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Abstract

Computational Fluid Dynamics (CFD) is essential in con-
temporary engineering design, yet it remains expensive to
compute and can take thousands of CPU/GPU hours or more
for a single high-fidelity simulation. Recent developments in
machine learning for scientific modeling have led to pow-
erful surrogate frameworks that can approximate flow fields
and physical quantities by using a fraction of the computa-
tional cost. However, most of these methods require large-
scale homogeneous datasets or simple geometries, exhibit-
ing severe generalization gaps when applied to complex and
data-scarce configurations. To address this, we propose the
Factorized Geometry Convolutional Neural Operator (FG-
ConvNO) for robust geometry-aware propeller pressure pre-
diction under limited training data. We introduce geometry-
aware encoding, efficient interpolation-based decoding, and
auxiliary global quantity supervision. In addition, we incor-
porate DISCO blocks that use discrete continuous convolu-
tions to make the model discretization agnostic. In our ex-
periments, FG-ConvNO achieves the highest accuracy for
both surface pressure and global thrust prediction on a pro-
cedurally generated propeller CFD dataset. Geometry-aware
encoding and architectural simplification improve stability,
while random vertex subsampling enhances robustness. Over-
all, adding geometric priors to grid-based convolutional oper-
ators reduces overfitting on complex propeller geometries and
improves generalization in low-data regimes.

1 Introduction

Computational Fluid Dynamics (CFD) is the corner-
stone of modern aerospace and engineering, enabling accu-
rate prediction of aerodynamic and hydrodynamic behavior.
However, traditional CFD solvers are computationally pro-
hibitive: resolving turbulent 3D flows often requires thou-
sands of GPU hours or more for a single geometry (Umetani
and Bickel 2018). This cost severely limits rapid design iter-
ations, parameter study, and uncertainty estimation for in-
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dustrial applications. Consequently, there has been an in-
creasing interest in machine-learning-based surrogates that
efficiently emulate CFD solvers while preserving physical
fidelity (Wang et al. 2024), using architectures ranging from
convolutional and graph neural networks to neural operators.

Among them, neural operators are a class of methods that
can learn mappings from boundary conditions and geometric
representations to continuous solution fields (Kovachki et al.
2023; Azizzadenesheli et al. 2024). Architectures such as the
Fourier Neural Operator (FNO) (Li et al. 2021), the Graph
Neural Operator (GNO) (Li et al. 2020), and the Geometry-
Informed Neural Operator (GINO) (Li et al. 2020) enable
resolution-independent inference, learning PDE solution op-
erators rather than fixed discretized mappings (Berner et al.
2025). Recent advances also include DISCO (Liu-Schiaffini
et al. 2024), which replaces traditional convolution kernels
with continuous kernels to help stabilize operator behavior
under resolution changes. These models demonstrate excep-
tional performance on various benchmarks, including physi-
cal systems involving elasticity, plasticity, and turbulent flow
systems such as airfoils and pipes. They also excel on aero-
dynamic datasets such as ShapeNet-Car (Chang et al. 2015),
which feature smooth, structured geometries.

Even though these methods can deal with unstructured point
clouds, they typically require access to extensive datasets
to learn from. Their generalization capabilities to unseen
shapes and geometries can deteriorate significantly when
training data is scarce, especially for intricate designs like
propellers. There, the base geometries are highly nonlinear
with complex curvature, skew and pitch changes leading to
very nonuniform pressure distributions. In these contexts,
models trained on a few hundred objects often suffer from
two competing failure modes: underfitting and overfitting.

Underfitting. In the limited data setting, diverse geometries
often cause data-driven models to collapse toward nearly
uniform surface predictions. Sharp variations at tips or hub
regions become overly smoothed, indicating that the model
fails to learn the nonlinear geometry—flow relationship and
instead defaults to global averages.



Overfitting. With limited data, high-capacity models fit the
training set quickly but fail to generalize. The test loss
plateaus early, showing that the network memorizes sample-
specific noise instead of learning stable flow patterns. This
appears as noisy surface predictions where local flow fea-
tures are memorized rather than generalized.

Proposed Approach. We propose a new architecture,
the Factorized Geometry Convolutional Operator (FG-
ConvNO), based on the Factorized Implicit Global Con-
volution (FIGConv) but reformulated for robustness and
geometry-awareness under limited CFD data.

 Simplified architecture: FG-ConvNO retains the hierar-
chical design from FIGConv but reduces its depth and in-
creases the number of blocks per level, avoiding overfit-
ting while maintaining a sufficiently large receptive field.
In addition, the grid-to-vertex decoding is reformulated
via trilinear interpolation, yielding smoother feature re-
construction and lower memory consumption.

* Geometry-aware encoding: We combine signed distance
functions (SDFs), surface normals, and boundary condi-
tion embeddings in the vertex—grid exchange layers. This
coupling enables FG-ConvNO to utilize geometric context
and flow boundary information more .

* Integration of DISCO blocks: In FG-ConvNO, we re-
place standard CNN blocks with DISCO blocks that per-
form discrete continuous convolution and maintain a con-
sistent receptive field across different grid resolutions, en-
abling discretization invariance.

* Global prediction objective: The coarsest latent grid is
pooled to regress global aerodynamic or hydrodynamic
quantities, e.g., thrust that brings integral physical super-
vision from a local pressure fields to global performance
metrics.

We also introduce a new (small) dataset of RANS simula-
tions for diverse propeller geometries.

Summary of Results. Our numerical experiments on the
newly introduced propeller CFD dataset demonstrates the
effectiveness of the proposed modifications:

* Superior surface accuracy and robustness: FG-
ConvNO achieves the lowest surface pressure relative er-
ror (24.98%), which is 3-5% better than GINO (29.57%),
Transolver++ (28.11%), and GraphSAGE (42.60%). Per-
formance improves steadily with training size, and ran-
dom vertex subsampling enhances generalization in low-
data settings by introducing geometric variability.

* Physically consistent global prediction: Explicit super-
vision of global quantities (e.g. total thrust and torque)
yields the best thrust estimates, with a 2—4x reduction in
global loss compared to GINO and Transolver++ models.

* Decoder and SDF ablation: Decoding using interpola-
tion leads to more robust results, while the incorporation
of signed distance functions (SDFs) improves geometric
consistency. The combined setup achieves the best com-
promise between accuracy and physical consistency.

2 Related Works

Graph and Grid-Based Neural Operators. Early CFD
surrogates in geometric domains naturally adopted graph
neural networks (GNNs) such as GraphSAGE (Hamilton,
Ying, and Leskovec 2018) and MeshGraphNet (Pfaff et al.
2021). However, they rely on hard-coded adjacency, and
denser sampling may cause message passing to degener-
ate into a single-point operator. The Graph Neural Operator
(GNO) (Li et al. 2020) mitigates this by using radius-based
aggregation to approximate local kernel integration in con-
tinuous space. For regular meshes, the Fourier Neural Oper-
ator (FNO) (Li et al. 2021) performs global mixing via FFTs
and achieves strong resolution-invariant performance.

The Geometry-Informed Neural Operator (GINO) (Li et al.
2020) combines the strengths of GNO and FNO by mapping
irregular meshes to a latent grid for spectral convolution and
projecting the results back. Building on this idea, the Fac-
torized Implicit Global Convolution (FIGConv) (Choy et al.
2025) factorizes the latent domain into anisotropic grids, re-
ducing memory from cubic to quadratic order and replacing
spectral layers with efficient 3D convolutions. This latent-
space based strategy with domain factorization is particu-
larly promising as the building block for scalable neural ar-
chitectures for complex CFD applications.

Transformer-based architectures. Transolver (Wu et al.
2024) introduces physics-domain tokenization and self-
attention over geometric tokens, while Transolver++ (Luo
et al. 2025) improves efficiency through memory optimiza-
tion and parallelism, supporting training on millions-scale
datasets. AB-UPT (Alkin et al. 2025) adopts an anchor-
based design, compressing spatial information through an-
chor points and using cross-attention between surface and
volume samples for efficient coupling.

Physics-Informed Neural Operators and Learning-
Augmented Integrators. Beyond purely data-driven sur-
rogates, multiple works integrate physics or numerical pri-
ors into operator learning. Physics-Informed Neural Oper-
ators (PINOs) (Li et al. 2023; Lin et al. 2025; Ganeshram
et al. 2025) extend the idea of Physics-Informed Neural Net-
works (PINNs) (Raissi, Perdikaris, and Karniadakis 2019) to
the operator learning paradigm by fusing coarse-resoluton
data with high-resolution PDE constraints, enabling super-
resolution inference and better parametric stability. In paral-
lel, the Neural Operator Element Method (NOEM) (Ouyang
et al. 2025) embeds neural operators inside the FEM pipeline
to reduce meshing cost in complex subdomains.
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Figure 1: Visualization of procedurally generated pro-
peller geometries. Each sample is colored by time-averaged
pressure obtained from simulations, illustrating flow varia-
tions across different blade designs.

3 Methods
3.1 Dataset: Propeller CFD

The dataset consists of procedurally generated 3D propellers
simulated using the open-source finite-volume solver Open-
FOAM®. Each case is parameterized by the blades’ pitch,
skew and chord length at selected radial positions, from
which a complete mesh is generated and evaluated under
physical conditions defined by the inflow velocity and an-
gular speed w. To model rotating propellers, the Multiple
Reference Frame (MRF) technique is employed, providing
a computationally efficient way to account for the rotat-
ing frame of reference. High-performance parallel comput-
ing is used to perform Reynolds-Averaged Navier—Stokes
(RANS) simulations for these propeller configurations, pro-
ducing steady-state flow quantities including pressure, wall
shear stress, and integrated forces (thrust and torque).

Each sample is represented as {v, ¢, u, g}, where v € R"*3
are the spatial coordinates of the point cloud, ¢ € R% en-
codes global boundary conditions, u € R™*% denotes lo-
cal quantities such as pressure and wall shear stress, and
g € R4 global quantities such as total thrust or torque. Sur-
face prediction serves as the primary objective for capturing
detailed flow behavior, while accurate global prediction is
equally critical for downstream applications such as perfor-
mance evaluation and geometry optimization. The dataset
includes approximately 1000 propeller cases, each contain-
ing ~70k surface points and million-scale volume points.

3.2 Factorized Implicit Global Convolutions

The Factorized Implicit Global Convolution (FIG-
Conv) (Choy et al. 2025) is a CNN-based neural network
designed to learn continuous 3D mappings. FIGConv cre-
ates a set of shared factorized latent grids {F},, }»_, for all

training cases. Each grid is defined on two high-resolution
axes and one low-resolution axis, effectively decomposing
a dense 3D volume into several anisotropic 2.5D slices.
For instance, F; may have dimensions (7, Winax, Dmax),
F5 as (Hmax, 7, Dmax)> and F3 as (Hpax, Winax, '), Where
r < Huyax, Wax, Dmax. This factorization reduces voxels
from cubic to roughly quadratic scale while preserving full
3D coverage. The vertex—grid encoder maps surface points
onto these grids, each capturing structure along two dense
axes, and their combined features reconstruct the full field.

Positional Encoding. FIGConv encodes all spatial coordi-
nates using sinusoidal positional embeddings. These encod-
ings provide translational and rotational consistency by rep-
resenting relative offsets as frequency-domain phase shifts
rather than absolute coordinates. Consequently, neighboring
vertices and grid voxels exhibit smoothly varying embed-
dings, enabling coherent interpolation between the irregular
vertex domain and the structured latent grids.

Vertex—Grid Encoder and Decoder. The encoder and de-
coder adopt a point convolution formulation for vertex—grid
feature exchange. For encoding, each voxel center py, ;5 in
grid F),, aggregates the features of its neighbors:

Jmijk = Z Um (8(v), G(Pm,ijn), d(v

VEN (Pm,ijk)

*pm,ijk))

s / o (0 Do) P(0) .
N(pm ij)

Here,
N(Pm.ign) = {v | 12520 = pmir) | <1}

defines an ellipsoidal neighborhood centered on p,,, ;;% and
determined by a covariance matrix Y,,. This is similar to
the radius-based aggregation used in GNO, but with an el-
lipsoidal (rather than spherical) region that aligns with the
directional structure of each factorized grid. The function
() implements the kernel k,,, through an MLP, and p(v)
represents the density function of the vertex. This continu-
ous formulation allows the encoder to integrate geometric
information from irregular vertex distributions while pre-
serving local spatial coherence. The decoder mirrors this
process in the reverse direction, reconstructing vertex em-
beddings from nearby voxel features,

foy=">" W (fmije $(Pm.ijn), (v

Pm,ijk GN(’U)

_pm,ijk))-

This symmetric design ensures consistent information flow
between the physical domain and the structured latent grid.

Latent Grid Convolution. All latent grids {F,,} are
jointly processed by a U-Net backbone composed of con-
volution, downsampling, and upsampling stages. Each 3D
convolution applies a local kernel W, to grid F},,, followed
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Figure 2: The Factorized Geometry Convolutional Neural Operator (FG-ConvNO) for propeller pressure prediction.
Each propeller geometry is first represented as a centroid-based surface point cloud, where each centroid corresponds to a lo-
cal patch on the propeller surface. FG-ConvNO then projects vertex features onto multiple latent grids, performs hierarchical
convolutional aggregation across the grids, and decodes the resulting latent fields back to the vertex domain for pressure predic-
tion. Compared with FIGConv, FG-ConvNO incorporates geometry-aware conditioning (using boundary conditions, SDFs, and
normals), interpolation-based feature decoding, an explicit global prediction head to infer quantities such as thrust and torque,
and hierarchical DISCO blocks for discretization convergence, which preserves consistent local support across different grid

resolutions.

by inter-grid feature exchange that allows communication
across different orientations:

FW = Conv3D(FL; W,,)
FOD = 7O 4 3 Tnterp(FLY,
m’#m

The fusion step enables the propagation of information
across all factorized grids.

coords(Fy,)).

3.3 Factorized Geometry Convolutional Neural
Operator

We extend FIGConv to the Factorized Geometry Convolu-
tional Neural Operator (FG-ConvNO), designed to improve
generalization under data scarcity and complex geometry. Its
baseline configuration follows FIGConv, where only surface
vertices v, are used as input, and training is supervised by a
{5 relative loss in surface pressure predictions.

Architectural Simplification. To alleviate overfitting and
improve stability, FG-ConvNO reformulates FIGConv by
simplifying both its hierarchical structure and the ver-
tex—grid interaction mechanism. Specifically, we retain the
multi-scale U-Net-like design from FIGConv but reduce its
depth (njevels) While increasing the number of convolution
blocks per level (1gown, 7up)- This heuristics is used to main-
tain the receptive field in the new configuration close to that
of its original one at a lower information loss due to redun-
dant downsampling. Second, we replace the grid-to-vertex

point convolution in the decoder with an interpolation-based
feature exchange implemented using trilinear sampling. For
each output vertex v, the features are interpolated from all
factorized grids through differentiable sampling:

M
fv) = Z Wy, - GridSample(F,,, proj(v)),

m=1
where GridSample(-) denotes trilinear interpolation,
proj(v) maps v to the normalized coordinates of grid F,,,
and w,, are learned per-grid weights. This interpolation
avoids repeated kernel evaluations, significantly reducing
memory consumption, and ensures spatial smoothness
of the reconstructed pressure field since the interpolated
features continuously vary with vertex position.

Geometry-Aware Encoding. While FIGConv only uses
positional encoding for grid feature information, FG-
ConvNO pursues geometric and physical awareness by ex-
ploiting multiple conditioning signals such as boundary
conditions, signed distance functions (SDFs) and surface
normals. We integrate them through a learned feature fu-
sion module Fuse(+), which can be weighted summation or
attention-base mixing. For each surface vertex v and grid
point pyy, ;;%, we first compute their respective embeddings
and then aggregate them via the fusion module:

¢(v) = Fuse(¢(v),7(c), 7(n)),
G (Pm,ijr) = Fuse(¢(pm,ijr) V(SDF (Dm.ijk))).-
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Figure 3: Comparison of aerodynamic and propulsive
forces. (a) Aircraft wings generate lift perpendicular to the
inflow. (b) Propellers produce thrust opposite to the inflow.
This illustrates how global quantities such as thrust and drag
integrate local pressure distributions.

This enhanced representation enables FG-ConvNO to cap-
ture geometry and boundary-aware correlations more ef-
fectively than FIGConv, improving feature consistency and
generalization across diverse propeller geometries.

DISCO Blocks A standard convolution assumes that the
kernel acts on grid indices rather than geometric coordinates.
For a regular grid D, = {z;} with spacing h, a discrete
convolution takes the form

s
Conv[v](z;) = ZKt v(zi + 2t),

t=1

where z; denotes a fixed stencil offset such as (£h,0) or
(th, £h). Both the neighbor set {z; + z; } and the kernel co-
efficients K are tied to this discretization. As the grid is re-
fined, these offsets shrink, the receptive field collapses, and
the convolution converges to a pointwise operator, so CNN
kernels depend inherently on the chosen resolution.

DISCO replaces this with a continuous formulation
(k*g)(v) = / " k(u —v) g(u) du,
B, (v

where neighbors come from a radius-based set B,.(v) inde-
pendent of discretization. The kernel is represented as

L
K(2) =Y 00 du(2),
=1

using continuous basis functions ¢, and trainable coeffi-
cients #,. The integral is approximated by quadrature,

> r(uy—vi)gluy) g5,

u; € B (vy)

(rx g)(vi) =

so the operator evaluates continuous offsets rather than dis-
crete grid steps. This yields a stable receptive field and
makes the kernel reusable across resolutions.

In FG-ConvNO, every CNN block used in FIGConv is re-
placed with a DISCO block while keeping the same intra-
grid communication. At each downsampling level, the la-
tent grid resolution is halved, while the DISCO convolu-
tion radius is doubled, which ensures that each layer rep-
resents the same continuous operator despite operating on
grids of different resolutions. Down blocks therefore consist
of a DISCO convolution followed by average pooling for
spatial halving, while up blocks apply bilinear upsampling
before the DISCO convolution to restore spatial resolution.
With this construction, the network maintains consistent lo-
cal support and discretization invariance.

3.4 Global Prediction Objective

The local surface pressure is a measure of the fine grained
flow behavior, but as far as engineering system design is con-
cerned, the integrated global response variables (total thrust
and total torque) matter the most, as they drive the perfor-
mance of a propulsion device. These global forces are phys-
ically analogous to lift and drag on aircraft wings or auto-
motive surfaces (Fig. 3), where distributed pressure fields
integrate into macroscopic aerodynamic effects.

In FG-ConvNO, we predict such global quantities (e.g.,
thrust, torque, efficiency) directly, extending FIGConv with
explicit global physical supervision. The lowest-resolution
latent grid within the U-Net hierarchy serves as a com-
pact representation of the entire flow field, from which the
network infers global variables g summarizing the overall
aerodynamic or hydrodynamic performance of the propeller.
Formally, these quantities correspond to surface integrals of
local flow variables,

g= /S (p(v) o + 7(0)) S,

where p(v) is the surface pressure, n, the normal vectors
and 7(v) the shear-stress component. In practice, FIGConv
does not perform this integration explicitly; instead, it learns
to approximate this mapping directly using the feature maps
of the coarsest latent grids {F,(nL)} :

Zglobal = POO]({F&L)})a g= MLP(Zglobal)~

The training loss combines global MSE Leiopa = || § — ¢ ||3
and local surface supervision, i.e.,

L= Lrel(ysa gs) + )‘g ” g—g ”g’

where both g and y, are normalized with respect to their
own statistical ranges during training to ensure scale con-
sistency. This joint formulation links local pressure predic-
tion with physically significant global quantities, improving
overall physical consistency. This global supervision mech-
anism is model-agnostic and can be readily applied to other
surrogate settings where dense fields must remain consistent
with integral physical quantities.



4 Experiments
4.1 Experimental Setup

All experiments are conducted on the proposed propeller
CFD dataset described in Section 3.1. Unless otherwise
stated, the training set contains 750 samples and the test set
150 samples. Each sample includes surface vertices with the
corresponding normals, local flow quantities, and global re-
sponses such as thrust and torque. Optimization uses Adam
with a learning rate of 1 x 1073, a StepLR scheduler (step
size 25, decay factor v = 0.2), and batch size 1 for
200 epochs. We compare our method against representative
neural operator architectures, including graph-based Graph-
SAGE (Hamilton, Ying, and Leskovec 2018), and two recent
neural operator frameworks, GINO (Li et al. 2020; Kossaifi
et al. 2024) and Transolver++ (Luo et al. 2025). All models
receive identical geometric and boundary condition inputs
and have comparable parameter counts for fair comparison.

Both FG-ConvNO variants achieve lower surface error than
the graph-based baseline (GraphSAGE) and the recent op-
erator models (GINO, Transolver++), while explicit global
supervision substantially improves the accuracy of global
quantity prediction. All models are implemented in PyTorch
and trained on NVIDIA A100 GPUs (32GB memory).

4.2 Experimental results

We compare FG-ConvNO with three representative base-
lines: GraphSAGE, GINO, and Transolver++. All models
are trained using only the relative surface loss L unless
otherwise noted, and their global quantities are computed
by integrating the predicted surface pressure.

o= /S p(v) n, dS.

For FG-ConvNO, we evaluate two variants: (1) surface-
only training using L, and (2) joint training with both L
and Lgiobar- All variants include geometry-aware inputs (nor-
mals, boundary conditions, and grid SDFs).

Table 1: Performance comparison with existing architec-
tures on the propeller dataset. Both FG-ConvNO variants
achieve lower surface error than the graph-based baseline
(GraphSAGE) and the recent operator models (GINO and
Transolver++), while explicit global supervision substan-
tially improves the accuracy of global quantity prediction.

Model Surface | Global |

GraphSAGE 42.47% 8.32 x 1073
Transolver++ 27.96% 2.41 x 1073
GINO 29.16% 3.15 x 1073
FG-ConvNO (surface only) 23.68% 1.76 x 1073
FG-ConvNO (surface + global) 24.07% 3.43 x 104
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Figure 4: Ablation on dataset size and random vertex
subsampling for training (tsub). Increasing training sam-
ples reduces both surface and global losses, confirming the
importance of data scale. Random subsampling consistently
improves global prediction and provides stronger gains on
surface accuracy when training data are limited.

Table 1 shows that FG-ConvNO consistently outperforms
other recent architectures (GraphSAGE, GINO and Tran-
solver++) in surface prediction, and achieves the lowest
overall global loss when trained with the global objective.
This shows that incorporating the global loss Lgonar effec-
tively couples local pressure estimation with integral physi-
cal consistency.

4.3 Ablation Studies

To gain better insight into the effect of each design compo-
nent, we perform comprehensive ablation studies to investi-
gate the roles played by data scale, random vertex subsam-
pling, and network architecture choice. This provides further
insights into the robustness and generalization properties of
the proposed approach in different data regimes.

Data Size and Random Sampling. We train FG-ConvNO
(surface + global) using different dataset sizes (50—300 sam-
ples), with and without random vertex subsampling. Fig. 4
shows that both local and global losses decrease monotoni-
cally as the size of training set increases, indicating that the
scale of dataset plays a crucial role in learning with compli-
cated meshing geometries. Such larger datasets benefit the



model by making overfitting harder as well as enabling it to
more effectively learn higher order geometric and physical
relationships that are not well sampled in small data regimes.
Random vertex sub-sampling contributes to better general-
ization by introducing the model to various geometries and
point distributions during training iterations. This encour-
ages the network to rely on physically meaningful flow pat-
terns rather than memorizing mesh-specific correlations. To-
gether, these results highlight that increasing geometric di-
versity is essential for robust and physically consistent sur-
rogate modeling in data-scarce CFD settings.

U-Net Depth and Block Count. We investigate how hier-
archical depth (njevers) and intra-stage convolutional capac-
ity (nup, Naown) affect performance. Figure 5 presents quan-
titative comparisons of surface loss, global loss, and GPU
memory usage across six configurations, as well as qualita-
tive visualizations of surface pressure prediction and error
maps. here, all models share the same training configura-
tion and input encoding. Across all tested configurations,
the (1,2) setting offers the best balance between accuracy
and efficiency. Shallower models lack contextual coverage,
while deeper hierarchies oversmooth local features and incur
unnecessary cost. A shallow hierarchy with richer intra-level
blocks therefore provides a more effective inductive bias un-
der limited data. These results indicate that increasing hier-
archical depth beyond a moderate level does not yield con-
sistent gains in accuracy but instead promotes underfitting
due to excessive downsampling.

This aligns with our broader finding that a shallow hierar-
chy with richer intra-level capacity provides a more effec-
tive inductive bias for learning complex propeller flows un-
der limited data. This configuration maintains a good bal-
ance between local precision and global consistency while
remaining efficient and stable during training.

Decoder and Grid SDF Variants. We further evaluate the
influence of decoder formulation and grid SDF conditioning.
Three configurations are compared: (1) point convolution
decoder with the SDF input, (2) interpolation-based decoder
without SDFs, and (3) the proposed model combined with
interpolation and SDF. All models are trained using Lgiobal-
The results are shown in Table 2.

Table 2: Ablation on decoder formulation and grid SDF
conditioning. Interpolation enhances smoothness and sta-
bility, while SDF features improve geometric consistency.

Configuration Surface | Global |
PointConv (w/ Grid SDF)  45.07% 7.67 x 1073
Interp (w/o Grid SDF) 26.85% 9.72 x 1074
Proposed 23.68%  3.43 x 104

The interpolation-based decoder substantially improves
training stability and surface smoothness compared to the
original Point Convolution. Point-based decoding is highly
sensitive to irregular neighborhood patterns, which vary
sharply across propeller blades and often introduce inconsis-
tent or noisy reconstructions. Our decoder, by contrast, pro-
vides a stable and geometry-agnostic mapping whose output
changes smoothly with vertex position, making it inherently
more robust for transferring latent grid features back to com-
plex surfaces.

Meanwhile, incorporating grid SDF features introduces
richer geometric context into the latent representation. Un-
like positional encodings that only describe relative coor-
dinates, SDF features offer a continuous measure of dis-
tance to the surface, helping differentiate near-surface re-
gions from free space and aligning pressure predictions with
blade geometry. This lightweight geometric prior improves
physical consistency.

Thus, combining interpolation-based decoding with SDF-
aware conditioning yields smoother, more coherent predic-
tions that remain geometrically and physically aligned with
the underlying flow structure.

Super-Resolution Inference. To evaluate whether
FG-ConvNO inherits the resolution-agnostic  be-
havior introduced by DISCO layers. We train the
model with the default factorized grid configuration
(3x100x200),(150x2x200),(150x100x4), and evaluate it at
inference time with a 1.5x finer resolution (applied only to
the uncompressed axes)

The resulting surface error differs by only 0.1% from the
native-resolution evaluation, indicating that DISCO blocks
maintains stable behavior across grid scales. This resolu-
tion robustness is expected to become even more useful for
larger datasets or geometries with stronger multiscale fea-
tures, where higher-resolution latent grids may capture finer
flow variations without sacrificing stability.

5 Conclusion

We proposed the Factorized Geometry Convolutional Neu-
ral Operator for propeller CFD prediction under limited
data. FG-ConvNO simplifies the Convolution hierarchy and
the decoding process, incorporates geometry aware features
such as SDFs and normals, introduces a global prediction
head for thrust and torque, and replaces resolution dependent
CNN kernels with discrete continuous convolutions. These
components jointly improve stability, discretization consis-
tency and generalization.

Across experiments, FG-ConvNO achieves the best accu-
racy on both surface pressure and global thrust prediction,
while exhibiting stable training behavior. Ablation stud-
ies further show that geometric conditioning, interpolation-
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representative models (1, 1), (1,2), and (3, 2).

based decoding, and balanced hierarchical depth collectively
contribute to robust learning in complex, high-curvature ge-
ometries. Together, these design choices establish a coherent
principle: coupling lightweight architectures with geometry-
informed representations yields robust and generalizable
CFD surrogates, even under limited data availability.

Future Directions. Currently, the dataset size remains rela-
tively limited, constraining the full exploration of complex
geometric—physical correlations. We intend to produce a sig-
nificantly larger and more diverse dataset of propeller ge-
ometries, boundary conditions, and operation regimes, so we
can better evaluate model performance and the extrapolation
capability at different levels of generality.

Exploring richer geometric encodings, such as curvature-
based descriptors or implicit surface representations, could
further improve the model’s understanding of complex 3D

structures. Additionally, integrating physics-informed regu-
larization or differentiable solver coupling offers a potential
path toward physically constrained and transferable neural
operators applicable to a broader class of CFD problems.

In this paper, we consider only steady-state propeller flows
and an extension of FIGConv to unsteady or turbulent ones
is an interesting future direction. Temporal coupling through
recurrent or transformer-based operators could enable dy-
namic flow prediction and wake evolution modeling, bridg-
ing the gap between steady and time-resolved behavior.

Finally, while the presented approach shows promising per-
formance for complex propeller geometries in the small-data
regime, future work will involve benchmarking with more
canonical aerodynamic and hydrodynamic shapes, such as
car bodies and airfoils, to further test generalization and ro-
bustness across geometric domains.
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A Additional Dataset and Simulation Details

Each propeller case was simulated using the open-source CFD solver OpenFOAM® under steady RANS conditions with the
k—w SST turbulence model. The inflow velocity ranged from 3—-10 m/s, and the angular velocity w was fixed to 4,000 rpm.
Meshes contained approximately 100k—150k cells, with refined boundary layers near the blade surface to ensure accurate wall-
shear stress resolution. Training, validation, and test splits followed a 4:1 ratio over 900 total cases.

For data preprocessing, all surface vertex coordinates were normalized independently along each spatial dimension using the
global bounding box of the entire dataset, mapping each axis range to (0, 1). This ensures consistent geometric scaling across
different propeller configurations and stabilizes the vertex—grid interpolation during training. Surface pressure values were
standardized by Gaussian normalization, where both the mean and standard deviation were calculated over the training set.

During inference, both model outputs and ground-truth pressures were de-normalized before computing evaluation losses to
ensure physical comparability. The same normalization and de-normalization procedures were applied to global quantities such
as thrust and torque to maintain consistency between local and integral supervision.

B Additional Network Architectures Details

We summarize the architectural configurations of all compared models, including the proposed FG-ConvNO, implemented uni-
formly in PyTorch for fair comparison. All models share the same input normalization, conditioning pipeline, and supervision
structure, with local (pressure) and global (thrust/torque) targets. Although the compared methods differ in how spatial depen-
dencies are modeled, the proposed FIGConv introduces a hybrid vertex—grid interaction that bridges continuous and discretized
representations.

B.1 Common Design Philosophy.

All networks take as input the normalized vertex coordinates (and optional condition scalars) and output the predicted surface
pressures. This consistent design ensures that the differences in accuracy originate purely from architectural capacity, rather
than differences in feature design or supervision.

B.2 Model Configurations.

Below we provide concise configuration-style summaries for the principal models evaluated in this study. Each follows a
common notation to facilitate direct comparison.

GraphSAGE serves as a lightweight graph-based baseline using mean aggregation. Its neighborhood sampling of 20, 10, 5]
provides a moderate receptive field suitable for smooth CFD fields.

class GraphSAGEModelConfig:

model_arch: str = "graphsage"
in_channels: int = 3

out_channels: int = 1

hidden_channels: List[int] = [128, 128, 64]
num_layers: int = 3

aggr_type: str = "mean"

normalize: bool = True

dropout: float = 0.1

activation: str = "relu"
num_neighbors: List[int] = [20, 10, 5]
use_self_loops: bool = True

residual: bool = True

global_pool: str = "mean"

global_head_dim: int = 64



GINO combines graph operators with Fourier-based global mixing layers. The low latent resolution (24%) ensures memory
efficiency while retaining expressiveness.

class GINOModelConfig:
in_channels: int = 3
out_channels: int = 1
in_gno_radius: int = 3
out_gno_radius: int = 3
fno_hidden_channels: int = 64
fno_n_layers: int = 4
fno_lifting_channel_ratio: int = 2
latent_resolution: (24, 24, 24)

Transolver++ adopts a transformer-style attention mechanism over discretized 3D slices. This architecture is powerful for
capturing long-range dependencies.

class TransolverPlusModelConfig:
space_dim: int = 3
n_layers: int = 5
n_hidden: int = 256
n_head: int = 8

mlp_ratio: int = 1
act: str = "gelu"
slice_num: int = 64

FG-ConvNO introduces a hybrid feature interaction mechanism between irregular vertex sets and structured latent grids. Un-
like conventional message-passing GNNs, FIGConv performs bidirectional vertex—grid convolutions, enabling efficient spatial
reasoning in both local and global contexts.

class FIGConvModelConfig:
out_channels: int =1
kernel_size: int =
hidden_channels: [
num_levels: int =
vertex_hidden_dim: int = 96
feature_dim: int = 3
feature_hidden_dim: int = 32
condition_dim: int =1
condition_hidden_dim: int = 32
grid_extra_dim: int = 1
grid_extra_hidden_dim: int = 64
pos_encode_dim: int = 32
num_down_blocks: int = 2
num_up_blocks: int = 2
radius_cutoff: float = 0.1
mlp_channels: [256, 256]
neighbor_search_radius: float = 1.71
to_point_sample_method: "interp"
geometry_fusion_type: "weighted_sum"

5
96, 128]
1



B.3 Latent Grid Decomposition.

The latent grid configuration for all FIGConv variants followed a factorized anisotropic design to align with the spatial
characteristics of propeller flows. Specifically, the resolution—format pairs were defined as (3, 100, 200), (150, 2, 200) and
(150, 100, 4), representing three orthogonally oriented grids, each emphasizing two high-resolution axes and one compressed
axis. This anisotropic decomposition reflects the physical density distribution of the flow, which is denser near the blades and
more uniform along the rotation axis, enabling the model to allocate more representational capacity to regions with higher
flow complexity. Empirically, this setup achieves an optimal trade-off between spatial expressiveness and computational cost,
effectively preserving local vortical structures while maintaining global coherence.

B.4 Vertex—Grid Encoder and Neighborhood Search.

Feature exchange between the vertex domain and the latent grids is implemented through a continuous kernel-based formula-
tion. For each grid center py, ;1 in grid F},, the encoded feature is

fm,ijk' = Z '¢m (¢(U)7 ¢(p7rz,ijk)7 ¢(U - pm,ijk))

VEN (Pm,ijk)

where N (pm.ijk) = {v | [[v = Pm,ijkll2 < Tsearcn} defines a spatial neighborhood of radius 7search. Setting reearcn = 1.71
allows each grid cell to access all vertices within the surrounding 2 x 2 x 2 voxel cube, which corresponds to roughly eight
adjacent cells, achieving smooth yet localized aggregation. This radius offers an empirically and physically grounded balance
between spatial coverage and locality: smaller radii produce fragmented representations, while larger values over-smooth
high-frequency flow features.

C Training and Optimization Settings

All models were trained under identical optimization schedules for consistent comparison. The optimizer was Adam with an
initial learning rate of 10~2, decayed by a factor of 0.2 every 25 epochs using the St epLR scheduler. Weight decay was set to
10~5. Each model trained for 200 epochs with batch size 1 on a single NVIDIA A100 (32GB) GPU. The global supervision
weight A\, for integral losses was fixed to 1.0. Training typically required 10-12 hours per model depending on architecture
complexity.
During training, both local and global objectives were optimized jointly:

L = Lioca + )\g Eglobal»

where Lioca denotes vertex-wise mean-squared error on normalized pressures, and Lgiopa measures error on de-normalized
integral quantities (e.g., thrust and torque). This hybrid objective stabilizes training and ensures consistency between local flow
reconstruction and global aerodynamic performance.

Data augmentation was applied by random vertex subsampling (ratio 0.6—0.8) to improve robustness under sparse or noisy ge-
ometric sampling. All experiments were repeated with three random seeds to report mean performance and standard deviation.



