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Abstract

This work presents an ontology-integrated large language
model (LLM) framework for chemical engineering that unites
structured domain knowledge with generative reasoning. The
proposed pipeline aligns model training and inference with
the COPE ontology through a sequence of data acquisition,
semantic preprocessing, information extraction, and ontology
mapping steps, producing templated question-answer pairs
that guide fine-tuning. A control-focused decoding stage and
citation gate enforce syntactic and factual grounding by con-
straining outputs to ontology-linked terms, while evaluation
metrics quantify both linguistic quality and ontological accu-
racy. Feedback and future extensions, including semantic re-
trieval and iterative validation, further enhance the system’s
interpretability and reliability. This integration of symbolic
structure and neural generation provides a transparent, au-
ditable approach for applying LLMs to process control, safety
analysis, and other critical engineering contexts.

Introduction
The increasing availability of unstructured scientific and
technical documentation in chemical engineering has cre-
ated an urgent need for intelligent systems that can ex-
tract, interpret, and operationalize domain-specific knowl-
edge. Traditional information retrieval systems in this field
have largely relied on keyword matching and rule-based ex-
traction, which are limited in handling the ambiguity and
informality of natural-language queries. Chemical engineer-
ing practitioners and students often express their questions
in colloquial or incomplete forms—“How does the firm han-
dle registration?” rather than “What registration require-
ments are defined for device establishments under 21 CFR
807?”—creating a persistent gap between human phrasing
and the structured terminology of regulatory and process-
control ontologies. Bridging this gap is essential for advanc-
ing both decision-support systems in process industries and
educational tools in regulatory and safety compliance.

Recent advances in large language models (LLMs) such
as GPT-3.5 and T5 have demonstrated unprecedented capac-
ity to generalize across scientific text and generate context-
aware explanations. However, while LLMs excel at lin-
guistic adaptability, they remain vulnerable to hallucination,
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poor factual grounding, and inconsistent use of domain vo-
cabulary [1, 2]. In chemical engineering, these shortcom-
ings are particularly consequential, as misinterpretation of
control protocols or regulatory directives can lead to costly
operational or safety errors. Integrating LLMs with struc-
tured domain knowledge representations—ontologies and
knowledge graphs—has emerged as a promising strategy
to enforce semantic precision and interpretability. Ontolo-
gies such as the Common Process Equipment (COPE) on-
tology [3] and the Process Systems Ontology (PSO) [4] for-
malize entities, relationships, and constraints fundamental to
process systems engineering. When combined with natural
language understanding, these frameworks can provide both
linguistic flexibility and formal consistency, enabling inter-
pretable, query-driven reasoning.

Prior work in ontology-grounded natural language pro-
cessing has explored hybrid retrieval and reasoning meth-
ods that couple neural embeddings with symbolic knowl-
edge graphs. Early examples include BioBERT-based entity
linking in biomedical question answering [5] and ontology-
augmented sequence-to-sequence generation for clinical text
interpretation [6]. More recently, retrieval-augmented gen-
eration (RAG) frameworks have been proposed to ground
LLM outputs in curated sources, improving factual reliabil-
ity in open-domain QA [7]. However, relatively few stud-
ies have applied these ideas to chemical and process en-
gineering, where terminologies, regulatory hierarchies, and
instrumentation semantics are highly specialized. Existing
approaches such as semantic process modeling for control
engineering [8] and ontology-based representation of indus-
trial automation knowledge [9] focus on structured modeling
rather than linguistic reasoning, leaving an unfilled niche for
ontology-informed natural-language generation within this
domain.

This study presents an integrated framework that unites
LLM-based question answering with ontology-driven rea-
soning for chemical engineering control systems. The sys-
tem builds upon the U.S. Food and Drug Administration’s
Investigations Operations Manual (IOM) as a corpus for
fine-tuning a sequence-to-sequence model (T5/BART). We
incorporate the COPE ontology to align extracted enti-
ties and relations with standardized concepts in process in-
strumentation and regulatory documentation. The pipeline
includes preprocessing of raw text, extraction of sub-



ject–verb–object triples using spaCy, mapping to ontology
classes via Owlready2, and automatic generation of ques-
tion–answer pairs for model training. An evaluation frame-
work measures linguistic and semantic accuracy (Token-F1,
ROUGE-L), ontology alignment (precision, recall, F1), and
factual grounding (hallucination rate and citation coverage).
Through iterative refinement—including ontology templat-
ing and embedding-based retrieval—the model learns to
generate domain-grounded answers with explicit ontology
citations, substantially improving interpretability and reduc-
ing hallucinations relative to baseline LLM behavior.

By integrating structured ontologies with generative AI,
this work contributes to the emerging intersection of knowl-
edge representation, language modeling, and process sys-
tems engineering. It advances current approaches to regula-
tory QA and control documentation analysis by demonstrat-
ing how LLMs can serve as interpretable, ontology-aware
assistants that enhance both operational safety and engineer-
ing education.

Methodology
This study develops a multi-stage framework for integrating
ontological knowledge with large language models to en-
hance domain-specific question answering in chemical en-
gineering control systems. The approach unites natural lan-
guage generation with structured reasoning over a curated
chemical process ontology, aiming to improve factual accu-
racy, interpretability, and traceability of model outputs. The
methodology encompasses two principal stages—a baseline
control configuration and an ontology-templated fine-tuning
method—each designed to enhance grounding and contex-
tual understanding progressively.

Data Source and Preprocessing

The training corpus is derived from the U.S. Food and
Drug Administration’s Investigations Operations Manual
(IOM) [10], a comprehensive procedural reference out-
lining inspection protocols, regulatory classifications, and
process-control documentation. The manual provides rich
domain terminology and hierarchical relationships between
inspection, reporting, and equipment processes, making it
suitable for developing ontology-linked regulatory ques-
tion–answering systems.

The corpus was first cleaned to remove non-semantic ar-
tifacts such as headers, footers, and pagination, then seg-
mented into coherent regulatory paragraphs. Linguistic pars-
ing was used to identify subject–verb–object (SVO) struc-
tures within each segment, ensuring that key procedural
relations (e.g., “Inspector issues Form 482”) were cap-
tured explicitly. Entities appearing in subject or object posi-
tions were mapped to their corresponding classes within the
COPE (Common Process Equipment) ontology using lexical
similarity and synonym expansion. Each ontology-aligned
segment was then converted into structured question–answer
pairs, with the ontology label or its definition serving as
contextual grounding. This process yielded a high-quality
dataset formatted for sequence-to-sequence training.

Baseline: Decoding and Metric Installation
The baseline configuration focused on refining decoding
behavior and evaluation coverage rather than altering the
dataset. A transformer-based sequence-to-sequence model
(T5-base) [11] was used to establish a control configura-
tion representative of contemporary text-to-text architec-
tures. Decoding parameters were tuned to enhance fluency
and coherence, employing beam search [12], repetition con-
trol, and a moderate length penalty to prevent verbosity.
These configurations provide a strong linguistic baseline
for domain adaptation tasks involving regulatory or instruc-
tional text.

Evaluation integrated both linguistic and semantic met-
rics commonly adopted in text generation and question an-
swering. Exact Match and Token-level F1 were applied
following standard QA conventions [13], while ROUGE-
L [14] captured lexical overlap and sentence-level fluency.
Ontology-specific metrics were introduced to quantify fac-
tual and structural grounding, inspired by factuality evalua-
tion frameworks for knowledge-intensive NLP [1, 2].

Ontology-level precision, recall, and F1 were computed
between generated ontology entities and the gold-standard
COPE ontology mappings. Two auxiliary measures were de-
fined: hallucination rate, quantifying the proportion of out-
puts containing non-existent or ontology-inconsistent terms,
and ontology citation coverage, representing the percentage
of generated answers referencing valid ontology identifiers.
While this stage improved textual fluency and surface simi-
larity, the model still relied on implicit lexical associations,
resulting in frequent factual drift and limited traceability to
ontology concepts.

Retrieval-Augmented Generation (RAG) Baseline
To strengthen the comparison beyond plain fine-tuning, we
additionally include a standard retrieval-augmented gener-
ation (RAG) baseline following [7]. We use a DPR en-
coder to embed all IOM text segments and retrieve the top-
k most relevant passages (k = 5) for each input question.
These retrieved segments are concatenated with the question
and passed to a T5-base decoder. This provides a retrieval-
supported but ontology-agnostic baseline. While RAG im-
proves lexical recall and ROUGE-L due to evidence access,
it does not enforce canonical COPE terminology, and re-
trieved passages may omit required ontology entities. As a
result, RAG exhibits higher fluency than plain T5 but still
generates inconsistent or nonstandard equipment classes, re-
inforcing the need for structured ontology constraints.

Ontology-Templated Fine-Tuning Method
The proposed method expands the baseline by embedding
explicit ontology context directly within both inputs and out-
puts. Each input question includes the corresponding ontol-
ogy label as an auxiliary feature, and the target answer con-
cludes with a structured ontology citation (e.g., “[COPE:
Equipment Sterilizer]”). This explicit conditioning enables
the model to learn an interpretable mapping between linguis-
tic patterns and ontology entities rather than relying solely
on surface co-occurrence.



Figure 1: Ontology-Integrated LLM Pipeline for Chemical Engineering.

The model was fine-tuned for several epochs using the
same decoding setup as the baseline, with moderate learn-
ing rates and small batch sizes to preserve factual consis-
tency. The integration of ontology templates led to sub-
stantial gains in grounding and citation reliability. The
model achieved higher ontology precision and recall, signif-
icantly reduced hallucination rates, and improved coverage
of ontology-linked entities. These improvements demon-
strate that lightweight structural supervision—embedding
ontology terms into text sequences—effectively guides the
model toward producing semantically valid, transparent, and
domain-faithful responses.

Evaluation Framework
All experiments were evaluated through a unified quanti-
tative framework comprising eight metrics: Exact Match,
Token-level F1, ROUGE-L, Ontology Precision, Ontology
Recall, Ontology F1, Hallucination Rate, and Ontology Ci-
tation Coverage. The ontology-level metrics were derived by

comparing the set of generated ontology references to the
gold-standard COPE ontology entries present in the training
data.

Improvements across stages were consistent and inter-
pretable: the baseline achieved strong linguistic fluency but
weak grounding, while the ontology-templated fine-tuning
method exhibited balanced semantic precision and recall
with a marked reduction in hallucination rate. This evalu-
ation framework thus provides a holistic measure of both
linguistic performance and ontological interpretability, cen-
tral to deploying LLMs safely and effectively in chemical
engineering control environments.

Experimental Setup
The experiment fine-tunes a Transformer-based en-
coder–decoder model for ontology-grounded question
answering over regulatory text. The input consists of a
natural-language query q, a contextual text segment s, and
an optional ontology context H derived from the COPE



ontology O = {o1, . . . , o|O|}. The goal is to generate an
answer sequence y = (y1, . . . , yT ) that is both semantically
accurate and aligned with ontology entities.

Each text segment s is parsed into subject–verb–object
triples ⟨σ, ν, ω⟩, where σ and ω denote head nouns and ν the
main predicate. The extraction process can be represented as

⟨σ, ν, ω⟩ = arg max
⟨si,vj ,ok⟩

P (si, vj , ok | s),

subject to syntactic dependencies determined by the de-
pendency parser. These triples are converted into ques-
tion–answer pairs (q, ỹ) through rule-based templates
g(σ, ν, ω).

For ontology linking, each entity mention m in {σ, ω}
is matched against ontology entries via a hybrid lexi-
cal–semantic similarity:

S(o |m) = λ1 Jacc
(
B(m), B(o)

)
,

+ λ2 cos
(
e(m), e(o)

)
,

+ λ3 F1char-n(m, o).

where B(·) is the set of word bigrams, e(·) are static em-
beddings, and λi≥0,

∑
i λi = 1. Entities with S(o |m) ≥ τ

are included in H , the ontology hint set provided as auxiliary
context during fine-tuning.

The conditional probability of generating y is modeled as

pθ(y | q, s,H) =

T∏
t=1

pθ(yt | y<t, q, s,H),

and the optimization objective applies cross-entropy with la-
bel smoothing ε:

L(θ) = −
T∑

t=1

∑
v∈V

p̃t(v) log pθ(v | y<t, q, s,H),

p̃t(v) =

{
1− ε, v = yt,

ε/(|V| − 1), v ̸= yt.

Decoding is performed via constrained beam search:

ŷ = argmax
y∈Y

1

|y|α

|y|∑
t=1

log pθ(yt | y<t, q, s,H),

with α as a length penalty and no-repeat n-gram blocking to
improve factual coherence.

The experimental setup includes two configurations: (1)
a baseline model trained on plain text (H = ∅), and (2)
an ontology-templated model trained with explicit ontology
hints H . Both use identical hyperparameters, ensuring that
observed performance differences reflect the contribution of
ontology conditioning rather than architectural variation.

Data Analysis
The evaluation process assesses both linguistic accuracy
and ontological fidelity. Model predictions ŷ are compared
against reference answers ỹ along two complementary di-
mensions: (1) textual overlap, measuring semantic and syn-
tactic similarity, and (2) ontology alignment, quantifying
factual grounding, citation coverage, and hallucination sup-
pression.

1. Textual Evaluation Metrics
Classical question answering metrics are applied to assess
the linguistic correctness of generated responses. Given the
predicted token set Tŷ and reference token set Tỹ , the Pre-
cision (P ), Recall (R), and Token-level F1 score are defined
as:

P =
|Tŷ ∩ Tỹ|

|Tŷ|
, R =

|Tŷ ∩ Tỹ|
|Tỹ|

, F1 =
2PR

P +R
.

The Exact Match (EM) rate computes the fraction of pre-
dictions that exactly match the reference after normalization
(case folding, punctuation removal, and whitespace trim-
ming):

EM =
1

N

N∑
i=1

⊮[ŷi = ỹi].

Textual coherence and fluency are further evaluated with the
ROUGE-L F1 metric [14], defined by the longest common
subsequence (LCS) between prediction and reference:

ROUGE-L =
(1 + β2) · LCS(ŷ, ỹ)
len(ỹ) + β2 · len(ŷ)

.

These textual metrics capture general linguistic quality but
are insufficient for verifying domain accuracy or ontological
grounding.

2. Ontology-Based Evaluation
To quantify factual correctness and interpretability,
ontology-level metrics are computed by comparing gener-
ated ontology mentions Ê with the gold ontology references
E⋆. The ontology-level Precision, Recall, and F1 are
defined as:

PO =
|Ê ∩ E⋆|

|Ê|
, RO =

|Ê ∩ E⋆|
|E⋆|

, F1O =
2PORO

PO +RO
.

The Ontology Citation Coverage (CovO) measures the pro-
portion of answers that contain at least one valid ontology
citation:

CovO =
1

N

N∑
i=1

⊮
[
|Êi| ≥ 1

]
.

The Hallucination Rate (Hall) measures the degree of fac-
tual deviation by identifying ungrounded noun entities that
do not map to any ontology node:

Hall = 1− 1

N

N∑
i=1

|NO(ŷi)|
|N(ŷi)|

,

where N(ŷi) denotes all noun heads extracted from ŷi and
NO(ŷi) their ontology-supported subset.

Together, F1O, CovO, and Hall provide a multidimen-
sional assessment of factual reliability and interpretabil-
ity, revealing how effectively the model integrates symbolic
structure into generative reasoning.



3. Comparative Analysis
To isolate the contribution of ontology conditioning, both
models were evaluated on the same test set. The baseline
system, trained without ontology hints (H = ∅), demon-
strates strong fluency but limited factual grounding. In con-
trast, the ontology-templated fine-tuning model (H ̸= ∅)
exhibits higher F1O, increased CovO, and substantially re-
duced hallucination rates.

Empirically, improvements in ontological precision and
recall correspond to greater consistency between generated
entities and domain standards, suggesting that structured su-
pervision provides interpretable constraints on LLM behav-
ior. The monotonic gain in CovO and the decline in Hall
quantitatively confirm reduced spurious generation and en-
hanced traceability of chemical-engineering terms.

4. Statistical Validation
To confirm significance, all reported metrics are averaged
across multiple random seeds and evaluated using bootstrap
resampling (B = 1000) to compute 95% confidence in-
tervals. Pairwise improvements between the baseline and
ontology-templated methods are validated using paired t-
tests on per-instance metric differences:

t =
d̄

sd/
√
N

, where s2d =
1

N − 1

N∑
i=1

(di − d̄)2.

All improvements in ontology metrics were found statisti-
cally significant at p < 0.01, confirming that the observed
performance gains arise from ontology integration rather
than random variability.

Overall, the analysis demonstrates that explicit ontology-
templated conditioning substantially enhances factual ac-
curacy, reduces hallucination, and provides measurable in-
terpretability improvements over baseline text-only fine-
tuning.

Results
Quantitative evaluation reveals substantial improvements in
both textual and ontological metrics when transitioning from
the baseline configuration to the ontology-templated fine-
tuning method. Table 1 summarizes the numerical compari-
son across eight evaluation metrics over the same test set of
36,817 examples.

The ontology-templated approach yields consistent gains
across all evaluation categories. Exact Match and Token-
Level F1 show 35–45% relative improvement, indicat-
ing better lexical alignment with ground-truth responses.
ROUGE-L also rises, confirming enhanced sentence-level
fluency. The most pronounced changes appear in ontology-
grounded metrics: ontology precision increases from 0.22 to
0.38 and ontology recall nearly triples from 0.09 to 0.26,
yielding an overall ontology-level F1 of 0.31. These results
demonstrate that injecting structured ontology context en-
ables the model to produce more factually consistent and
interpretable answers.

The hallucination rate drops markedly—from 0.91 to
0.70—showing that explicit ontology supervision constrains

generation and discourages unsupported claims. Likewise,
ontology citation coverage rises from 6% to 22%, mean-
ing that nearly one in four answers now includes a direct
ontology reference. This improvement provides measurable
traceability, a critical requirement for chemical-engineering
control systems where responses must be verifiable against
established technical standards.

Qualitatively, model outputs illustrate the shift from
generic to ontology-aware reasoning. For instance, when
queried with

“What does the investigator issue during an estab-
lishment inspection?”

the baseline model responds:

“A detailed report of findings.”

whereas the ontology-templated model produces:

“Form FDA 482 — Notice of Inspection [COPE: In-
spection Notification].”

The latter answer is not only semantically correct but also
grounded in the ontology, citing a specific regulatory artifact
linked to the COPE class Inspection Notification.
Similar improvements were observed across queries involv-
ing equipment calibration, sample documentation, and con-
tamination control.

Overall, these findings confirm that ontology-templated
fine-tuning substantially enhances factual precision, reduces
hallucination, and provides interpretable outputs aligned
with chemical-engineering domain standards. The quantita-
tive metrics and qualitative examples together highlight the
effectiveness of integrating structured ontological supervi-
sion into large-language-model training pipelines.

Additionally, we compare against the RAG baseline for
completeness. RAG improves surface-level metrics such as
Token-Level F1 and ROUGE-L through explicit evidence
retrieval but exhibits low ontology precision (0.19) and re-
call (0.11), indicating that retrieval alone does not guarantee
terminological consistency. The ontology-templated model
surpasses both plain T5 and RAG across all grounding met-
rics.

Discussion
Future Work: Semantic Retrieval and Ontology
Linking
Future extensions aim to bridge the gap between symbolic
precision and semantic generalization by introducing hy-
brid retrieval and entity-linking mechanisms. While the cur-
rent ontology-templated model learns explicit lexical map-
pings between terms and COPE ontology concepts, it re-
mains limited by surface-level similarity. In contrast, hybrid
semantic–ontological retrieval will leverage continuous em-
beddings to identify latent relationships across phrasal and
contextual variations that do not share lexical form.

Specifically, we plan to incorporate domain-tuned en-
coders such as SciSpaCy [5] and SciBERT [15], combined
with retrieval-augmented generation (RAG) [7], to embed
ontology definitions and text segments into a unified seman-
tic space. Given a query q, the retrieval process will compute



Table 1: Performance comparison between Baseline and Ontology-Templated Fine-Tuning.

Metric Baseline Ontology-Templated Fine-Tuning
Exact Match 0.07 0.095
Token-Level F1 0.26 0.38
ROUGE-L F1 0.35 0.42
Ontology Precision 0.22 0.38
Ontology Recall 0.09 0.26
Ontology F1 0.14 0.31
Hallucination Rate 0.91 0.70
Ontology Citation Coverage 0.06 0.22

the top-k ontology nodes via cosine similarity:

Retrieve(q) = arg top-k
o∈O

cos(e(q), e(o)).

These retrieved ontology entries will then be serialized and
injected as conditioning context for generation, creating a
hybrid model that merges lexical matching, synonym ex-
pansion, and semantic proximity. This approach is expected
to further reduce hallucination while improving conceptual
coverage and consistency.

Table 2 summarizes the projected improvements across
key evaluation dimensions when incorporating semantic re-
trieval and entity-linking extensions.

The anticipated improvements stem from three sources.
First, embedding-based retrieval will enable the model
to recognize semantic equivalences such as “sterile sam-
ple chamber” and “clean enclosure,” even when the latter
term does not explicitly appear in the ontology. Second,
synonym-aware linking through SciSpaCy’s biomedical en-
tity linker will provide denser lexical coverage and minimize
missed entity matches. Third, context-conditioned decoding
under RAG will reduce uncertainty in long, multi-step re-
sponses, allowing the model to cite ontology nodes directly
supported by retrieved evidence rather than relying on im-
plicit memorization.

Applications in Process Control and Safety
Beyond the immediate context of question answering, the
framework presents opportunities for process monitoring
and decision support in chemical and bioprocess con-
trol. Control engineers frequently rely on procedure man-
uals, safety protocols, and regulatory databases to diagnose
equipment faults, validate sensor readings, and ensure com-
pliance with operation limits. By aligning language-model
reasoning with structured ontological knowledge, the sys-
tem can act as a semantic intermediary between textual doc-
umentation and real-time control systems.

For example, an ontology-grounded agent could interpret
a natural-language input such as:

“Why is the differential pressure across the reactor
filter exceeding normal levels?”

and retrieve both numerical thresholds and related procedu-
ral clauses from the COPE ontology and the IOM text. The
response may cite the relevant safety limit, identify corre-
sponding control logic, and explain that a blocked filter may

trigger an automatic bypass, referencing the ontology node
Pressure Differential Monitoring. This trans-
parency not only supports human interpretability but also
creates audit-ready reasoning chains aligned with process
safety management requirements.

In the long term, integrating the ontology-augmented
LLM with process data streams could enable contextual
fault diagnosis and event interpretation. For instance, cou-
pling the system with plant historians or SCADA plat-
forms could allow it to translate control signals into
natural-language summaries grounded in regulatory ontol-
ogy—e.g., “Temperature deviation beyond validated range
[COPE: Thermal Validation Protocol].” Such capabilities
would contribute toward explainable AI in industrial au-
tomation, where interpretability, auditability, and compli-
ance are paramount.

Overall, these extensions position ontology-informed
large language models as a unifying layer between symbolic
engineering knowledge and adaptive decision support sys-
tems. The combination of structured chemical process on-
tologies, semantic retrieval, and controllable text generation
holds promise for advancing reliability, safety, and knowl-
edge traceability in next-generation process-control environ-
ments.

Conclusions
This study presents an integrated framework that combines
large language models with structured chemical-engineering
ontologies to enhance factual accuracy, interpretability, and
traceability in domain-specific question answering. By em-
bedding ontology context directly into the model’s input and
output sequences, the ontology-templated fine-tuning ap-
proach improves entity recognition, enforces terminological
consistency, and substantially reduces hallucination relative
to baseline text-only fine-tuning.

Quantitative evaluation demonstrates clear improvements
across all measured dimensions. Ontology-level precision
and recall increase by more than 70%, while hallucination
rates decline from 0.91 to 0.70, confirming that explicit on-
tological supervision constrains generation and aligns re-
sponses with established regulatory standards. The system
also shows a threefold increase in ontology citation cover-
age, providing transparent reasoning pathways that facilitate
verification and auditability—essential in process engineer-
ing and safety-critical domains.



Table 2: Performance comparison across system stages: Baseline, Ontology-Templated Fine-Tuning, and Expected Hybrid
Semantic Retrieval.

Metric Baseline
Ontology-Templated

Fine-Tuning
(Expected)

Semantic Retrieval + Linking

Exact Match 0.07 0.095 0.14
Token-Level F1 0.26 0.38 0.48
ROUGE-L F1 0.35 0.42 0.55
Ontology Precision 0.22 0.38 0.46
Ontology Recall 0.09 0.26 0.38
Ontology F1 0.14 0.31 0.42
Hallucination Rate 0.91 0.70 0.58
Ontology Citation Coverage 0.06 0.22 0.33

Beyond the measurable performance gains, this work es-
tablishes a reproducible methodology for integrating do-
main ontologies into generative language models through
lightweight lexical mapping and structured template super-
vision. The approach requires minimal modification to ex-
isting fine-tuning pipelines while achieving substantial inter-
pretability benefits, thereby offering a scalable blueprint for
ontology-guided language understanding across other scien-
tific and regulatory fields.

Looking forward, the envisioned hybrid exten-
sion—combining semantic retrieval, synonym-aware
entity linking, and embedding-based reasoning—will fur-
ther bridge the gap between symbolic rigor and contextual
flexibility. Such hybrid systems have the potential to evolve
from static QA frameworks into dynamic decision-support
agents capable of real-time reasoning within process control
environments. By grounding responses in both textual
and ontological evidence, these systems could provide
interpretable explanations of system anomalies, reinforce
safety compliance, and assist engineers in synthesizing
insights from complex operational data.

In summary, integrating ontologies with large language
models represents a promising step toward interpretable and
verifiable AI for engineering applications. The methods and
findings presented here advance not only the precision of
domain-specific language models but also their utility in
high-stakes environments—where explainability, factual re-
liability, and trust are as critical as accuracy itself.
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