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Abstract

Accurate and cost-effective quantification of the agroecosys-
tem carbon cycle at decision-relevant scales is essential for
climate mitigation and sustainable agriculture. However, both
transfer learning and spatial variability exploitation in this
field are challenging, as they involve heterogeneous data and
complex cross-scale dependencies. Conventional approaches
often rely on location-independent parameterizations and in-
dependent training, underutilizing transfer learning and spa-
tial heterogeneity in the inputs, and limiting their applicabil-
ity in regions with strong variability. We propose FTBSC-
KGML (Fine-Tuning-Based Site Calibration—Knowledge-
Guided Machine Learning), a pretraining- and fine-tuning-
based, spatial-variability-aware, and knowledge-guided ma-
chine learning framework that augments KGML-ag with a
pretraining-fine-tuning process and site-specific parameters.
Using a pretraining-fine-tuning process with remote-sensing
GPP, climate, and soil covariates collected across multiple mid-
western sites, FTBSC-KGML estimates land emissions while
leveraging transfer learning and spatial heterogeneity. A key
component is a spatial heterogeneity-aware transfer-learning
scheme: a globally pretrained model that is fine-tuned per
state/site to learn place-aware representations, improving local
accuracy under limited data without sacrificing interpretability.
Empirically, FTBSC-KGML achieves lower validation error
and more consistent explanatory power than a purely global
model, better capturing spatial variability across states. This
work extends the prior SDSA-KGML framework.

Introduction

Purely data-driven machine learning (ML) models often
achieve limited success in scientific domains due to their
high data requirements and inability to produce physically
consistent results (Willard et al. 2022). Thus, research
communities have begun to explore integrating scientific
knowledge with ML in a synergistic manner. The burgeoning
field of knowledge-guided machine learning (KGML) offers a
promising framework that integrates the strengths of process-
based (PB) models, machine learning, and multi-source
datasets. KGML has proven effective in spatial prediction
tasks, such as land emissions estimation. However, current
KGML models use location-independent parameters that
overlook spatial heterogeneity across their large footprints,
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leaving little room for effective global-to-local transfer.
As a result, performance and interpretability degrade in
settings where processes are spatially variable (Moran
1950). To address these issues, this paper proposes a Fine-
Tuning-Based Site Calibration—Knowledge-Guided Machine
Learning (FTBSC-KGML) framework as a general schema to
enhance current KGML methods by incorporating location-
based parameter values and cross-site transfer learning.
Building on prior work such as SDSA-KGML (Sharma et al.
2025a), the proposed approach introduces a transfer-learning
mechanism in which a globally pretrained, physics-guided
model is fine-tuned for each site or state. This design bridges
awareness of spatial variability with model calibration
efficiency, leveraging knowledge from aggregated multi-state
training while retaining site-specific interpretability.

The problem is important for accurately predicting carbon
and other emissions from land-use activities (e.g., agriculture,
deforestation). Quantifying and controlling these emissions
is crucial for climate change mitigation, optimum crop
management, and maintaining sustainable agriculture.

Predicting land emissions is challenging due to the het-
erogeneity of factors that affect them. This spatial variability,
as implied by Tobler’s First Law of Geography (Tobler 1970),
encompasses variations in soil characteristics, moisture con-
tent, and other environmental conditions. Moreover, collect-
ing ground truth data for this task is costly, complicating the
training of large deep learning models. These challenges call
for methods that both effectively capture spatial variability
and are guided by physical knowledge.

Related Work: The most common approach for predict-
ing land emissions is based on process-based models, which



use scientific theories that accurately explain the phenomena
that occur, obeying principles such as mass and energy con-
servation. However, these models do not perform well in high
spatial heterogeneity and variance, which is common in real-
world settings (Gupta et al. 2021). Other approaches consid-
ered, especially for small-area estimation, include data-driven
machine learning models. However, these models usually re-
quire extensive training data, which can be time-consuming
and sometimes impossible to achieve.

Knowledge-Guided Machine Learning (KGML) methods
have been further explored, incorporating elements of both
process-based models and data-driven machine learning
approaches. For instance, KGML-ag (Liu et al. 2024)
integrates several pretraining steps with knowledge from
ecosys, a process-based model for agroecosystems, into a
deep learning architecture. KGML-ag effectively addresses
challenges such as spatial autocorrelation and scalability
to larger datasets. However, as mentioned earlier, the lack
of awareness of spatial variability in KGML-ag limits its
performance and interpretability.

To address this limitation, (Sharma et al. 2025a) proposed
the Spatial Distribution-Shift Aware Knowledge-Guided Ma-
chine Learning (SDSA-KGML) framework, which intro-
duced location-dependent parameters to explicitly account
for spatial heterogeneity and distribution shifts across regions
such as Illinois, Iowa, and Indiana. Their results demonstrated
that incorporating region-specific parameters enhanced lo-
cal accuracy under strong spatial variability. Building upon
this direction, our proposed Fine-Tuning-Based Site Cali-
bration (FTBSC-KGML) extends SDSA-KGML by intro-
ducing a transfer-learning mechanism in which a globally
pretrained model is fine-tuned for each site or state. This
approach bridges spatial variability awareness with model
calibration efficiency, leveraging knowledge from aggregated
multi-state training while retaining site-specific interpretabil-
ity. Empirically, this mechanism significantly improves local
performance in data-limited regions, mitigating overfitting
and preserving knowledge-guided physical constraints.

Organization: The paper is organized as follows: Section
2 introduces basic concepts. Section 3 formally defines
the problem. Section 4 discusses design decisions. Section
5 presents the proposed approach. Section 6 discusses
experimental evaluation. Section 7 concludes the paper and
discusses future work.

Basic Concepts

Knowledge-Guided Machine Learning-ag: The KGML-ag
model takes climate and soil data as inputs and generates
predictions of agricultural carbon fluxes, crop yields, and
changes in soil carbon stocks (i.e., carbon quantity) as
outputs (Fang et al. 2018). The input data are gathered
from diverse sources, including Eddy Covariance (EC)
flux tower sites (Pastorello et al. 2020), regional survey
yield data, remotely sensed gross primary production data,
and synthetic data generated by a process-based model.
While these data offer a rich set of features, they also
present challenges, such as inconsistencies between real
and synthetic data and varying data quality (Cressie and
Wikle 2011). KGML-ag uses a hierarchical structure with

five submodules, including (1) a GRU_Ra module for daily
Autotrophic Respiration (Ra) estimation, (2) a GRU_Rh
module for daily Heterotrophic Respiration (Rh) estimation,
(3) a GRU_NEE module for daily Net Ecosystem Exchange
(NEE) estimation, (4) an attention module for crop yield
estimation, and (5) a GRU_Basis module to connect and
support the other four modules (Liu et al. 2024).

Synthetic Data: Along with real sample data, the KGML-
ag model is trained on synthetic data generated by the
ecosys model (Grant 2001) to improve its generalization.
The ecosys model simultaneously simulates carbon, water,
and nutrient cycles within the soil and plant system based on
biophysical and biochemical principles (Shang et al. 2017).
In this context, the model is used to generate county-level
synthetic data on ecosystem carbon allocation, associated
fluxes, and environmental responses.

The 5 Step Training Process: KGML-ag uses a five-step
training method: 1) Pretrain the yield and Ra submodules
using the synthetic data. 2) Pretrains the Ra, Rh, and NEE
submodules using the synthetic data. After steps 1 and 2, the
KGML-ag model can imitate the ecosys model for yield, Ra,
Rh, and NEE. 3) The yield module is fine-tuned with county-
level crop yield data. 4) Use synthetic data to maintain Ra,
Rh, and NEE pretraining after yield fine-tuning. Despite the
similarity between 2) and 4), experimental results show that
they are essential for maintaining predictive accuracy. 5) Ra,
Rh, and NEE are fine-tuned using observed data from Eddy
Covariance (EC) flux tower sites across the U.S. Midwest.

To better illustrate the five-stage optimization workflow
and model convergence behavior, Figure 2 visualizes the
validation loss trajectories across the five training phases de-
scribed above. Dashed vertical lines indicate the boundaries
of the individual phases corresponding to pretraining (Steps
1-2), fine-tuning with real-world data (Step 3 and 5), and
finetuning with synthetic data (Steps 4).

Spatial Distribution-Shift Aware Knowledge-Guided
Machine Learning (SDSA-KGML): Building on KGML-
ag, Sharma et al. (2025) proposed the Spatial Distribution-
Shift Aware Knowledge-Guided Machine Learning (SDSA-
KGML) framework to explicitly address regional heterogene-
ity and data distribution shifts. Instead of sharing a single
global parameter set §, SDSA-KGML introduces location-
dependent parameters ;. that allow each region to learn its
own process sensitivities while maintaining shared physics-
based constraints(Raissi et al. 2019). This design enables the
model to capture within-region variability in soil, climate,
and management factors, thereby improving local accuracy
in heterogeneous agroecosystems across Illinois, Iowa, and
Indiana. However, training these region-specific models in-
dependently limits their scalability and cross-site generaliza-
tion, motivating our Level-4 extension (FTBSC-KGML) that
augments SDSA-KGML with a global pretraining and local
fine-tuning mechanism for efficient site calibration.

Spatial Variability Awareness: To harmonize terminol-
ogy and position our contribution, we categorize knowledge-
guided models by spatial variability awareness (Table 1):
Level-1 uses location-independent (LI) inputs, outputs,
and parameters, Level-2 uses location-dependent (D) in-
puts/outputs with shared global parameters, Level-3 further
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Fig. 2: Validation MSE loss evolution across the five-step KGML-
ag training process (batch size = 8, learning rate = 0.001).

adopts location-dependent parameters 6o, and Level-4 in-
cludes transfer-learning. Under this taxonomy, KGML-ag
falls into Level-2, SDSA-KGML falls into Level-3, and our
FTBSC-KGML is in Level-4.

Problem Definition

The problem is defined as follows:

Input:

* Multi-source spatiotemporal covariates (e.g., remote-
sensing GPP, climate, soil, management).

* Locations [; (site/state) and region labels.

* Global pretrained weights 6(°) and physics constraints.

Output:

* Land-emission value(s) at target site/time (NEE).

Objective:

* Maximize prediction quality (e.g., minimize MSE).

Constraints:

* Spatial variability across sites/regions.

* Data sparsity and uneven spatial coverage.

» Transfer design: global pretraining — local fine-tuning
(site calibration).

* Compute/resource limits.

Problem Formulation

The model uses inputs such as Gross Primary Productivity
(GPP), climatic variables (e.g., temperature), and soil char-
acteristics. The output is the predicted land emissions, repre-
senting the amount of carbon dioxide released by vegetation
and soil microorganisms. The main objective is to ensure
high predictive accuracy despite challenges posed by spatial
variability and limited data availability.

Spatial variability is a major challenge in land-emissions
modeling, affecting both inputs and physical processes. Emis-
sions differ sharply across land uses: mountainous regions
often have low emissions (sparse vegetation and population),
valleys have high emissions (intensive agriculture), and plains
have moderate emissions (mixed agricultural and urban activ-
ity). This heterogeneity hinders model generalizability and
increases the risk of overfitting.

Design Decisions

This study highlights three key design decisions that differen-
tiate our FTBSC-KGML framework from prior knowledge-
guided models. Each decision represents a conceptual choice

that shapes the model’s transferability, interpretability, and

alignment with physical knowledge.

* Global Pretraining vs. Site-Only Training: To assess
whether globally shared representations can improve fine-
tuning efficiency and local predictive accuracy.

» With vs. without site-specific calibration: Assess whether
localized adaptation layers are needed to capture site-
dependent process sensitivities.

* Robustness: To examine whether the global-to-local fine-
tuning scheme maintains stable performance across differ-
ent hyperparameter settings (e.g., learning rate, batch size),
demonstrating the inherent robustness.

These three design axes form the conceptual backbone of
our study. Their implementation details are described in the
approach section, while their impacts are examined through
the sensitivity analysis section.

Proposed Approach
We present FTBSC-KGML (Fine-Tuning-Based Site Cali-
bration for Knowledge-Guided Machine Learning), a frame-
work that extends KGML-ag by introducing cross-site trans-
fer and site-specific calibration under feature heterogeneity.
The proposed method is built upon two complementary ideas:

1. Global pretraining with site-level fine-tuning: For
knowledge-consistent initialization & efficient adaptation.

2. Site-specific calibration under feature shifts: To capture
regional variation in climate, soil, and management.

Both ideas are compatible with KGML-ag’s physics-guided
constraints (e.g., mass balance, response consistency).

Core Idea I: Global Pretraining then Site-level Fine-
tuning. Let Dgopa = J,cg Ds denote the aggregated
multi-state dataset. We first train a knowledge-guided back-
bone 6 on Degjgpai:

0 = arg H%n Lpred (Dglobal; 0) + A Lphys(e)a (D

where Lynys encodes physics constraints (e.g., mass balance
and response consistency). For a target site s, the model is
initialized from € and fine-tuned for local calibration:

0, = arg r%in Lpred(Ds§ 0s) + ALthS(QS) + |05 — 9”3
) )

This transfer learning procedure transfers cross-site repre-
sentations of crop—climate—soil interactions while adapting
to local heterogeneity, improving both generalization and
convergence in low-sample settings.

Core Idea II: Site-Specific Calibration under Feature
Shifts. While global pretraining provides a stable, physics-
consistent initialization, feature distributions differ markedly
across regions due to variations in climate, soil, and man-
agement practices. To address these feature shifts, we per-
form site-specific calibration during fine-tuning by introduc-
ing lightweight local parameters. After obtaining the glob-
ally informed backbone f(-; ), we attach a calibration head
hs(+; @) (or optional adapter blocks A;) for each site and
adapt them using local data D;:

0rnld£1 Lpred(Ds; 087 ¢s)+)\ Lphys(087 ¢s)+/~b ”95_0”3—’_/) ”QSSH%
3)



Table 1: Spatial variability awareness levels of knowledge-guided models (LI = Location independent, LD = Location dependent).

Level Taxonomy Example Inputs  Outputs Parameters (f) Transfer learn- Model representation
(x) (y) ing included
1 One size fits all Global circulation LI LI LI No Y = frnowledge (Z; 0)
models (Stute,
Clement, and
Lohmann 2001)
2 Spatial explicit KGML-ag (Liu et al. LD LD LI No Yioc = [Knowledge (Tioc; 0)
2024)
3 Location  spe- SDSA-KGML LD LD LD No Yioc = [Knowtedge (Zioc; Bloc)
cific (Sharma et al.
2025a)
4 Location cali- FTBSC- LD LD LD Yes Yioe = fKnowledge (Zioc; Oglobal—loc )
brated KGML(This
work)
et al. 2021). Idea II explicitly models cross-site feature shifts
Train/fine tuned through site-specific calibration, enhancing locality without
sacrificing transferability. Together, they balance global gen-
Train globally with KGML-Ag Train/fe-tuned eralization and local specialization: global pretraining pre-
vents overfitting under sparse data, while per-site calibration
Trin/fine-tuned improves fidelity to regional agroecosystem patterns. Empir-
ically, FTBSC-KGML achieves lower validation error and
faster convergence than both state-only (Non-Transfer Learn-
Pretraining phase Site calibrated fine-tuning phase li’lg) and global-only (}’10 Specialization) baselines.
Experimental Evaluation
FTBSC-KGML

Fig. 3: Overview of the proposed FTBSC-KGML framework.

Here ¢, denotes the site-specific calibration parameters,
0, are lightly fine-tuned global weights initialized from
0, and p regularizes the capacity of local adaptation to
prevent overfitting. This calibration mechanism preserves
the generalizable structure learned during pretraining while
allowing flexible adaptation to local feature distributions.

As summarized in Equations (1)—(3), the framework con-
sists of two consecutive phases: a global pretraining phase
that learns physics-consistent, transferable representations
from aggregated multi-state data, and a site-calibrated fine-
tuning phase that adapts these representations to the local fea-
ture distributions of each site or state. This hierarchical design
allows the model to retain global generalization capability
while improving local accuracy under spatial heterogeneity.

Figure 3 conceptually illustrates how FTBSC-KGML op-
erationalizes the “global-to-local” transfer-learning paradigm.
The global pretraining stage provides a robust, knowledge-
guided initialization that captures cross-site interactions and
ensures physical realism. while the site-specific fine-tuning
stage introduces localized adjustments that account for spa-
tial variability in climate, soil, and management conditions.
Together, these stages establish a balanced framework that
achieves both generalization and specialization, outperform-
ing purely global or purely site-specific approaches.

Complementarity of the two ideas Idea I supplies a glob-
ally informed, physically consistent prior that stabilizes op-
timization across sites (Karpatne et al. 2017; Karniadakis

Experimental Goals: Our evaluation is organized around
two categories of research questions: (1) Comparative
Analysis and (2) Sensitivity Analysis. These questions
define the scope of the experiments and guide the analysis of
spatial heterogeneity and global-to-local transfer learning.
Comparative Analysis: (1) How do local models (site-
only, SDSA-KGML) compare with the global KGML-ag
model in predictive accuracy? (2) How well do models
trained in one region transfer to another? (3) How does site-
level calibration affect a globally pretrained model?
Sensitivity Analysis: (1) How sensitive is the proposed
model to changes in hyperparameters such as learning rate
and batch size? (2) How stable is the model across states with
different levels of data sparsity and feature heterogeneity?

Data and Implementation

We built on the multi-source dataset introduced by the
KGML-ag framework (Liu et al. 2024), which integrates cli-
mate, soil, productivity, and management information across
Midwestern U.S. croplands. While the original KGML-ag
dataset provides harmonized inputs for knowledge-guided
modeling, we reorganized and partitioned these data into
site-level subsets corresponding to Illinois, Iowa, and Indi-
ana to enable the evaluation of our FTBSC-KGML frame-
work. The data quantity ratio in Iowa, Indiana, and Illinois is
41:27:22. The data sources included:

* Climate: NLDAS-2 daily temp., precip., and rad;

* Soil: gSSURGO gridded soil properties;

* Productivity: gross primary productivity (GPP);

¢ Management: yearly crop yield: NASS (Zeng et al. 2025);



» Synthetic biophysical data: 18-year ecosys simulations
used for knowledge-guided pretraining .

All preprocessing procedures (normalization, spatial
alignment, and temporal aggregation) followed the KGML-
ag data pipeline (Liu et al. 2024). Our contribution lies
in constructing state-specific subsets to support cross-site
pretraining and fine-tuning experiments, allowing direct
evaluation of knowledge transfer and spatial calibration
across heterogeneous agroecosystem regions.

Evaluation Metrics

Model performance was evaluated using mean squared
error (MSE) on validation sets, comparing predicted versus
observed fluxes and yields. A smaller MSE indicates better
predictive accuracy, as it measures the average squared
deviation between predictions and observations. Thus, a
reduction in MSE reflects improved accuracy and robustness
under spatial variability. We also computed the relative MSE
improvement of FTBSC-KGML over site-only baselines,
SDSA-KGML (Sharma et al. 2025a), to quantify the benefit
of transfer learning.

Design matrix of training regimes. We organize the
comparison in a 2 X 2 matrix, distinguishing cross-site from
site-specific information (Table 2). The YES/YES quadrant
corresponds to our FTBSC-KGML—global knowledge-
guided pretraining followed by site-level fine-tuning. The
other quadrants cover site-only models (such as SVANN
(Gupta et al. 2021)), a site-independent one-size-fits-all
baseline, and an empty reference.

Table 2: Taxonomy of learning strategies leveraging site-specific
and cross-site information.

Cross-site
No Yes
Site-specific
No None Global (OSFA)
Yes SVANN FTBSC-KGML

Comparative Analysis

Experimental Design We compare four complementary
training configurations:

* Site-only training: Independent models trained from
scratch for each state (Illinois, Iowa, Indiana) without cross-
state knowledge transfer.

* Global-only training: A single model trained on the
aggregated multi-state dataset and applied directly to each
state without local adaptation.

* Cross-regional prediction: Models trained in one state
are evaluated on other states to assess transferability under
distribution shift.

* Global—Site Fine-tuning (FTBSC-KGML, proposed):
A global model pretrained on all states is fine-tuned
separately for each state to achieve localized calibration
under spatial heterogeneity.
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Fig. 4: Heatmap of validation MSE across different state-level
training and testing combinations.

This comparison isolates the impact of global pretrain-
ing and site-level calibration by keeping the architecture and
physics-guided constraints constant. The experiments evalu-
ate both daily carbon flux variables (Ra, Rh, Reco (ecosystem
respiration, Ra+Rh), NEE) and annual crop yield, capturing
key aspects of carbon-cycle behavior in agroecosystems.

Experimental Results of Comparative Analysis

How do local (site-only) and global models compare in
predictive accuracy? We first compared site-only models,
SDSA-KGML (Sharma et al. 2025a), to a global-only
model. The site-specific KGML-ag models were trained
independently on data from Iowa and Indiana and compared
with a single KGML-ag model trained on the combined
dataset ( Iowa + Indiana). This setup contrasts localized
models with a regional model integrating all states.

Our findings show that KGML-ag models trained on state-
specific data often achieve lower MSE on their respective
states than the purely global model, highlighting the benefit of
location-based parameters in capturing spatial heterogeneity.
However, these gains in local accuracy come at the cost of
reduced cross-site generalization: models trained in one state
degrade when applied to others, indicating a bias—variance
trade-off between local fidelity and spatial transferability.

Figure 4 visualizes a heatmap of MSE across different
training—testing combinations. Bluer colors correspond to
lower MSE values. The most significant errors occur when
a model trained on Iowa is tested on Indiana, underscoring
substantial regional differences. This motivates the addition
of a global-to-local mechanism that combines the strengths
of both global and local strategies.

How well do models trained in one region transfer to
other regions? We train KGML-ag models in Indiana, lowa,
and Indiana+Iowa using state-specific weights and applying
them to other states. Due to limited data in Illinois, we only
used Iowa and Indiana data for this question. Results confirm
that localizing KGML-ag to a specific state and evaluating
on the same state yields substantially lower MSE and
higher predictive accuracy. However, when these localized
models are applied cross-regionally, performance degrades,
indicating limited spatial generalization. With location-
specific parameters, SDSA-KGML captures within-state
variability more faithfully and produces estimates tailored to



local conditions, but at the expense of robustness to unseen
regions. Conversely, KGML-ag with location-independent
parameters achieves stronger cross-region transfer but at the
expense of state-specific accuracy. These results underscore
the need for a framework like FTBSC-KGML that balances
local calibration with transferable global knowledge.

How does site-level calibration affect a globally pre-
trained model? We then evaluated FTBSC-KGML, which
combines global pretraining with site-level fine-tuning. A
global KGML-ag model was first pretrained on the combined
dataset from Illinois, Iowa, and Indiana; the resulting weights
were then fine-tuned separately for each state. This setting
assesses generalization from aggregated training to state-
specific testing and characterizes the model’s adaptability
under different agricultural and meteorological conditions.

Figure 5 compares validation MSE for global pretrain-
ing + fine-tuning versus state-only training from scratch. We
observe consistently lower validation MSE with pretraining
across Iowa, Illinois, and Indiana (fowa: AMSE = 0.050
(17.0%); Illinois: AMSE = 0.095 (31.2%); Indiana: AMSE
= 0.163 (43.6%)). Global pretraining learns transferable
crop—climate—soil representations and reduces the optimiza-
tion burden during state-level fine-tuning, thereby mitigating
overfitting when state data are limited.

These results support our claim that site calibration
atop shared pretraining improves local accuracy while pre-
serving knowledge-guided behavior. FTBSC-KGML outper-
forms global-only, site-only, and cross-regional strategies,
especially in data-limited states such as Illinois and Indiana,
where it remains stable and achieves larger relative gains.
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Fig. 5: Validation MSE by state comparing with global pretraining
(global — state fine-tuning; maroon) vs. without pretraining (state-
only training from scratch; blue). Pretraining yields consistently
lower MSE in IA/IL/IN.

Comparative Analysis Discussion: Across all evalua-
tions, the KGML-based emulator exhibits strong fidelity to
the process-based model while maintaining physical con-
sistency. Global pretraining establishes transferable ecolog-
ical structure, and fine-tuning provides localized correction
without introducing instability. The performance gains are
most significant in data-limited states, showing that shared
representations are particularly valuable when local observa-
tions are scarce. The comparisons among site-only, global-
only, cross-regional, and FTBSC-KGML regimes reveal that
neither purely local nor purely global strategies are suffi-
cient in heterogeneous agroecosystems. FTBSC-KGML ef-
fectively interpolates between these extremes by leveraging

global pretraining to provide a strong initialization and a
physics-informed structure, followed by site-specific calibra-
tion to capture local patterns. The physics consistency analy-
sis further supports that this adaptation remains knowledge-
consistent, which is critical for downstream scientific use.
Sensitivity Analysis: In this phase, we investigated the
robustness of the proposed framework under variations in two
key hyperparameters—Iearning rate (Ir) and batch size (bs).
Hyperparameter sensitivity is critical for knowledge-guided
models that combine physics constraints and data-driven
learning, as training instabilities can distort the delicate bal-
ance between physical consistency and empirical adaptation.
We examine whether the transfer-learning advantages remain
valid when these hyperparameters are perturbed, and whether
any states exhibit distinct responses due to data heterogeneity.
Experimental Design: The original experiments used
a learning rate of 0.001 and a batch size of 32. To evaluate
sensitivity, we introduced two perturbed configurations:

e Setting A: Ir = 0.001, bs = 16 (smaller batch size);
* Setting B: Ir = 0.01, bs = 32 (larger learning rate).

Each configuration followed the same 5-step training scheme
as the main experiment, including pretraining on aggregated
multi-state data followed by site-level fine-tuning on Illinois,
Towa, and Indiana datasets.

How does the model respond to reducing the batch
size during training? We first trained the FTBSC-KGML
models with Ir = 0.001 and bs = 16, halving the batch size
from the original setup. Smaller batch sizes generally increase
gradient variance and can expose instabilities in models that
depend on physics-based regularization. However, as shown
in Figure 6(a)—(c), the validation MSE slightly decreased
in all three states. Specifically, lowa achieved a 6.8% lower
validation loss, Illinois 4.3%, and Indiana 3.1%.

The smaller batches may have enhanced diversity within
each gradient step, allowing the model to better capture local
feature distributions without overfitting to global patterns.

Interestingly, the relative difference between states re-
mains consistent with previous results: Iowa achieves the
lowest overall error, while Illinois and Indiana exhibit similar
trajectories. This mirrors the pattern observed in comparative
analysis, where data volume (Iowa: 41% of total) played a
dominant role in reducing variance. Hence, the reduction in
MSE under smaller batches reflects improved convergence
rather than overfitting, and confirms that the FTBSC-KGML
training pipeline remains stable under higher stochastic noise.

How does the model respond to increasing the learning
rate? We next examined the effect of increasing the learn-
ing rate by an order of magnitude to Ir = 0.01 while keeping
bs = 32. This test probed the upper bound of optimization sta-
bility. Validation MSE values remained low across all three
states and stayed below the original independent training
baselines reported in Figure 5. This suggests that the global
pretraining stage provides a stable initialization that resists
divergence even under more aggressive learning updates.

How stable is the model across states with different levels
of data sparsity and feature heterogeneity? Across both
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training conditions.

experiments, the absolute variation in MSE due to hyperpa-
rameter perturbations was smaller than the variation observed
across states in the comparative analysis. This indicates that
the model’s sensitivity to data heterogeneity—differences in
climate, soil, and management—is substantially higher than
its sensitivity to training configuration. Such robustness is a
desirable property for large-scale geospatial modeling, where
computational limits or site-specific data availability often
require nonuniform batch sizes or adaptive learning rates.
Sensitivity Analysis Discussion The resilience of
FTBSC-KGML to learning-rate and batch-size changes
can be attributed to its two-stage training architecture. The
global pretraining step serves as meta-regularization, produc-
ing well-conditioned representations that encode physical
knowledge (e.g., carbon balance, soil-climate interactions).
Fine-tuning then performs small, localized parameter updates
that adapt these representations to site-level distributions.
Thus, while standard neural networks often exhibit high
sensitivity to learning rate and batch size, the proposed
framework maintains a balance between transferability and
locality, effectively “anchoring” the optimization trajectory
to a physically meaningful manifold. Moreover, the presence
of the Ly s term in the loss function constrains deviations
during fine-tuning, preventing the model from drifting
toward overfitted minima. In this way, hyperparameter
perturbations mainly affect the rate of convergence rather
than the final performance, which explains the consistent
validation losses across settings. This behavior mirrors that
of well-regularized meta-learning models, in which learned
initializations dominate the optimization dynamics.
Overall, the sensitivity analysis shows that the benefits
of global pretraining and site-level calibration are insensitive
primarily to hyperparameters. Moderate changes in learning
rate and batch size produce only small shifts in validation
MSE, confirming the robustness and reproducibility of the
transfer-learning setup. The model maintains low errors
across all states, even under less favorable optimization
settings, highlighting two key implications:
1. Generalization robustness: The transfer-learning design
yields consistent gains across hyperparameters, enabling
reliable deployment under varied computational settings.

2. Stability through knowledge guidance: Embedded
physics constraints provide an inductive bias that reg-
ularizes gradient updates and prevents divergence.

Conclusion and Future Work

This work extends the SDSA-KGML framework with Fine-
Tuning-Based Site Calibration (FTBSC-KGML), which
adapts globally pretrained knowledge-guided models to lo-
cal sites. Across multiple states, FTBSC-KGML consistently
achieves lower validation error than site-only training, show-
ing that global pretraining followed by local fine-tuning
strikes a better balance between cross-site generalization
and site-specific accuracy. Fine-tuning global models with
site-level data yields better adaptation to local spatial vari-
ability than training each site independently, especially on
data-limited sites, where the method remains stable and out-
performs site-only baselines.

Building on the SDSA-KGML design, this study reaf-
firms that location-dependent parameters improve the
model’s ability to capture spatial heterogeneity (Ghosh
et al. 2024). The proposed FTBSC-KGML framework
bridges global learning and local calibration, offering a
practical route to scalable, spatially aware modeling. How-
ever, physics-based constraints (Sharma et al. 2025a,c) are
intended to regularize fine-tuning; a complete quantitative
assessment of whether site-level adaptation preserves the
physical consistency learned during global pretraining
remains open. Future work will compute and compare the
physics-consistency loss Lpnys to measure mass-balance and
non-negativity violations for both the global model and the
site-specific fine-tuned models, to detect any drift in physical
realism, and to motivate explicitly physics-preserving cali-
bration strategies (Li et al. 2023; Sharma et al. 2025a,c,b).
We will also focus on: (1) neighborhood-based calibration to
replace static region boundaries; and (2) parameter-efficient,
domain-adaptive fine-tuning for broader scalability. Finally,
for robustness, we will explore dynamic learning-rate
schedules (e.g., cosine decay, adaptive optimizers) and
parameter-efficient schemes (e.g., adapters (Houlsby et al.
2019), LoRA (Hu et al. 2022)) to further improve transfer
efficiency. Overall, our results show that FTBSC-KGML



is both numerically and conceptually robust, maintaining
superior performance across sites and optimization settings.
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