nearly identical probe performance, revealing

that the difficulty lies in the fundamental encoding chal- Neural Image Compression

lenge rather than lack of supervision. These results demon- Recent advances in learned image compression have demon-
strate that unsupervised compression can preserve key atmo- strated that neural networks can achieve superior rate-
spheric signals in hyperspectral data, with implications for distortion performance compared to traditional codecs. Vari-
efficient storage and transmission of satellite observations. ational autoencoders and generative models have emerged

Our main contributions are: as powerful frameworks for lossy compression, learning

compact representations that preserve perceptually impor-
tant features while achieving high compression ratios (Yang
and Mandt 2024). Li et al. (2024) demonstrated the poten-
tial of neural compression for volumetric biological data,
achieving significant compression while maintaining se-
mantic information. Hyperspectral satellite data presents

* We achieve x514 compression of TEMPO hyperspectral
satellite data with minimal spectral reconstruction error
(1-2 orders of magnitude below signal), demonstrating
that deep learning can dramatically reduce storage and
transmission requirements while preserving spectral fi-

delity. . S . :
) ) an ideal application domain for neural compression due
* We demonstrate that unsupervised learning can encode to strong correlations across both spectral and spatial di-
certain atmospheric products in the latent space, with mensions—neighboring wavelengths exhibit smooth spec-
cloud fraction and total ozone achieving R2 scores of tral features while adjacent pixels share similar atmospheric
0.92 and 0.75 respectively, while tropospheric trace gases conditions, creating natural redundancy that can be exploited
remain challenging. for compression. Unlike natural images where perceptual
* We provide a comprehensive analysis comparing linear quality drives optimization, satellite data compression must
and nonlinear extraction methods, revealing that the VAE maintain quantitative accuracy for scientific retrievals, re-
encodes atmospheric information in a semi-linear man- quiring careful consideration of spectral fidelity and spatial

ner where nonlinear probes substantially outperform lin- coherence across the full wavelength range.
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Figure 2: VAE reconstruction quality. Two representative samples showing VAE reconstruction performance at 200,000 train-
ing steps. For each sample, we display: (left) original TEMPO radiance as three-channel composite (channels 100, 500, 900),
(center-left) VAE reconstruction, (center) per-pixel MSE on log scale, and (right panels) normalized spectra at two random
spatial locations (marked with red + and o). The VAE achieves x514 compression (1028 x 64 x 64 — 32 x 16 x 16) while
accurately preserving both spatial structures and spectral features across the 290-490nm range. Note: The large features visible
in low-index channels (left end, near 290 nm) are primarily artifacts from measurement uncertainties and stray light rather than

genuine atmospheric signals.

VAEs and Disentangled Representations

Variational autoencoders have proven effective at learning
disentangled representations (Kingma and Welling 2013;
Higgins et al. 2017) that separate underlying factors of vari-
ation in complex data. The VAE framework’s probabilis-
tic nature provides a principled approach to representation
learning, with the KL divergence regularization encourag-
ing compact, structured latent spaces. In the context of at-
mospheric observations, disentanglement could be particu-
larly valuable as different atmospheric constituents have dis-
tinct spectral signatures that might be encoded in separate
latent dimensions. Our approach leverages this capability
to learn representations that facilitate extraction of specific
atmospheric products, though we find that purely unsuper-
vised learning has limitations for trace gas signals with low
signal-to-noise ratios.

Deep Learning in Remote Sensing

The application of neural networks to satellite remote sens-
ing has accelerated rapidly, achieving state-of-the-art perfor-
mance in tasks ranging from land cover classification to at-
mospheric retrieval (Lary et al. 2016; Mas and Flores 2008)
. Convolutional architectures (Fukushima 1980; LeCun and
Bengio 1998; Krizhevsky, Hinton et al. 2009) have proven
particularly effective for exploiting spatial correlations in
satellite imagery, while attention mechanisms help capture
long-range dependencies. For hyperspectral data specifi-
cally, neural approaches have shown promise in classifica-
tion (Paoletti et al. 2019; Manifold et al. 2021), dimension-
ality reduction, unmixing, target detection, and shadow re-
moval (Park et al. 2023; Pérez-Carrasco et al. 2025). How-

ever, most existing work focuses on either spatial or spectral
processing separately, whereas atmospheric remote sens-
ing requires joint consideration of both domains. Our work
addresses this gap by developing a unified spatial-spectral
compression framework tailored to the unique characteris-
tics of atmospheric satellite observations, where spectral ab-
sorption features must be preserved while leveraging spatial
coherence for efficient encoding.

Methodology
Data Preparation

TEMPO (Tropospheric Emissions: Monitoring of Pollu-
tion) (Zoogman et al. 2017) is NASA’s first geostation-
ary satellite mission dedicated to air quality monitoring
over North America, providing hourly observations of at-
mospheric composition with unprecedented temporal reso-
lution. The instrument measures solar radiation scattered by
the atmosphere across 1028 channels in each of two spectral
ranges: UV-visible (293-494 nm) and visible-near-infrared
(538-741 nm), capturing key absorption features of atmo-
spheric trace gases including NO5, O3, HCHO, and aerosols.

Figure 1 shows TEMPO Level-1 radiance data as a three-
channel composite using representative spectral channels
(left panel), along with Level-2 atmospheric products: tro-
pospheric NO,, total ozone, HCHO, and cloud fraction (all
normalized, see Appendix A.1). Each product exhibits dis-
tinct spatial patterns, from localized NO; pollution to broad
total ozone distributions.

Our dataset consists of TEMPO Level-1B radiance mea-
surements (Park et al. 2024; Chong et al. 2025; Nowlan



et al. 2025; Gonzédlez Abad et al. 2025) from January
2025 over the Los Angeles basin, a region with com-
plex atmospheric chemistry and strong pollution gradients.
The raw radiance data undergoes a multi-step normaliza-
tion pipeline designed to handle the wide dynamic range
typical of hyperspectral measurements: log transformation
log(max(radiance, 1.0)), followed by per-channel z-score
normalization using global statistics computed from 2.4 mil-
lion pixels across 10 representative files, and finally clip-
ping to [—10, 10] to remove outliers (see Appendix A.1 for
details). We then extract 64 x 64 pixel tiles from TEMPO
observations and split the data 70/30 for training and valida-
tion.

We evaluate four atmospheric products from TEMPO
Level-2 data (Wang et al. 2025): nitrogen dioxide (NO3),
total ozone (O3), formaldehyde (HCHO), and cloud frac-
tion. Each product requires specific preprocessing to han-
dle its physical characteristics and data distribution. NO9
and HCHO use inverse hyperbolic sine (asinh) normaliza-
tion to handle negative values and heavy-tailed distributions
common in trace gas measurements. Total ozone uses stan-
dard z-score normalization as its distribution is approxi-
mately Gaussian. Cloud fraction, bounded in [0, 1], uses a
logit transform with squeeze: logit(0.01 4+ 0.98 X cloud) to
spread the values across the real line. To align Level-2 prod-
ucts with the VAE’s latent resolution, we apply 4 x 4 spatial
pooling, reducing the 64 x 64 input tiles to 16 x 16 to match
the latent spatial dimensions.

VAE Architecture

Our VAE architecture jointly compresses spatial and spectral
dimensions through a hierarchical encoder-decoder structure
with 27.3 million parameters. The encoder progressively re-
duces the input tensor from shape [1028 x 64 x 64] to a
latent representation of [32 x 16 x 16], achieving x514 com-
pression. The encoder consists of three downsampling levels
with channel dimensions [512, 256, 128], where each level
contains a ResNet block (He et al. 2015) followed by 2 x 2
strided convolution for spatial downsampling. Each ResNet
block employs 3 x 3 convolutions with group normalization
(Wu and He 2018) (8 groups, € = 10~%) and GELU activa-
tion functions (Hendrycks and Gimpel 2023). At the bottle-
neck, we incorporate multi-head self-attention with 4 heads
to capture long-range spatial dependencies before projecting
to the latent space.

The latent space models a diagonal Gaussian distribu-
tion with separate learned mean and log-variance channels.
We clamp the log-variance to [—30, 20] for numerical sta-
bility and use the reparameterization trick during training
to enable backpropagation through the stochastic sampling
process. The decoder mirrors the encoder architecture with
transposed convolutions for upsampling, progressively re-
constructing the full spectral resolution through channel di-
mensions [128, 256, 512] before a final projection to 1028
output channels.

Training Procedure

We optimize the VAE using a weighted combination of
reconstruction and KL divergence losses. The reconstruc-

tion loss employs L1 distance between input and output:
Lrec = ||z — Z||1. We use a learnable variance parameter
log o2 (initialized to 6.0) to adaptively weight the recon-
struction loss: L1 = Lyee/ exp(logo?) + log 0. The KL
divergence loss regularizes the latent distribution toward a
standard Gaussian: Lx1, = —0.5> (1 + log 02 — 2 — o2).
The total loss combines these with a small KL weight:
Liotal = Lon+1075- L1, prioritizing reconstruction qual-
ity while maintaining regularization.

Training uses the AdamW optimizer with learning rate
10~*, weight decay 0.05, and gradient clipping (max norm
1.0). The model trains for 200,000 steps with batch size 32
on a single GPU (see Appendix B.2 for additional details).

Component Extraction via Probing

To evaluate whether the learned latent representations en-
code atmospheric information, we employ a two-stage prob-
ing approach. After training the VAE, we freeze its weights
and train supervised probes from the latent space to Level-2
atmospheric products. We extract the mean of the latent dis-
tribution (32 channels at 16 x 16 spatial resolution) as input
features for the probes.

For linear probing, we train a single linear layer mapping
from 32 latent channels to 1 output channel for each at-
mospheric component. For nonlinear probing, we employ a
three-layer MLP with architecture [32 — 512 — 512 — 1],
using ReLU activations and dropout (0.1) between layers.
Both probe types are optimized with AdamW using MSE
loss (see Appendix C for training details).
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Figure 3: Channel-wise reconstruction errors across val-
idation set. Root mean squared error (RMSE) computed
per spectral channel over 61,440 validation spectra sam-
pled from 960 tiles. (a) RMSE for normalized spectra show-
ing wavelength-dependent reconstruction quality with errors
ranging from 102 to 10~! normalized units. (b) RMSE
for physical radiance (red line) overlaid with mean radiance
spectrum (black dashed line), demonstrating that reconstruc-
tion errors are 1-2 orders of magnitude smaller than the sig-
nal across the 290-490nm range, with slightly elevated er-
rors only at the shortest wavelengths (290-310nm). Shaded
regions indicate +1 standard deviation.



Results

We evaluate our VAE-based compression approach on
TEMPO hyperspectral data through reconstruction quality
metrics and the ability to extract atmospheric products from
the compressed latent representations.

Compression and Reconstruction Performance

Our VAE achieves a compression ratio of X514, reducing
the data from [1028 x 64 x 64] to [32 x 16 x 16] latent dimen-
sions. Despite this aggressive compression, reconstruction
errors remain very low across nearly all spectral channels
and spatial locations. Figure 3 shows channel-wise recon-
struction errors across the full validation set: errors are con-
sistently 1-2 orders of magnitude below the signal across the
290-490nm range, with slightly elevated errors only at the
shortest wavelengths (290-310nm). Figure 2 demonstrates
representative examples showing close agreement between
original and reconstructed radiance spectra at individual spa-
tial locations, with difference maps confirming the low error
magnitudes.

Unsupervised Component Extraction

We evaluate the extraction of four key atmospheric products
from the compressed representations using both linear and
MLP probes. Figure 4 presents scatter plots comparing pre-
dicted versus ground truth values for all four products.

The results demonstrate strong performance for cloud
fraction (R%2=0.930) and total ozone (R?=0.811) extraction
using MLP probes. Cloud detection benefits from strong
spatial coherence, with the convolutional architecture cap-
turing extended cloud patterns to achieve near-perfect recon-
struction. Total ozone also performs well despite the aggres-
sive compression, with MLP probes improving substantially
over linear (R?: 0.545—0.811), demonstrating that the VAE
latent space successfully encodes the broad stratospheric
ozone distributions visible in Figure 1.

NO; extraction remains challenging with MLP probes
achieving R2=0.203 compared to R?=0.122 for linear
probes, representing a 67% improvement but still indicat-
ing substantial room for improvement. This difficulty stems
from NOsy’s inherent challenges: low signal-to-noise ratio,
complex dependence on surface properties and atmospheric
transport, and—as visible in Figure 1—noise-like spatial
structure lacking the extended coherence that aids com-
pression of other products like clouds and ozone. HCHO
shows moderate performance with MLP (R2=0.511) pro-
viding minimal improvement over linear probes (R?=0.474),
suggesting its signal is partially but incompletely captured.

The comparison between linear and MLP probes re-
veals that the VAE encodes atmospheric information in
a semi-linear manner. MLP probes significantly outper-
form linear probes for cloud fraction (R?: 0.785—0.930)
and Oz (0.545—0.811), while NOy shows substantial im-
provement (0.122—0.203) and HCHO minimal change
(0.474—0.511). This pattern indicates that atmospheric
products are not directly accessible through linear combi-
nations of latent dimensions—nonlinear transformations are

necessary to extract the encoded information, with varying
degrees of difficulty across products.

A natural question arises: the unsupervised VAE has no
explicit objective to preserve atmospheric product informa-
tion—it only minimizes reconstruction error. Would directly
supervising the latent space to predict L2 products during
training improve component extraction?

Latent Supervised Component Extraction

To test this, we trained a supervised VAE variant that jointly
optimizes reconstruction loss and explicit L2 product pre-
diction from the latent representation. Figure 5 shows the
training dynamics of this multi-task learning approach. All
L2 product prediction losses decrease steadily throughout
training, with the latent readout performance improving sig-
nificantly once the reconstruction loss plateaus around step
40,000. Cloud fraction, O3, and HCHO show signs of over-
fitting in later training stages with increasing divergence be-
tween training and validation curves, while NOy shows min-
imal improvement throughout, barely decreasing from its
initial loss value. This demonstrates successful joint opti-
mization for some products but limited progress for NOa,
suggesting fundamental challenges in encoding this trace
gas even with explicit supervision. However, as shown in
Figure 6, despite this explicit supervision, the supervised
model achieves nearly identical probe performance com-
pared to the unsupervised baseline.

To investigate whether explicit supervision during train-
ing improves atmospheric product extraction, we trained a
supervised VAE variant that jointly optimizes reconstruc-
tion loss and L2 product prediction from the latent space.
Surprisingly, the supervised model achieves nearly identi-
cal probe performance compared to the unsupervised base-
line (Figure 6). Cloud fraction (R%2=0.922 vs. 0.923), total
ozone (R?=0.815 vs. 0.754), HCHO (R?=0.500 vs. 0.498),
and NO, (R?=0.227 vs. 0.209) show minimal differences.
This result reveals that the difficulty in extracting certain
atmospheric components stems from fundamental encoding
challenges rather than lack of supervision—the reconstruc-
tion objective already captures sufficient atmospheric struc-
ture, and explicit supervision during training provides neg-
ligible benefit for subsequent product extraction from the
compressed representation.

The unexpected difficulty in extracting NO2 compared to
HCHO (R?=0.20 vs 0.51) despite NO2’s stronger spectral
signal warrants further investigation. This counterintuitive
result suggests that factors beyond signal strength—such as
spatial variability, interference from other absorbers, or the
complexity of NO2’s fine-scale urban patterns—may domi-
nate the extraction challenge.

Importantly, our current approach targets Level-2 prod-
ucts, which incorporate radiative transfer corrections and
ancillary data beyond the pure spectral information. Future
work could target slant column densities (the direct spec-
tral retrieval before atmospheric corrections) to isolate the
spectral information content from uncertainties introduced
during the conversion to vertical columns. This approach
would bypass the substantial ancillary data dependencies
and potential errors in the air mass factor calculations, po-
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Figure 4: Unsupervised VAE probing results. Predicted vs. ground truth scatter plots for all four atmospheric products ex-
tracted from the base VAE latent space using (left) linear probes and (right) MLP probes. Each 2x2 grid shows: (a) NO,
tropospheric vertical column, (b) total Oz column, (¢) HCHO vertical column, (d) cloud fraction. Red dashed lines indicate
perfect prediction. MLP probes substantially outperform linear probes, particularly for cloud fraction (R?: 0.785—0.930) and
total ozone (R%: 0.545—0.811), demonstrating that atmospheric information is encoded nonlinearly in the unsupervised latent
representation. NO, remains challenging (R?=0.203) despite the nonlinear extraction, indicating fundamental limitations of

purely unsupervised compression for this trace gas.

tentially revealing stronger correlations between the com-
pressed spectral representations and the atmospheric con-
stituents.

Conclusion

We present a variational autoencoder approach for joint
spatial-spectral compression of TEMPO hyperspectral satel-
lite data, achieving x514 compression with excellent spec-
tral reconstruction fidelity—errors are 1-2 orders of magni-
tude below the signal across all 1028 channels. This dra-
matic data volume reduction addresses critical challenges in
storing, transmitting, and sharing the terabytes of hyperspec-
tral observations generated daily by geostationary satellites.
Beyond compression, our results demonstrate that unsuper-
vised representation learning preserves atmospheric infor-
mation, enabling extraction of certain products like cloud
fraction (R?=0.923) and total ozone (R?=0.754) directly
from compressed representations.

The strong performance on cloud and ozone detection val-
idates the potential of learned compression for satellite data
analysis. These products, which have clear spectral signa-
tures and spatial patterns, are well-preserved even under ag-
gressive compression. Importantly, we find that atmospheric
information is encoded in a semi-linear manner—while lin-
ear probes extract some information, nonlinear MLP probes
substantially outperform them (e.g., O3: R? 0.545—0.754),
indicating that atmospheric products require nonlinear trans-

formations for extraction from the compressed latent space.

However, tropospheric trace gases NOs and HCHO re-
main challenging (R?=0.21 and 0.50 respectively), reflect-
ing both the inherent difficulty of these retrievals and lim-
itations of purely unsupervised compression. These prod-
ucts have weak spectral signatures, low atmospheric con-
centrations, and complex dependencies on surface proper-
ties and atmospheric transport, making them fundamentally
challenging for any retrieval approach. Critically, our super-
vised VAE experiment—which explicitly optimizes for L2
product prediction during training—yields nearly identical
probe performance to the unsupervised baseline, revealing
that the difficulty stems from fundamental encoding chal-
lenges rather than lack of supervision. This suggests that
improving trace gas extraction may require fundamentally
different architectural approaches or explicit physical con-
straints beyond standard supervised learning.

Future work will explore multi-task learning frameworks
that jointly optimize reconstruction and product extraction
objectives, potentially improving performance on challeng-
ing retrievals while maintaining compression efficiency. Ad-
ditionally, incorporating physical constraints and temporal
modeling could further enhance the representation quality.

The inclusion of TEMPO’s solar irradiance reference
spectra, measured weekly by direct solar observation,
presents another promising direction. These measurements
provide a clean spectral baseline without atmospheric ab-
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Figure 5: Joint optimization of reconstruction and L2
prediction. Combined view of L2 product prediction losses
(left y-axis) and reconstruction error (right y-axis, red
dashed line) during latent supervised VAE training over
220,000 steps. L2 product losses (NO> in purple, O3 in blue,
HCHO in teal, cloud in orange) improve significantly once
reconstruction error plateaus around step 40,000. Cloud,
O3, and HCHO show overfitting in later stages, while NOo
barely improves throughout training, indicating fundamen-
tal encoding difficulties for this trace gas even under explicit
supervision.

sorbers, which could be leveraged in several ways: (1) as
an additional input channel to help the VAE learn to sepa-
rate atmospheric from instrumental signatures, (2) as a nor-
malization reference to create absorption spectra before en-
coding, or (3) as a regularization target to ensure the latent
space preserves physically meaningful spectral ratios. Such
physics-informed approaches could particularly benefit the
extraction of weak absorbers like NO; and HCHO.

The approach presented here establishes a foundation for
applying deep learning to hyperspectral satellite data com-
pression and analysis, with implications for next-generation
Earth observation systems facing increasing data volumes.
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Figure 6: L2-supervised VAE probing results. Predicted vs. ground truth scatter plots for atmospheric products extracted
from the L2-supervised VAE latent space using (left) linear probes and (right) MLP probes. Despite explicit supervision during
VAE training to predict L2 products from latent representations, the probing results show minimal improvement compared to
the unsupervised model (Figure 4). MLP probes again outperform linear probes with similar margins: cloud fraction achieves
R2=0.922, total ozone R%=0.815, while NO, shows modest improvement to R?=0.227. This similarity suggests that the VAE’s
reconstruction objective already captures sufficient atmospheric structure, with explicit supervision providing only marginal

benefits for post-hoc product extraction.
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APPENDIX

A Data

TEMPO (Tropospheric Emissions: Monitoring of Pollution)
is NASA’s first Earth Venture-Instrument mission designed
to monitor atmospheric pollution across North America
from geostationary orbit. Launched on April 7, 2023, aboard
the commercial satellite Intelsat-40e (IS-40e), TEMPO op-
erates at approximately 22,000 miles above Earth’s equator
at 91°W longitude. This vantage point provides a constant
view of North America, enabling the instrument to scan the
continent from the Atlantic to the Pacific and from the Yu-
catan Peninsula to northern Canada with unprecedented tem-
poral and spatial resolution. TEMPO is part of a global con-
stellation of geostationary air quality monitoring satellites,
alongside Sentinel-4 (Europe) and GEMS (Asia).

The TEMPO instrument is a grating spectrometer sen-
sitive to ultraviolet and visible wavelengths (290-740 nm,
split across two spectral bands: 290-490 nm and 540-740
nm). The instrument employs a scanning mirror that steps
East to West across the field of regard, collecting approxi-
mately 2.4 million spectra per hour during nominal hourly
scans. Each scan captures reflected sunlight from Earth’s
surface and atmosphere using two 2D CCD detectors (2048
spatial pixels x 1028 spectral channels for the UV-visible
band, 290-490 nm). The spatial resolution is approximately
2 km North-South x 4.75 km East-West at the center of
the field of regard, enabling detection of air quality varia-
tions at sub-urban scales. TEMPQO’s primary data products
include Level-1B calibrated radiances and Level-2 atmo-
spheric products derived from spectral retrievals: nitrogen
dioxide (NOs), ozone (O3), formaldehyde (HCHO), aerosol
optical depth, sulfur dioxide (SO2), and cloud properties.

For this work, we utilize TEMPO Level-1B radiance data
and corresponding Level-2 products from January 2025 cov-
ering the Los Angeles region. Our dataset consists of 70
granules spanning various times of day and atmospheric
conditions. We focus on the UV-visible spectral band (290-
490 nm, 1028 channels) which contains the primary absorp-
tion features for trace gas retrievals. From Level-2 prod-
ucts, we extract tropospheric NO; vertical columns, total
ozone columns, HCHO vertical columns, and cloud fraction
to evaluate how well atmospheric information is preserved
in compressed representations. All data are obtained from
NASA’s Earthdata portal in netCDF4 format.

A.1 Normalization Strategy

Proper normalization of TEMPO data is critical for effec-
tive neural network training, as the raw measurements span
multiple orders of magnitude and exhibit strong wavelength-
dependent variations. We employ distinct normalization
strategies for Level-1B radiances and Level-2 atmospheric
products, tailored to the statistical properties of each data
type.

Level-1B Radiance Normalization. Raw TEMPO radi-
ances exhibit exponentially distributed values with signif-
icant dynamic range. We apply a three-stage normaliza-

tion pipeline: (1) log transformation to compress the dy-
namic range: log(max(radiance, 1.0)), where the clamping
threshold of 1.0 prevents numerical issues with near-zero
values, (2) channel-wise z-score normalization using global
statistics computed from 10 representative files containing
2,414,592 total pixels: z = (log(r) — ux)/(ox + 107%),
where p) and o) are the mean and standard deviation for
spectral channel A, and (3) clipping to [—10, 10] to remove
outliers while preserving > 99.9% of the data distribution.
The per-channel normalization preserves spectral structure
while accounting for wavelength-dependent sensor sensitiv-
ities and atmospheric transmittance. Table 1 shows the com-
puted global statistics span mean values from 4.80 to 30.68
(in log-radiance space) and standard deviations from 1.13 to
12.18 across the 1028 spectral channels, reflecting the strong
wavelength dependence of Earth’s reflectance spectrum.

Table 1: Global normalization statistics computed from 10
TEMPO files (2,414,592 pixels) showing per-channel statis-
tics in log-radiance space.

Statistic Min Max
Mean (@) 4796  30.683
Std Dev (o)) 1.128  12.185

Level-2 Product Normalization. Each atmospheric
product requires specialized normalization to handle its
unique statistical properties and physical constraints. Raw
L2 values are first converted to convenient units by scaling:
NO; and HCHO vertical columns (originally in molec/cm?)
are divided by 10*® and 10'® respectively to bring val-
ues to O(1), while total ozone (already in Dobson Units)
and cloud fraction (already in [0,1]) require no scaling. We
then apply product-specific transformations: (1) NOy and
HCHO: Inverse hyperbolic sine (asinh) transformation with
robust MAD-based scaling to handle negative values and
heavy-tailed distributions common in trace gas measure-
ments: asinh(z/s) where s = 1.4826 x MAD, computed
from the median absolute deviation of the training data.
This transformation provides symmetric treatment of posi-
tive and negative values while compressing extreme outliers.
(2) Total Ozone: Standard z-score normalization (z — u) /o
computed from training data, as ozone columns exhibit ap-
proximately Gaussian distributions with moderate variance.
(3) Cloud Fraction: Logit transformation with boundary
squeeze to spread the [0, 1]-bounded values across the real
line: logit(e + (1 — 2¢) - ) where e = 0.01 prevents in-
finities at the boundaries. This transformation is particularly
effective for quantities with strong boundary effects. Table 2
summarizes the normalization specifications for each prod-
uct.

Figure 7 illustrates the impact of different normaliza-
tion strategies on TEMPO spectral data. The comparison
demonstrates how various preprocessing approaches affect
the representation of radiance measurements across the 290-
490nm wavelength range. The global per-channel normal-
ization approach (adopted in this work) preserves relative
spectral intensities across spatial locations while account-
ing for wavelength-dependent variations, maintaining both



spectral structure and spatial variability essential for accu-
rate atmospheric product retrieval.

Fields: Raw vs.

TOT - Raw

Figure 7: Normalization strategy comparison. Each
row shows a different normalization approach applied to
TEMPO hyperspectral data: (top) global statistics across
all channels and pixels, (middle) per-channel normalization,
and (bottom) hybrid approach. Left column displays the nor-
malized radiance spectra, while right column shows the spa-
tial distribution of a representative spectral channel. The hy-
brid approach adopted in our work preserves both spectral
signatures and spatial patterns necessary for atmospheric re-
trieval.

For Level-2 atmospheric products, we apply product-
specific normalization strategies shown in Table 2.

Table 2: Processing specifications for atmospheric products.

Product Units Scale Norm.
NO- molec/cm? 10 asinh
O3 DU 1.0 Z-score
HCHO molec/cm?  10'¢ asinh
Cloud fraction 1.0 logit

For asinh normalization, we use: asinh(x/s) where s =
1.4826 x MAD (Median Absolute Deviation). For logit nor-
malization, we apply: logit(0.01 4+ 0.98 x ) to avoid infini-
ties at boundaries.

B Model Specification

Our approach employs three types of neural network mod-
els with distinct roles in the pipeline. The primary model
is a Variational Autoencoder (VAE) that learns to compress
TEMPO’s high-dimensional radiance data from [1028 x 64 x
64] input tensors to compact [32 x 16 x 16] latent represen-
tations through purely unsupervised learning on Level-1B
data. This VAE consists of a convolutional encoder, a prob-
abilistic latent space with reparameterization, and a sym-
metric decoder for reconstruction. After VAE training, we
freeze the encoder and evaluate whether atmospheric infor-
mation is preserved in the latent space by training two types
of supervised probes: (1) linear probes, which are single-
layer linear mappings from latent channels to atmospheric
products, and (2) MLP probes, which are three-layer feed-
forward networks with ReL.U activations and dropout. The

comparison between linear and MLP probe performance re-
veals whether atmospheric signals are encoded linearly or
require nonlinear extraction from the compressed represen-
tation.

To investigate whether explicit supervision improves at-
mospheric product extraction, we also train a latent super-
vised VAE model with a modified architecture that includes
prediction heads for the four L2 atmospheric products (NOo,
O3, HCHO, cloud fraction). This latent supervised VAE uses
a multi-task learning objective that combines the standard
VAE reconstruction and KL divergence losses with super-
vised prediction losses on the L2 products. The latent space
is jointly optimized for both reconstruction fidelity and at-
mospheric product predictability, encouraging the learned
representations to explicitly encode the target atmospheric
signals. This approach allows us to assess whether incorpo-
rating supervision during training improves the accessibil-
ity of atmospheric information compared to purely unsuper-
vised compression followed by post-hoc probing.

B.1 VAE Architecture Details

Encoder. The encoder transforms input tensors of shape
[1028 x 64 x 64] through hierarchical spatial compres-
sion. An initial 3 x 3 convolution projects the 1028 spec-
tral channels to 512 internal channels. The encoder then
consists of three downsampling levels with channel dimen-
sions [512, 256, 128], where each level contains one ResNet-
Block followed by strided convolution (kernel=2, stride=2)
for 2x spatial downsampling. This produces intermediate
representations at resolutions 32 x 32 (512 channels), 16 x 16
(256 channels), and 8 x 8 (128 channels). Each ResNet-
Block contains two convolutional paths: (1) GroupNorm (8
groups, eps=10~%) = GELU — 3 x 3 Conv, followed by (2)
GroupNorm — GELU — 3 x 3 Conv with zero-initialized
weights. A 1 x 1 skip connection adapts channel dimen-
sions when input and output differ. After spatial downsam-
pling, a middle block at 8 x 8 resolution applies two ResNet-
Blocks with a multi-head self-attention layer (4 heads, 32
channels per head) between them. The attention mecha-
nism uses full spatial self-attention across all 64 spatial
positions with scaled dot-product: Attention(@, K, V) =
softmax(QK7T /\/d)V . Finally, a 3 x 3 convolution with
zero initialization projects to 64 channels encoding mean
and log-variance: the final latent distribution has shape [32 x
8 x 8] for both parameters.

Latent Space. We parameterize a diagonal Gaussian dis-
tribution with separate learned mean p and log-variance
log o2 for each of the 32 x 8 x 8 = 2048 latent variables.
Log-variance is clamped to [-30, 20] for numerical stabil-
ity. Sampling uses the reparameterization trick: z = p + oe
where € ~ N(0,1) and 0 = exp(0.5logo?). The KL di-
vergence against a standard Gaussian prior A/ (0, I) is com-
puted as Dxy = 0.5 (1 + 02 — 1 — log ?).

Decoder. The decoder mirrors the encoder architecture
with symmetric structure. Starting from latent shape [32 x
8 x 8|, an initial projection expands to 128 channels, fol-
lowed by an identical middle block (two ResNetBlocks
with 4-head attention between them). Three upsampling
levels progressively increase spatial resolution using trans-



posed convolutions (kernel=2, stride=2): 8 x 8 — 16 x 16
(128—256 channels), 16 x 16 — 32 x 32 (256—512 chan-
nels), and one final ResNetBlock at 32 x 32 — 64 x 64 (512
channels maintained). Each level contains one ResNetBlock
followed by channel expansion via transposed convolution,
except the final level which omits upsampling to preserve
the target 64 x 64 resolution. A final 3 x 3 convolution with
zero initialization projects from 512 internal channels back
to 1028 output spectral channels.

Loss Function. The total loss combines reconstruction
and regularization: £ = ||z — 2|1/ exp(log s?) + log s +
10~%. Dg 1, where the reconstruction term uses L1 distance
weighted by a learned log-variance log s (initialized to 6.0),
and the KL divergence is weighted by 1076,

Key Design Choices. (1) Attention is applied only at the
8 X 8 bottleneck resolution. (2) Heavy channel usage (512
channels at finest resolution). (3) Zero initialization of resid-
ual path outputs and final projections. (4) No dropout (prob-
ability=0.0). The complete model contains approximately 54
million parameters.

B.2 Training Configuration

We train using AdamW (Loshchilov and Hutter 2019) with
learning rate o = 10~%, momentum $; = 0.9, By = 0.95,
weight decay A = 0.05, and gradient clipping (max norm
1.0). Training runs for 200,000 steps with batch size 32,
sampling tiles randomly from a maintained buffer of 500 ex-
amples. Validation is performed every 50 steps on 100 held-
out samples. Checkpoints are saved every 5,000 steps. All
random seeds are set to 42, and the train/val split is 70/30
based on hashed filenames. Training converges at approx-
imately 150,000 steps (41 hours on NVIDIA A100, peak
memory 25 GB). Figure 8 shows the training dynamics for
the base unsupervised VAE model, while Figure 9 displays
the training curves for the latent supervised variant with ad-
ditional L2 prediction losses.

C Probing Methodology

After training the VAE to compress TEMPO hyperspectral
radiance data, we evaluate whether atmospheric composi-
tion information is preserved in the learned latent represen-
tations through a two-stage probing framework. We freeze
the VAE encoder weights and train supervised regression
models (probes) to predict Level-2 atmospheric products
from the latent space. This approach tests whether the un-
supervised compression has implicitly captured atmospheric
signals relevant for trace gas and cloud property retrievals.
The probing experiments address a fundamental question:
does dimensionality reduction through unsupervised learn-
ing preserve physically meaningful atmospheric informa-
tion? By comparing linear and nonlinear probe performance,
we assess whether atmospheric products are encoded lin-
early in the latent space or require more complex extraction
mechanisms. The dataset for probing consists of spatially
aligned pairs of VAE latent representations (extracted from
Level-1 radiance) and normalized Level-2 product values,
with samples drawn uniformly from valid (non-NaN) pix-
els across all training files. We use an 80/20 train/test split
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Figure 8: Base model training dynamics. Training curves
showing KL divergence loss (top left), negative log-
likelihood reconstruction loss (top right), total loss (bot-
tom left), and pixel-wise reconstruction error (bottom right)
over 200,000 training steps for the unsupervised VAE base-
line. All x-axes use log scale; reconstruction error (bottom
right) uses log scale on y-axis. The model converges around
150,000 steps with final pixel MSE of 0.0096.

with fixed random seed (42) for reproducibility. All probes
are trained to minimize mean squared error (MSE) between
predicted and ground-truth normalized product values.

C.1 Linear Probing

Linear probes provide a baseline assessment of whether at-
mospheric information is directly accessible through lin-
ear combinations of latent channels. Each probe consists
of a single linear layer mapping from the 32 latent chan-
nels to a scalar output representing one atmospheric prod-
uct: ) = W'z + b, where z € R>? is the latent vector at a
spatial location, W € R32 are learned weights, b € Ris a
bias term, and ¢ is the predicted normalized product value.

Linear probes are trained for 100 epochs using the
AdamW optimizer with learning rate 0.001 and weight de-
cay 0.01 (L2 regularization). The batch size is 512, and we
sample 2000 valid pixels per file for training. The simplicity
of linear probes makes them computationally efficient (<1
minute training time per product) and provides interpretabil-
ity—the learned weight vector W reveals which latent chan-
nels contribute most strongly to each atmospheric product
prediction. Poor linear probe performance suggests that rel-
evant information exists in the latent space but requires non-
linear transformations for extraction, motivating the use of
MLP probes.

C.2 MLP Probing

To test whether atmospheric signals are encoded nonlin-
early in the VAE latent space, we employ multi-layer per-
ceptron (MLP) probes capable of learning complex nonlin-
ear mappings. The MLP architecture consists of three fully-
connected layers with dimensions [32 — 512 — 512 — 1],
using ReLU activations between layers and dropout (proba-
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Figure 9: Latent supervised model training dynamics.
Training curves for the multi-task latent supervised VAE
showing KL divergence (top left), reconstruction loss (top
right), L2 product prediction losses (bottom left), and pixel
reconstruction error (bottom right) over 200,000 training
steps. The L2 prediction panel shows MSE losses for NO,
(purple), O3 (blue), HCHO (teal), and cloud fraction (or-
ange). All axes use log scale. The supervised losses converge
to final values: NOy MSE =0.198, O3 MSE = 0.234, HCHO
MSE = 0.081, cloud MSE = 0.463, pixel MSE = 0.010.

bility 0.1) for regularization. The forward pass computes:

hl = ReLU(le + bl)
hs = Dropout(ReLU(Wsh; + b))
9 = Wsha + b3

where hi,ho € R52 are hidden representations and all
other notation follows the linear case.

MLP probes train for up to 2000 epochs with early stop-
ping (patience=10 epochs on validation loss) using AdamW
optimizer (learning rate 0.001, weight decay 0.01). We sam-
ple 1000 valid pixels per file with batch size 512. The sub-
stantially deeper architecture (approximately 280K param-
eters per probe compared to 33 for linear probes) provides
capacity to learn arbitrary nonlinear functions of the latent
representation, at the cost of increased training time (~3-
5 minutes per product) and reduced interpretability. Signif-
icant performance gains from MLP over linear probes in-
dicate that atmospheric information is present but encoded
nonlinearly, suggesting that either (1) the VAE’s unsuper-
vised objective does not naturally align latent dimensions
with atmospheric products, or (2) the products themselves
depend nonlinearly on the observed radiances. Conversely,
minimal improvement suggests fundamental limitations in
how much information about that product is preserved dur-
ing compression.

D Additional Results
D.1 Probe Training Dynamics

To assess the convergence and optimization behavior of our
probing framework, we provide complete training dynamics

Table 3: Complete training hyperparameters.

Hyperparameter Value
Optimizer Settings

Optimizer AdamW
Learning Rate () 1x107*
Momentum (51, 52) [0.9, 0.95]
Weight Decay (\) 0.05
Gradient Clip Norm 1.0

Loss Configuration

Reconstruction Loss L1 (MAE)
KL Divergence Weight 1x1076
Learned Log-Variance (init) 6.0

Training Schedule

Total Steps 200,000
Batch Size 32
Validation Frequency 50 steps
Checkpoint Frequency 5,000 steps
Data Configuration

Train/Val Split 70/30
Training Buffer Size 500 samples
Validation Buffer Size 100 samples

Random Seed 42
Computational Resources

Training Time 41 hours
GPU NVIDIA A100 (40GB)
Peak GPU Memory ~25GB

for both linear and MLP probes applied to the unsupervised
and L2-supervised VAE models. Figures 10 and 11 show
the MSE loss curves during probe training for all four atmo-
spheric products.

The unsupervised base VAE model (Figure 10) shows dis-
tinct training dynamics between linear and MLP probes.
Linear probes converge rapidly within 100 epochs with
smooth monotonic decrease, achieving moderate perfor-
mance (cloud fraction R? ~ 0.78, NO, R? ~ 0.12). MLP
probes require substantially more training iterations (up to
2000 epochs) but achieve significantly better performance,
particularly for cloud fraction (R? =~ 0.93) and total ozone
(R? =~ 0.81). The training curves reveal product-specific
patterns: NO2 and HCHO exhibit initial plateaus before
rapid descent around epoch 100, suggesting these products
require the MLP to learn complex nonlinear transforma-
tions. In contrast, O3 and cloud fraction show steady im-
provement from the start, indicating that their nonlinear en-
coding is more readily accessible.

The L2-supervised VAE model (Figure 11) exhibits re-
markably similar training dynamics and final performance
compared to the unsupervised model. Both linear and MLP
probes achieve nearly identical R? scores across all prod-
ucts, with cloud fraction reaching R2 2 0.92 and total ozone
R? ~ (.81 using MLP probes. This similarity demonstrates
that explicit L2 supervision during VAE training provides
minimal benefit for post-hoc atmospheric product extrac-
tion—the reconstruction objective alone captures sufficient
atmospheric structure in the latent representations.
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Figure 10: Unsupervised VAE probe training dynamics. Learning curves for (left) linear probes trained for 100 epochs and
(right) MLP probes ([32—512—512— 1] architecture) trained for up to 2000 epochs on the base unsupervised VAE latent repre-
sentations. Each panel shows training (solid) and validation (dashed) MSE loss for all four atmospheric products: NO, (purple),
O3 (blue), HCHO (teal), and cloud fraction (orange). Red dotted vertical lines indicate the epoch with minimum validation loss.
MLP probes substantially outperform linear probes, particularly for cloud fraction (R?: 0.785—0.930) and total ozone (R:
0.545—0.811), demonstrating that atmospheric information is encoded nonlinearly in the compressed representation.
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Figure 11: L2-supervised VAE probe training dynamics. Learning curves for (left) linear probes and (right) MLP probes
trained on the L2-supervised VAE latent representations. Despite explicit supervision during VAE training to predict L2 prod-
ucts, the training dynamics and final performance are nearly identical to the unsupervised model (Figure 10). Linear probes
achieve R? scores of 0.778 (cloud), 0.521 (O3), 0.469 (HCHO), and 0.151 (NO,), while MLP probes reach 0.922 (cloud),
0.815 (0O3), 0.500 (HCHO), and 0.227 (NO-). The similarity indicates that the reconstruction objective already captures atmo-

spheric structure effectively.

D.2 Additional Reconstruction Examples

Figure 12 shows five randomly selected validation samples
from the base VAE model, while Figure 13 shows five ran-
domly selected validation samples from the latent super-
vised VAE model. The first panel in Figure 13 corresponds
to the same validation sample shown in the main Figure 2.

E Code and Data Availability

All code and configuration files will be available after the
peer review process.

Raw TEMPO satellite data  is publicly
available through NASA’s Earthdata portal:
https://www.earthdata.nasa.gov/ or



Table 4: Training configurations for linear and MLP probes.

Parameter Linear Probe MLP Probe
Architecture [32 — 1] [32 =512 = 512 —> 1]
Activation None ReLU

Dropout 0.0 0.1

Optimizer AdamW AdamW
Learning Rate ~ 0.001 0.001

Weight Decay  0.01 0.01

Batch Size 512 512

Max Epochs 100 2000

Early Stopping  Yes (patience=10)  Yes (patience=10)
Pixels per File 2000 1000

Total Samples 140,000 70,000

Train/Test Split ~ 80/20 80/20

https://asdc.larc.nasa.gov/project/TEMPO.

F Computational Requirements

All experiments were conducted on NVIDIA A100-SXM4-
40GB GPUs using PyTorch (Paszke et al. 2019). VAE train-
ing required 41 hours for 200,000 steps with batch size 32,
using peak GPU memory of ~25GB for the 27.3M param-
eter model processing input tensors of shape [32 x 1028 x
64 x 64]. Probe training took <5 minutes per component. To-
tal storage requirement is approximately 220GB including
102GB raw TEMPO L1B files (70 files, Los Angeles region,
January 2025), 51GB processed tiles, 51GB tiles with L2
products, 15GB individual L2 products, and model check-
points (~1GB per checkpoint).
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Figure 12: Base VAE reconstructions. Five randomly selected validation samples after 200,000 training steps. Each row: (1)
original L1 radiance, (2) reconstruction, (3) per-pixel MSE (log scale), (4-5) spectra at two locations.
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Figure 13: Latent supervised VAE reconstructions. Five randomly selected validation samples after 200,000 training steps.
The first panel corresponds to the same validation sample shown in Figure 2 (main text). Same format as Figure 12.



