Using Multi-Modal Diffusion Models to Reconstruct Dark Matter Fields
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Abstract

The cosmic web, governed by dark matter, shapes the uni-
verse’s large-scale structure. Reconstructing these dark mat-
ter maps is challenging because galaxies are inherently bi-
ased tracers of the underlying distribution. Diffusion models
have recently shown strong promise in mitigating such biases,
but existing approaches are limited by their reliance on a sin-
gle tracer—typically stellar mass—even though real observa-
tional data are rich and inherently multimodal. We introduce a
multimodal diffusion framework conditioned on stellar mass,
fast radio burst (FRB) dispersion measures, and gravitational
lensing, three complementary tracers that together offer a
more complete view of matter distribution. Applied to simu-
lations from the CAMELS suite, this framework yields high-
fidelity reconstructions of dark matter fields. Crucially, our
approach goes beyond reconstruction: by systematically vary-
ing input signal-to-noise ratios (SNR), it gives insight into the
mapping between instrument noise levels and expected re-
construction gains. This enables principled, modality-aware
survey design and instrument planning, identifying where
improvements in sensitivity have the highest scientific pay-
off. Code to reproduce these experiments can be found at
https://github.com/epatel16/Dark-Matter-Diffusion. git.

Introduction

The cosmic web is predominantly shaped by dark matter, a
quantity that cannot be observed directly, but whose gravita-
tional influence governs galaxy structure formation. Galax-
ies offer only biased tracers of this underlying web, as their
distributions are influenced by uncertain astrophysical pro-
cesses. Accurately reconstructing dark matter fields is there-
fore crucial to disentangle these effects and improve cosmo-
logical inference. Recent work has demonstrated that diffu-
sion generative models can reconstruct unbiased dark matter
fields from stellar mass maps within the CAMELS simula-
tion suite (Ono et al. 2024). We extend this framework by
conditioning on additional complementary modalities—fast
radio bursts (FRBs) and gravitational lensing—to exploit
their distinct tracers of baryonic and total mass distributions
(Ravi 2019; Bartelmann and Schneider 2001).

Alternative deep generative approaches for cosmological
fields include variational autoencoders, normalizing flows,
and generative adversarial networks (Kingma and Welling
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2014; Rezende and Mohamed 2015; Goodfellow et al.
2014). In our setting, however, two properties of diffusion
models are particularly important. First, a DDPM is explic-
itly trained to denoise fields at a continuum of noise levels
(Ho, Jain, and Abbeel 2020; Kingma et al. 2021; Song et al.
2020). We can align these diffusion time steps with realistic
instrument noise levels for each tracer, which allows a sin-
gle trained model to forecast reconstruction quality across
a grid of stellar, FRB, and lensing SNRs without retrain-
ing. Second, conditional diffusion treats each tracer as an
input channel in a shared spatial field, so the network can
learn cross—modal interactions while still allowing us, at test
time, to “turn off” a tracer or change its noise level and ob-
serve how the inferred dark—matter map responds. These as-
pects make diffusion models especially well matched to our
goal of multi—tracer reconstruction and SNR—aware survey
design.

Recent work, such as Park et al. (2024), has demonstrated
the power of diffusion models for volumetric dark matter
reconstruction using galaxy survey data. Our study comple-
ments these 3D approaches: rather than focusing on volu-
metric inference, we develop a flexible 2D framework that
integrates stellar, FRB, and lensing inputs in a controlled set-
ting. This design enables systematic analysis of the contribu-
tion and robustness of different tracers under varying noise
levels, providing a foundation that can be extended or incor-
porated into future large-scale 3D reconstruction pipelines.

Our contributions include:

1. A multimodal diffusion model that jointly leverages three
complementary modalities to reconstruct dark matter
maps.

2. A framework using this model to forecast reconstruction

quality given future measurement signal-to-noise ratios
(SNRs).

Given fixed resources we address the question of which
modality benefits most from marginal SNR improvements,
and speculate as when this investment may no longer benefit
reconstruction. Our framework provides empirical results to
substantiate this for stellar, FRB, and lensing inputs.

Methods

Conditional Diffusion Model. We implement a multi-
modal denoising diffusion probabilistic model (DDPM)
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Figure 1: We propose a multimodal variational diffusion
model for reconstructing dark matter maps from measure-
ment data, conditioning on stellar, FRB, and lensing inputs.

(

P, (X, 1%, €) P, (X, I X, €)

Reverse Sampling
S

Denoising Model: ResUnet

with residual and attention layers, expanding upon the uni-
modal model discussed in Ono et al. (2024). At each
timestep, stellar mass, FRB, and lensing maps provide spa-
tial guidance for denoising. We train with a cosine annealing
learning rate schedule (Ho, Jain, and Abbeel 2020). Mod-
els were trained for 30 epochs with 1000 diffusion steps, a
learning rate of 1 x 10~%, batch size 12, and 256 x 256 reso-
lution images. The baseline multimodal model is configured
with stellar noise o = 0.1, lensing noise 0 = 10, and fast
radio burst noise 0 = 10. For each single-modality model,
we adopt the corresponding noise level from the multimodal
setting.

Datasets and Preprocessing. We use 2D maps from the
CAMELS Astrid simulation at z = 0 redshift (Villaescusa-
Navarro et al. 2021). Stellar mass, FRBs, and gravitational
lensing trace the cosmic web through stellar populations,
ionized gas dispersion (Ravi 2019), and light deflection
(Bartelmann and Schneider 2001; Schneider, Ehlers, and
Falco 2006). Dark matter, stellar, and gas maps are log-
transformed and globally normalized. Stellar mass is esti-
mated via Stellar Population Synthesis and provided as 2D
maps in the CAMELS simulations, and is tightly correlated
with dark matter, serving as a direct tracer of the cosmic
web. Fast Radio Bursts (FRBs) probe the ionized gas dis-
tribution through their dispersion measures, offering an in-
direct measurement of dark matter as gas follows its gravi-
tational potential. Gravitational lensing directly traces dark
matter by measuring how mass bends light, providing a pow-
erful complement to galaxy-based tracers. FRBs are simu-
lated from gas maps by randomly masking pixels, where the
retained fraction defines the effective SNR. Lensing shear
fields g; and g- are generated from mass maps by first com-
puting convergence r, transforming to Fourier space, apply-
ing lensing kernels, and inverse FFT.

Evaluation Metrics. We assess reconstruction fidelity us-
ing four complementary metrics. The power spectrum
P(k) measures the variance of matter density fluctuations
as a function of scale (wavenumber k), quantifying clus-
tering strength across spatial scales. For a density fluctua-

tion field §(z) = @ the Fourier transform (k) defines

the power spectrum as P(k) = (|6(k)|?), where (-) denotes
averaging over modes with the same wavenumber k. Com-
paring P(k) between reconstructions and ground truth tests
whether the correct distribution of structure across scales
is recovered. The cross-correlation coefficient R(k) mea-
sures phase alignment between reconstructed and true fields,
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1 indicating strong agreement across scales. We addition-
ally compute the peak signal-to-noise ratio (PSNR), which
evaluates pixel-level fidelity relative to noise, and the mean
squared error (MSE), which measures the average squared
difference between generated and true maps. For robustness,
we generate 10 samples per guide and report the mean and
variance across SNR levels.

, with values near

Results

Multimodal Model. We compare our multimodal model
to the baseline unimodal models corresponding to the stel-
lar, fast radio burst, and gravitational lensing modalities and
quantify the reconstruction quality through perceptual met-
rics, power spectra, and cross-correlation evaluation (fig-
ure 2 and Supplementary Materials). Stellar data with low
noise is the most effective single modality for reconstruct-
ing dark matter fields. Lensing data provides weak signal,
while FRBs offer moderate signal. Our multimodal model
performs best, achieving more consistent correlations.

Correlation Coefficient
o o o o
& > 2 >

o
IS

T ==

0.3
DM vs. baseline (all signals) DM vs. FRB (1%)

DM Vs. Olensing = 10 DM vs. Ostellar = 0.1

Figure 2: Dark matter cross correlation coefficients (ex-
ponentiated) from our multimodal model vs. three single
modality models, computed over 10 random test samples.

Forecasting Future SNR (Stress Test). We stress test the
model by evaluating it under tracer SNR conditions that dif-
fer from the baseline settings used during training. Con-
cretely, we systematically vary the noise standard deviation
o for each modality (stellar, FRB, lensing) while keeping the
network weights fixed, and quantify how reconstruction fi-
delity changes. Fidelity is measured by power spectrum sim-
ilarity and cross-correlation with true dark-matter fields, as
well as PSNR and MSE (Table 1 and Figure 3). As o de-
creases, the SNR increases, so this procedure probes both
degraded and improved measurement regimes along the dif-
fusion noise axis without retraining the model. This out-
of-distribution SNR sweep reveals where the learned con-
ditional mapping remains robust and where reconstruction
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Figure 3: Forecasting future SNR values. Black line is power
spectra of the ground truth dark matter maps.

quality begins to break down, providing the basis for our
survey-design forecasts.

Stellar o Lensing o FRB ¢ PSNR MSE

0.1 10 1 30.798 0.187
0.01 10 1 30.653 0.192
0 10 1 28.385 0.320
0.1 10 1 30.798 0.187
0.1 5 1 29.775 0.240
0.1 1 28.232 0.322
0.1 10 10 29.637 0.248
0.1 10 5 29.850 0.231
0.1 10 1 30.798 0.187

Table 1: Model performance when varying noise standard
deviation (o) for stellar, lensing, and FRB maps. Rows are
grouped by the varied modality.

Figures 4 and 5 illustrate additional results from our ex-
periments varying signal-to-noise ratios (SNR) across stel-

lar, FRB, and lensing modalities.

The cross-correlation plots (Fig. 4) show that higher SNR
consistently improves alignment between reconstructed and
ground-truth dark matter maps. For stellar and FRB inputs,
correlation increases sharply as SNR improves, highlighting
their sensitivity to noise. Lensing inputs show a more grad-
ual trend, suggesting greater robustness to degraded SNR.

Correlation Ct (

a ——
- 0910
0.905
o
c —_—
o
S 0900
& L
o
O 0895
o
c
O os%0
F=
o
g 0885 °
o
[v)
0880
0.875 I
DM vs. stellar_0.1 DM vs. stellar_0.01 DM vs. stellar_0
b. .
0.925
o
c
(]
G 092
b=
o
O 0915
o
c
.2 o910
F=
=
L os0s
£
o
O

oo

0900

0895

DM vs. frb_1
. o5
=
T
1

0910
0905
0900

DM vs. lens_10

DM vs. frb_5 DM vs. frb_10

(2

Correlation Coefficient

DM vs. lens_5 DM vs. lens_1

Figure 4: Dark Matter map cross correlation plots for experi-
ments with varied stellar, frb, and lensing SNRs respectively.
Note that these values are exponentiated. Metrics are aver-
aged over 10 generated samples.

The power spectrum correlation plots (Fig. 5) reinforce
this trend. At high SNR, correlations remain stable across
spatial scales, while at low SNR the variance increases sub-
stantially, particularly for stellar inputs. FRB correlations re-
main noisier overall, while lensing inputs achieve relatively
stable performance even at moderate SNR.

Takeaways: We find that (i) Stellar inputs are the most
informative but also the most sensitive to noise. (ii) FRB in-
puts benefit from higher SNR but remain less stable. (iii)
Lensing inputs are comparatively robust, though they carry
less discriminative power at fine scales. These results em-
phasize the complementary roles of modalities: stellar data
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Figure 5: Power spectra correlation plots for experiments
with varied stellar, frb, and lensing SNRs respectively. Met-
rics are averaged over 10 generated samples. ]

excels when clean, lensing contributes stability under noisy
conditions, and FRBs add value primarily when SNR is suf-
ficiently high.

Discussion & Conclusion

We introduced a multimodal diffusion framework that con-
ditions on three complementary tracers—stellar mass, FRB
dispersion measures, and weak-lensing shear—to recon-
struct dark-matter fields in the CAMELS Astrid suite.
Across P(k), scale-wise R(k), and PSNR/MSE, the mul-
timodal model outperforms single-modality baselines, indi-
cating that each tracer contributes non-redundant informa-
tion. Compared with alternative deep generative architec-
tures such as VAEs, flows, or GANs (Kingma and Welling
2014; Rezende and Mohamed 2015; Goodfellow et al.
2014), our conditional diffusion model is explicitly orga-
nized around a noise axis and compositional conditioning
on multiple tracers, which we exploit to convert tracer SNR
into quantitative, uncertainty-aware forecasts for survey and
instrument design. Beyond reconstruction accuracy, a cen-
tral contribution is a design-facing analysis that converts per-

modality SNR into expected reconstruction quality, provid-
ing quantitative guidance for future survey and instrument
choices.

Experiment-design takeaways. By sweeping input noise
o for each modality, we obtain SNR—performance curves
that (i) identify high-leverage regimes where marginal SNR
gains translate to large improvements in P(k) and R(k),
and (ii) expose saturation regimes where further sensitiv-
ity yields diminishing returns. Empirically, we find steep
initial gains for stellar maps that flatten at moderate SNR,
threshold-like improvements for FRB once past a noise
floor, and monotonic, stable gains for lensing that are broad
across scales. These modality-specific slopes and break-
points enable principled budget allocation—e.g., prioritiz-
ing FRB/lensing upgrades once stellar sensitivity enters a
plateau.

Extensibility of uncertainty-aware forecasting. Because
the diffusion model yields sample ensembles, our forecasts
report means and variances of metrics over repeated gener-
ations at fixed SNR. This provides uncertainty bands on the
SNR-performance curves, which are important when com-
paring design options with similar expected means but dif-
ferent risk profiles across spatial scales. The framework is
modular: additional tracers (e.g., HI intensity maps, SZ/ther-
mal dust surrogates) can be incorporated with minimal ar-
chitectural changes, and instrument-specific noise models
can directly re-parameterize our SNR axis. In practice, one
can (1) plug in a candidate survey’s forward noise model,
(2) read off expected P(k)/R(k) improvements at target
SNRs, and (3) choose operating points that maximize sci-
entific return per marginal sensitivity dollar. Our study is
complementary to volumetric inference approaches that op-
erate directly in 3D with galaxy survey data (e.g., Park et al.
(2024)). The proposed 2D multimodal formulation empha-
sizes modality fusion, controllability, and design-oriented
SNR exploration; it can serve upstream of 3D reconstruc-
tions as a prior/initializer or as a tool to set tracer-specific
sensitivity targets before full volumetric modeling.

Limitations and outlook. Results are shown at z=0 on
simulated maps and do not yet include domain gaps (se-
lection functions, PSFs, masks) inherent to observations.
Future work will (i) incorporate realistic survey systemat-
ics and mask-aware conditioning, (ii) add tracers with dis-
tinct systematics to refine trade-off analyses, and (iii) cou-
ple the forecasting module to cosmological parameter in-
ference, yielding an end-to-end, observation-ready pipeline
where SNR design targets are optimized for downstream pa-
rameter constraints, not just field-level fidelity.

Conclusion. In summary, the proposed multimodal diffu-
sion model improves dark-matter field reconstruction and,
crucially, turns instrument SNR into decision-relevant fore-
casts. These forecasts reveal where additional sensitivity
pays off, where it saturates, and how tracer combinations
can be balanced to meet science goals—providing a prac-
tical bridge between generative reconstruction and experi-
mental design.
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