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Abstract

The compounding of plastics with recycled material remains
a practical challenge, as the properties of the processed ma-
terial is not as easy to control as with completely new raw
materials. For a data scientist, it makes sense to plan the nec-
essary experiments in the development of new compounds
using Bayesian Optimisation (BO), an optimization approach
based on a surrogate model that is known for its data effi-
ciency and is therefore well suited for data obtained from
costly experiments. Furthermore, if historical data and ex-
pert knowledge are available, their inclusion in the surrogate
model is expected to accelerate the convergence of the opti-
mization. In this article, we describe a use case in which the
addition of data and knowledge has impaired optimization.
We also describe the unsuccessful methods that were used to
remedy the problem before we found the reasons for the poor
performance and achieved a satisfactory result. We conclude
with a lesson learned: additional knowledge and data are only
beneficial if they do not complicate the underlying optimiza-
tion goal.

Introduction
While the EU aims for a fully circular economy by 2050 (EU
Directorate-General for Environment 2025), only 14 % of
materials used are recycled (Plastics Europe 2025). Plastics
pose particular challenges due to their extensive industrial
integration and difficulty in substitution. Incorporating recy-
cled plastics into manufacturing faces a trade-off: recycled
materials have less predictable and more variable properties
than virgin plastics.

This challenge intensifies when developing compounds
with specified properties. Recycled materials contain un-
known contaminants and degradation products that cannot
be easily characterized, making property prediction very dif-
ficult and necessitating extensive experimental validation.
This creates a significant bottleneck, as each experiment
consumes resources, time, and skilled labor.

Traditional experimentation approaches rely on expert
knowledge and carefully designed experiments developed
by research and development engineers. While valuable, this
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expertise-driven methodology may not yield the most effi-
cient experimental sequences, particularly for complex, non-
linear relationships in recycled material compounds.

In our study, we aim to incorporate expert knowledge
into the surrogate model employed by BO, a global opti-
mization method well-known for its sample-efficiency (Gar-
nett 2023), including applications in material science (Liang
et al. 2021). The motivation for this approach stems from
BO’s proven ability to efficiently navigate complex param-
eter spaces while requiring fewer experimental evaluations
compared to traditional methods.

However, our initial implementation of BO yielded un-
expectedly poor results, performing worse than the estab-
lished Design of Experiments (DoE) methodologies devel-
oped by experienced engineers. This counterintuitive find-
ing prompted a systematic investigation into the underly-
ing causes. Through several iterative attempts to address
the suboptimal behavior, we identified that the incorpora-
tion of expert knowledge through additional features inad-
vertently transformed the optimization problem into a high-
dimensional space, making it more complex than necessary
and compromising the efficiency that BO is designed to pro-
vide.

Our main contributions are twofold: first, we demonstrate
a practical BO application in real-world materials develop-
ment for recycled plastic compounds; second, we provide an
extensive description of typical pitfalls encountered when
implementing BO in industrial materials science applica-
tions, along with a strategy to overcome them. These in-
sights are particularly valuable for practitioners seeking to
apply advanced optimization techniques in materials engi-
neering contexts where expert domain knowledge must be
carefully balanced with algorithmic efficiency.

The remainder of this paper is structured as follows: We
begin with an overview of the relevant literature, followed
by specifying the problem setup. Afterward, we describe the
benchmarking experiments by the engineers and then move
over to the failed and successful BO approaches. We con-
clude by a short discussion of our experiences and an out-
look how to avoid the pitfalls we have encountered.



Related Work
Applications of Bayesian Optimization in Materials Sci-
ence BO has proven effective in materials science appli-
cations due to its sample efficiency with costly experiments.
Liang et al. (2021) benchmark BO across various materials
science use cases, establishing its viability for materials dis-
covery. Cinquin et al. (2025) explore BO integration with
Large Language Model (LLM) for high-dimensional chem-
istry problems, finding that simple, well-initialized surrogate
models with feature fine-tuning often outperform complex
approaches.

Practical Frameworks and Implementation Challenges
Several frameworks facilitate practical BO implementation,
including Ax (Olson et al. 2025) and BayBE (Fitzner et al.
2025), addressing multi-objective optimization and con-
straint handling in industrial settings. However, practical ap-
plications can encounter significant challenges. Dastin-van
Rijn and Widge (2025) identify failure modes in BO, specif-
ically boundary oversampling issues where algorithms dis-
proportionately sample parameter space boundaries, leading
to suboptimal exploration.

Predictive Modeling of Polymer Compounds Seifert,
Leuchtenberger-Engel, and Hopmann (2024b,a) developed
mechanistic models and symbolic regression approaches for
binary and ternary polypropylene compounds, predicting
melt flow rate (MFR) and Young’s modulus—key objectives
in our study. However, their work focuses on simplified sys-
tems without additives, which are standard in industrial ap-
plications and significantly influence material properties.

Research Gap The literature reveals a gap between the-
oretical BO capabilities and practical industrial implemen-
tation. Limited attention has been given to systematic iden-
tification and resolution of implementation pitfalls in real-
world materials development. Our work addresses this gap
through a case study of BO implementation in industrial re-
cycled plastic compound development.

Problem Setup
In our study, four different raw materials are mixed to gen-
erate a new plastic compound: a virgin polypropylene, recy-
cled plastics from a local plastics recycling company, a filler
material, and a so-called impact modifier that changes spe-
cific properties of the compound. After processing a recipe
of these four ingredients, the quality of the compound is as-
sessed using three different quality metrics: the MFR (ISO
2022; ASTM International 2023a) that describes the vis-
cosity of the raw material at processing temperatures, the
viscosity being a useful measure for the processability, the
Young’s modulus (ISO 2019; ASTM International 2022)
that describes the plasticity of the final product, and the im-
pact strength (ISO 2010; ASTM International 2023b) that
describes how tough and resilient a product is against ap-
plied mechanic forces.

For these quality metrics, the engineers defined the fol-
lowing objective values: a MFR-value close to 10 g/10min,
a Young’s modulus of at least 1500MPa, and an impact
strength of at least 8 kJ/m2. These values should result

Figure 1: Values of quality metrics based on experiments by
engineers.

in good processability of the compound and good product
properties for everyday use. More specifically, the resulting
compound is to be used in the manufacture of thin plastic
bags for foodstuffs such as chips or sweets.

For the ingredients, the engineers defined the following
bounds: while the proportion of the virgin propylene and re-
cycled plastics in the mixture can be up to 100 %, the filler
is limited to 30 %, and the impact modifier to 20 %.

Given these key figures, we formulate a constrained op-
timization problem: minimize the difference to the objec-
tive MFR-value, with the Young’s modulus and the impact
strength being above their given limits (i.e., output con-
straints), and the values of the inputs being in their limits
and summing up to one (because we design a mixture).

Provided with this problem definition, we can start the ex-
perimentation process.

Experimental Baseline
The experimental campaign conducted by process engineers
followed a batched approach, comprising 25 experiments or-
ganized into three sequential batches: an initial batch of ten
compounds, followed by seven compounds, and conclud-
ing with eight compounds. This batched experimentation
strategy was necessitated by the costly and time-intensive
evaluation of quality metrics. While MFR measurements
can be performed immediately after compound preparation,
the assessment of Young’s modulus and impact strength
requires the production of samples with defined geometry
from each compound, followed by standardized mechanical
testing procedures. This multi-step process significantly in-
creases both time requirements and experimental costs.

The experimental timeline spanned two days: the first
batch was completed on day one, while batches two and
three were conducted on day two. The performance results
of these engineer-designed experiments are presented in fig-
ure 1.

A significant challenge emerged during the experimental



campaign: identifying parameter combinations that yielded
sufficient impact strength while maintaining acceptable lev-
els of the Young’s modulus. The data partially revealed
complex ingredient interactions responsible for the oppos-
ing behavior observed between Young’s modulus and impact
strength in the first two batches. Specifically, experiments
demonstrated an inverse relationship between these proper-
ties: when impact strength was high (as observed in experi-
ment 14), Young’s modulus tended to be low, and vice versa
(as demonstrated in experiment 10). This trade-off relation-
ship highlights the inherent complexity of recycled plastic
compound formulation.

Despite these challenges, the final batch yielded promis-
ing results, with two experiments fulfilling all speci-
fied constraints. The best reached value for the MFR is
6.65 g/10min. This outcome validated the engineers’ iter-
ative approach and demonstrated the feasibility of achieving
the desired property combination through systematic exper-
imentation, albeit at considerable time and resource invest-
ment.

Performing Bayesian Optimisation
The theoretical advantages of BO - particularly its sample
efficiency and ability to balance exploration and exploitation
- make it a promising candidate for optimizing expensive ex-
perimental campaigns in materials development. Therefore,
we expected BO to reveal comparable or superior results to
the state-of-the-art DoE methodologies employed by expe-
rienced engineers.

To ensure a fair comparison with the expert-conducted ex-
periments, we designed our BO implementation to generate
batches of identical sizes to those used in the real-world ex-
pert DoE: ten experiments in the first batch, followed by
seven in the second batch, and eight in the third batch, to-
taling 25 experiments. This batched approach mirrors the
practical constraints faced by the engineering team, where
experimental evaluations must be conducted in groups due
to equipment availability, processing time, and resource al-
location considerations.

Our BO implementation strategy encompasses several ap-
proaches, beginning with sophisticated models that incorpo-
rate expert knowledge through additional features, and pro-
gressively simplifying the problem formulation based on ob-
served performance. This iterative refinement process pro-
vides valuable insights into the practical challenges of de-
ploying BO in industrial materials development contexts.

Modeling the Compound Properties Using Expert
Information
The performance of BO relies on the efficient handling of
data via a probabilistic model (Garnett 2023). Expert infor-
mation can improve the model and make the approach even
more sample-efficient, which is what we intended to do via
the following approach:

The engineers provided us with a set of 430 experiments
performed with different compositions of virgin and recy-
cled plastics, impact modifiers, filler materials and additives
at different production parameterizations. From these exper-

Figure 2: Predictive performance of GP model on test data
set, the root-means-squared-errors given in scaled space.

iments, we considered experiments with nine types of vir-
gin plastics, three types of recycled plastics, a single impact
modifier, and three types of fillers, as, for these materials, we
were also given data sheets. Furthermore, we filtered the ex-
periments for the production parameters (the configuration
of the screw of the extruder, the temperature in the extruder’s
end zone, the feed rate, and the rotation speed) matching the
parameter configuration used by the engineers.

Given the data sheets, we generated features for a generic
model of the behavior of the compound. Therefore, for each
of the main components (virgin and recycled plastics, im-
pact modifier, and filler), we determined their proportion and
their expected impact on the quality metrics via the data
sheet, and we find an eleven-dimensional problem. After
data cleaning, we were left with a dataset of 50 instances
to train a Gaussian Process (GP) regression model in the
state-of-the-art botorch framework (Balandat et al. 2020) -
a rather rough model, but it is only used provide the BO ap-
proach with a general idea of the material behavior.

We train the model making a train-test-split with 85 %
train data and assess its performance using the test data. For
the model, we used a multioutput GP with uncorrelated out-
puts, but trained on the sum of the marginal log likelihoods.
For each model, we use a squared-exponential covariance
function and a zero mean function, which are defaults in
the used framework. We scale the features of our data to a
[0, 1]

11 bounding box according to the input limits provided
by the experts and use a standard scaling for the outputs of
the model.

In figure 2, we provide the quality of the model’s predic-
tions in scaled space. We can see that the model is in most
cases very confident where its predictions meet the ground
truth and unconfident far away from it. Overall, it is not very
exact, but it covers the data sufficiently.

Before performing BO, we add all data to the model,
while fixing its hyperparameters.



Our Initial Oracle
To assess the quality of experiments proposed by BO, we
developed a predictive model joining the cleaned historical
dataset with the results from the engineer-conducted experi-
ments.

We implemented GP regression models for the prediction
of each compound quality measure (MFR, Young’s modu-
lus, and impact strength), employing the defaults for GPes
with a fully Bayesian treatment of the hyperparameters in
Balandat et al. (2020), building on the results of Hvarfner,
Hellsten, and Nardi (2024).

The predictive quality of each model was rigorously as-
sessed via leave-one-out cross-validation, which provides an
estimate of model performance on unseen data. This vali-
dation approach is particularly appropriate for our limited
dataset size, as it maximizes the use of available training data
while providing reliable performance estimates. The cross-
validation yielded an average root means squared error of
2.23 g/10min for the MFR, of 2.04 kJ/m2 for the impact
strength, and of 152MPa for the Young’s modulus, indicat-
ing a good prediction quality.

The predictive mean of these trained models serves as an
oracle in subsequent BO experimentation, enabling system-
atic evaluation of proposed experimental designs without re-
quiring costly physical experiments. This oracle-based ap-
proach allows us to assess the efficiency and effectiveness
of different BO strategies while maintaining experimental
realism through models trained on actual compound data.

Failed Runs of Bayesian Optimisation
We implement the problem setup into the BO procedure. To
reach the specified target value of the MFR, our main opti-
mization objective is to minimize the quadratic distance to
it. For the constraints, we multiply the acquisition function
with their probability of feasibility, following the traditional
approach by Gardner et al. (2014).

As acquisition function, we employ the log noisy ex-
pected improvement acquisition function, which is expected
to be robust against the potential output noise (Ament et al.
2023).

As the experimentation is performed using a fixed set
of raw materials with specified properties available in data
sheets, we include this data and fix the corresponding fea-
ture values during the optimization of the acquisition func-
tion. Also during acquisition function optimization, we add
the mixture constraint.

The resulting runs of BO that we present in the following
were created using a single random seed, as in real life, we
would also make only one run and not a higher number of
repetitions as we usually apply in technical papers. Never-
theless, we ran the experiments multiple times to ensure that
the results are representative for the course of experimenta-
tion.

Run 1: Vanilla Constrained Bayesian Optimisation The
first run that uses our model with expert knowledge failed to-
tally. The acquisition function optimizer was not able to find
input regions where the probability of feasibility for both the

Figure 3: Course of experimentation for BO approaches.
Run 4, with the reduced model is leads to more proposed
experiments matching the constraints than in runs 2 and 3,
as well as than the manual experimentation.

constraints on the impact strength and on the Young’s mod-
ulus is above zero simultaneously. An inspection of the data
used to train the model revealed that there is no historical
data where both constraints are fulfilled simultaneously and
that there are only two instances with the impact factor ful-
filling the constraint, thus, it is highly probable that this is
the reason for the bad behavior.

Run 2: Iterative Relaxing of Constraints As we found
that the constraints are a problem, we tried to relax them for
the first and second batch of experiments. Therefore, we im-
plemented a gradual reduction of the respective constraints
on the Young’s modulus and the impact strength until the
acquisition function optimization was successful and pro-
vided a batch of experiments. Unfortunately, the results of
this procedure, see figure 3, do not meet our expectations
as the constraint on the impact strength is met only once,
associated with a MFR of 5.60 g/10min.

Run 3: Reformulating the Optimization Problem Af-
terward, we tried to use BO to generate data with high val-
ues of the impact strength, as these seem to be underrepre-
sented in the data. Therefore, for the first two batches, we
tried to find regions where this constraint is met, reformu-
lating the optimization problem such as to maximize the im-
pact strength. Only in the last batch, we apply the known
constraint on the Young’s modulus and add a constraint on
the MFR such as to be inside a corridor of 10±5 g/10min.
We provide the results in figure 3. Again, they do not meet
the expectations, as the constraint on the impact strength is
met only once, associated with a MFR of 5.90 g/10min.

The Working, Simple Approach
Challenges with High-Dimensional Modeling and Ora-
cle Quality The results obtained for the reformulated op-
timization problem raised significant suspicions regarding



the quality of our oracle model and the validity of our over-
all approach. Upon closer examination, we identified several
critical issues that compromised the effectiveness of our BO
implementation.

A primary concern emerged from the limited amount
of available data: our oracle was trained on only 75 data
points spanning 11 dimensions, raising fundamental ques-
tions about the curse of dimensionality Bellman (1957).
With such sparse coverage of the input space, it became
questionable whether sufficient data existed to train a re-
liable predictive model capable of accurate interpolation
across the entire search space.

This data sparsity issue was further compounded by
the well-known boundary issue in BO (Swersky 2017),
which becomes particularly problematic in medium to high-
dimensional spaces. The boundary issue manifests as a ten-
dency for BO algorithms to disproportionately explore the
boundaries of the search space, driven by the larger predic-
tive variance of GP models at boundaries compared to the
interior volume where interpolation can be used to estimate
variance more accurately.

While extensive literature exists on BO approaches for
high-dimensional problems—including subspace methods,
additive structure assumptions, local optimization tech-
niques, and non-Euclidean covariance functions, as com-
prehensively reviewed by Hvarfner, Hellsten, and Nardi
(2024)—these sophisticated methods proved unsuitable for
our specific case. The fundamental limitation was our
severely constrained experimental budget of only 25 to at
most 75 experiments, which is substantially smaller than
even the typical initialization set sizes employed in high-
dimensional BO studies (Hvarfner, Hellsten, and Nardi
2024).

Moreover, our oracle model, trained using the methodol-
ogy described in (Hvarfner, Hellsten, and Nardi 2024), ex-
hibited a critical limitation: it lacked the ability to predict
higher values of impact strength that were not in the direct
neighborhood of the three instances observed during expert
experimentation. This extrapolation weakness severely lim-
ited the oracle’s utility for guiding optimization toward po-
tentially superior regions of the parameter space.

Model Simplification and Reformulation To address
these fundamental issues, we adopted a pragmatic approach:
simplifying our models by eliminating additional features
derived from technical data sheets and retaining only the
four essential composition parameters. This dimensionality
reduction strategy aimed to improve model reliability by fo-
cusing on the most critical input variables while mitigating
the curse of dimensionality.

Correspondingly, we reformulated our oracle to utilize ex-
clusively the 25 instances from real-life experimentation,
eliminating the expanded dataset that had introduced addi-
tional uncertainty. This approach prioritizes model reliabil-
ity over coverage, ensuring that predictions remain grounded
in actual experimental observations rather than potentially
unreliable extrapolations.

The simplified oracle achieved a leave-one-out cross-
validation error (as root-mean-squared-error in real space)

of 4.13 g/10min for the MFR, of 215MPa for the Young’s
modulus and of 2.35 kJ/m2 for the impact strength. These
scores are larger than the ones for the prior model with
all features when revisiting the scores of the first model
(MFR: 2.23 g/10min, Young’s modulus: 152MPa, impact
strength: 2.04 kJ/m2), but, as the considered sample size
is a third of the original sample size, it is no wonder that
leaving out a single instance has more impact. Furthermore,
from the comparison of the scores, we expect the model of
the impact strength to have improved, as its performance has
only slightly degraded.

The optimized approach with dropped features forms the
foundation for our subsequent BO investigation, providing
a more reliable basis for optimization while acknowledging
the inherent limitations imposed by our constrained experi-
mental dataset.

Run 4: Performing Bayesian Optimisation in the Simpli-
fied Space To finally benchmark BO against the expert-
based DoE, we take the following course of experimenta-
tion: The first batch of ten experiments is made up of ran-
dom data gained by rejection sampling from a Dirichlet dis-
tribution. Samples that are rejected, if they do not meet the
bounds of the input domain.

After evaluating the oracle, a surrogate model is trained
via maximizing the marginal log likelihood and the con-
strained BO procedure (use the noisy log expected improve-
ment acquisition function to minimize distance to MFR-
target value with impact strength and Young’s modulus
above their given limits) is used to obtain the second batch
of experiments.

After their evaluation, the model is retrained and the third
batch of experiments is generated and evaluated.

Results As can be seen in figure 3, our final approach fi-
nally reveals the expected result - BO is indeed able to out-
perfom the expert-based design, as it finds more and better
points that match the constraints and simultaneously mini-
mize the distance to the targeted MFR - overall, there are
10 runs that meet the constraints, and the best reached MFR
is 6.13 g/10min, a value that is close to the result by the
experienced engineers.

Discussion, Conclusion and Outlook
Our study reveals that performing BO in real-world indus-
trial applications remains a significant challenge, despite its
theoretical advantages and proven success in controlled en-
vironments. In our use case, we attempted to leverage avail-
able expert knowledge by incorporating additional features
derived from technical specifications and process parameters
into our optimization framework. However, this approach
ultimately failed due to the high dimensionality introduced
by these features, where both the curse of dimensionality
(Bellman 1957) and the well-documented boundary issues
in high-dimensional BO (Swersky 2017) hindered success-
ful optimization.

The simplification of our problem formulation—reducing
the feature space to essential composition parame-
ters—finally led to the desired results, achieving perfor-



mance comparable to expert-designed experiments. How-
ever, this outcome raises a critical question for practition-
ers: when and how should expert knowledge be incorporated
into BO frameworks without compromising algorithmic per-
formance? Our experience demonstrates that the intuitive
approach of adding domain-specific features can paradox-
ically harm optimization effectiveness, highlighting the del-
icate balance between incorporating expertise and maintain-
ing computational tractability.

Future work should therefore concentrate on developing
systematic approaches for assessing the suitability of BO ap-
plications in specific industrial contexts. This could include
the development of structured questionnaires or diagnostic
tools to guide practitioners in problem formulation and fea-
ture selection. Additionally, the materials science and opti-
mization communities would benefit immensely from more
publications focusing on the practical dos and don’ts of BO
implementation, moving beyond theoretical contributions to
address the real-world challenges encountered when deploy-
ing these powerful optimization techniques in industrial set-
tings. Such practical guidance would accelerate the adoption
of BO in materials development and help practitioners avoid
the pitfalls we encountered in this study.
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