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Abstract
Low-discrepancy point sets and sequences are foundational
to quasi-Monte Carlo (QMC) methods, which are indispens-
able in fields requiring high-dimensional integration, such as
financial engineering, computer graphics, and computational
physics. This paper utilizes a Large Language Model (LLM)
within an evolutionary search paradigm, inspired by the prin-
ciples of systems such as AlphaEvolve, on two significant,
long-standing problems. First, we apply the framework to
find 2D and 3D point sets with minimal star discrepancy. Our
method not only rediscovers known optimal configurations
for small point sets but also establishes new state-of-the-art
for larger 2D point sets (N ≥ 30) and provides the first
known constructions for 3D point sets for N > 8. Second,
by evolving the constituent direction numbers for Sobol’
sequences, our method discovers new parameter sets that
significantly reduce randomized QMC integration error for
pricing a variety of 32-dimensional exotic options, outper-
forming established, widely-used direction numbers. These
results highlight the potential of LLM-driven evolutionary
algorithms as a powerful tool for automated discovery in
computational mathematics. Data and code are available at
https://github.com/hockeyguy123/openevolve-star-discrepancy.

Introduction
Numerical integration in high dimensions is a cornerstone
of modern science and engineering. While standard Monte
Carlo (MC) methods offer a robust approach, their con-
vergence rate, governed by the Central Limit Theorem, is
often insufficient for applications requiring high precision
(Glasserman 2003). Quasi-Monte Carlo (QMC) methods
provide a compelling alternative by replacing pseudorandom
samples with deterministic, highly uniform point sets (Dick
and Pillichshammer 2010; Owen 1995). The uniformity of
these sets is quantified by their discrepancy, with lower val-
ues corresponding to more evenly distributed points. The
Koksma-Hlawka inequality provides the theoretical under-
pinning for QMC, guaranteeing that the integration error is
bounded by the product of the variation of the integrand and
the star discrepancy of the point set (Koksma 1964; Hlawka
1961).

This relationship has fueled decades of research into the
discovery and construction of low-discrepancy sets. A pri-
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mary challenge in this field is the ”ab initio” construction
of a finite point set of N points in d dimensions that mini-
mizes star discrepancy. This is a problem of combinatorial
complexity, and while optimal solutions have been found in
2D for N ≤ 21 and in 3D for N ≤ 8 (Clément et al. 2024),
the problem remains largely open for larger N and higher
dimensions.

A related challenge is the construction of infinite low-
discrepancy sequences, such as those by Halton, Hammer-
sley, and Sobol’. Among these, Sobol’ sequences are partic-
ularly prominent due to their excellent distribution proper-
ties and efficient generation (Sobol’ 1967). However, their
quality is highly dependent on a set of integer parameters
known as direction numbers, and finding optimal parame-
ters that ensure uniformity across all low-dimensional pro-
jections is a difficult combinatorial search problem (Joe and
Kuo 2008).

Recent breakthroughs in Large Language Models (LLMs)
have demonstrated their remarkable capabilities in code gen-
eration, logical reasoning, and pattern recognition (Gem-
ini Team et al. 2025). This has motivated the development
of automated scientific discovery systems, such as AlphaE-
volve, which leverage LLMs to navigate complex search
spaces (Novikov et al. 2025). In this work, we utilize the
OpenEvolve framework (Sharma 2025), an open-source im-
plementation based on the principles of AlphaEvolve, to
tackle the aforementioned challenges in discrepancy theory.
We treat the construction of these mathematical objects as
a program synthesis problem within an evolutionary frame-
work (Koza 1994). The LLM acts as an intelligent mutation
operator, iteratively modifying code that generates candidate
solutions based on feedback from a fitness function.

This paper presents the successful application of this
LLM-driven evolutionary approach to two fundamental
problems:

1. Discovering finite 2D and 3D point sets with state-of-the-
art low star discrepancy.

2. Searching for superior Sobol’ direction numbers to mini-
mize randomized quasi-Monte Carlo (rQMC) integration
error in the high-dimensional context of pricing exotic
financial options (Paskov and Traub 1995).

Our results show that this methodology can match and, in
several important cases, surpass the best known human-



derived solutions. This suggests that LLM-driven evolution-
ary search is a promising new paradigm for exploration and
discovery in computational mathematics.

Theoretical Background
Star Discrepancy
Star discrepancy is the most common measure for quantify-
ing the uniformity of a point set within the d-dimensional
unit hypercube, [0, 1]d (Owen 1995). It captures the largest
deviation between the volume of an axis-aligned ”anchor
box” and the fraction of points contained within it.

Definition 1 (Star Discrepancy). Let P = {x1, . . . ,xN}
be a set of N points in [0, 1]d. An anchor box [0,q) for any
q = (q1, . . . , qd) ∈ [0, 1]d is the hyperrectangle [0, q1) ×
· · ·× [0, qd). The star discrepancy D∗

N of the set P is defined
as:

D∗
N (P ) = sup

q∈[0,1]d

∣∣∣∣#(P ∩ [0,q))

N
− Vol([0,q))

∣∣∣∣ (1)

Here, the supremum is taken over all possible anchor boxes.
A small D∗

N value implies that for any anchor box, the frac-
tion of points falling within it is a good approximation of
its volume, indicating high uniformity. The practical im-
portance of star discrepancy is cemented by the Koksma-
Hlawka inequality (Koksma 1964; Hlawka 1961), which
bounds the error of QMC integration:∣∣∣∣∣

∫
[0,1]d

f(u)du− 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ ≤ V (f) ·D∗
N (P ) (2)

where V (f) is the total variation of the function f in the
sense of Hardy and Krause. This inequality guarantees that
point sets with lower star discrepancy lead to smaller inte-
gration error bounds.

Sobol Sequences and Direction Numbers
Sobol’ sequences are a class of low-discrepancy sequences
that are particularly effective for QMC integration (Sobol’
1967; Dick and Pillichshammer 2010). They are constructed
using the properties of primitive polynomials over the finite
field of two elements, F2.

Definition 2 (Sobol’ Sequence Construction). For each
dimension j ≥ 1, a primitive polynomial over F2 of degree
sj is chosen (Dick and Pillichshammer 2010):

Pj(z) = zsj + a1,jz
sj−1 + · · ·+ asj−1,jz + 1 (3)

where the coefficients ak,j are either 0 or 1. From this poly-
nomial, a sequence of positive, odd integers called direction
numbers mk,j (for k = 1, . . . , sj) are chosen freely. Sub-
sequent direction numbers (k > sj) are generated via the
recurrence relation:

mk,j = 2a1,jmk−1,j ⊕ · · · ⊕ 2sjmk−sj ,j ⊕mk−sj ,j (4)

where ⊕ denotes the bitwise XOR operation. These integers
are converted into direction vectors vk,j by vk,j = mk,j/2

k.

The j-th coordinate of the i-th point in the sequence, xi,j , is
then generated by:

xi,j = i1v1,j ⊕ i2v2,j ⊕ . . . (5)

where (. . . i2i1)2 is the binary representation of the index
i. The quality of the Sobol’ sequence, particularly the uni-
formity of its low-dimensional projections, is critically de-
pendent on the choice of the primitive polynomials and the
initial direction numbers (m1, . . . ,ms). The work of Joe and
Kuo (2008) provides a widely used set of these parameters
that serve as a strong baseline.

Related Work
The challenge of constructing low-discrepancy sets has been
approached from multiple angles, ranging from classical
number theory to modern machine learning. Our work builds
upon these diverse foundations.

Classical approaches for generating low-discrepancy sets
are primarily number-theoretic. Foundational methods in-
clude Halton, Hammersley, and Sobol’ sequences, which
are designed to achieve superior asymptotic uniformity com-
pared to random sampling (Rusch et al. 2024; Clément et al.
2024). While powerful, these classical constructions are not
always optimal for a finite number of points N . To ad-
dress this, other works formulate the search for optimal finite
point sets as a direct optimization problem. Mathematical
programming has been used to find provably optimal sets,
though these approaches are computationally intensive and
limited to small instances (Clément et al. 2024). Heuristic
methods, such as genetic algorithms and threshold accept-
ing, have been applied to tackle larger instances by search-
ing the space of point configurations (Clément et al. 2023).

More recently, machine learning techniques have been
introduced to this domain. Message-Passing Monte Carlo
(MPMC) leverages Graph Neural Networks (GNNs) to
transform random initial points into low-discrepancy con-
figurations, achieving state-of-the-art results by directly op-
timizing point coordinates (Rusch et al. 2024). Our work
differs by framing the task as a program synthesis problem
rather than direct coordinate optimization.

A related line of research focuses on optimizing the pa-
rameters of Sobol’ sequences. The quality of a Sobol’ se-
quence is critically dependent on a set of initialization pa-
rameters known as direction numbers. The direction num-
bers published by Joe and Kuo (2008) are a widely-used
standard, derived from an extensive computational search
to find parameters that ensure high uniformity in two-
dimensional projections by minimizing a quality measure
known as the t-value. Subsequent work has focused on fur-
ther improving these parameters or guaranteeing quality for
specific projection properties crucial for applications such as
computer graphics (Bonneel et al. 2025).

Our approach is most closely related to the emerging
paradigm of using Large Language Models (LLMs) for au-
tomated scientific discovery. Novikov et al. (2025) intro-
duces AlphaEvolve, a framework that combines LLMs with
an evolutionary search, treating algorithm discovery as a
program evolution problem where the LLM functions as an
intelligent mutation operator and receives feedback from a



fitness function. This method has successfully discovered
novel algorithms for fundamental problems, from matrix
multiplication (Fawzi et al. 2022) to open mathematical con-
jectures (Romera-Paredes et al. 2024). Our work is directly
inspired by these principles, applying a similar evolutionary
loop to the specific mathematical challenges of discovering
low-discrepancy sets and optimizing Sobol’ sequences.

Methodology
We consider two related quasi–Monte Carlo design prob-
lems. First, we seek finite point sets of size N in [0, 1]d with
small star discrepancy for d ∈ {2, 3}. Second, we aim to
choose Sobol’ direction numbers that reduce the integration
error of a randomized QMC estimator for a 32-dimensional
Asian option pricing problem. Both problems can be viewed
as searching over programs that generate either a point set
or a digital sequence. Our method instantiates this search
via an evolutionary program synthesis framework in which
a large language model (LLM) repeatedly rewrites Python
code snippets that produce candidate constructions; the qual-
ity of the resulting constructions, measured by task-specific
fitness functions, then guides subsequent mutations.

Our approach is based on the OpenEvolve framework, an
open-source implementation of the principles demonstrated
by AlphaEvolve (Novikov et al. 2025). It frames the search
for novel mathematical constructs as an evolutionary search
over a population of programs that generate them (Koza
1994). The LLM serves as a sophisticated mutation oper-
ator, guided by a task-specific fitness function.

The evolutionary loop (Romera-Paredes et al. 2024) pro-
ceeds as follows:
1. Initialization: The process begins with a population of

“parent” programs. These programs are code snippets
in Python that generate a candidate solution. The initial
population can be seeded with simple heuristics or well-
known constructions.

2. Evaluation: Each program in the population is executed,
and its output is evaluated by a fitness function. The fit-
ness function returns a scalar score quantifying the qual-
ity of the solution (e.g., lower rQMC MSE or star dis-
crepancy is better).

3. Selection and Prompting: High-performing programs
are selected to serve as parents. A detailed prompt is then
constructed for the LLM, including the parent program’s
source code, its fitness score, and an instruction tasking
the LLM with generating a variation that will improve
upon the score. The prompt also includes code from other
high-performing “inspirations” to encourage crossover as
well as guidance from the user (Appendix B).

4. Generation (Mutation): The LLM receives the prompt
and generates a new, modified program. This is the core
mutation step. The LLM’s ability to understand code
syntax and semantics allows for complex and structured
modifications.

5. Loop: The newly generated program is evaluated, its fit-
ness is scored, and it is added to the population. The pro-
cess then repeats, iteratively refining the population to-
ward better solutions.

Experimental Setup
We maintained a total population of 60 candidate programs
with four islands to encourage the development of diverse
solutions and prevent premature convergence. In addition
to the islands, a MAP-Elites-style archive stored the top 25
elite programs discovered during the run, preserving high-
performing solutions. In each generation, a parent program
was selected for mutation: with a 70% probability, the parent
was chosen from the high-performing archive.

The mutation operator itself was a Large Language Model
(Google’s Gemini 2.0 Flash) (Gemini Team et al. 2025),
which was instructed to perform a complete rewrite of the
core program functions. To provide a rich context for this
mutation, the LLM prompt included not only the parent pro-
gram but also the source code of the three top-performing
“inspiration” programs from the database, serving as a form
of multi-parent inspiration or crossover. We set the LLM’s
temperature to 0.7 and top-p to 0.95.

Each evolutionary run involved approximately 2000 LLM
API calls and took roughly 96 hours to complete. This cor-
responds to on the order of three minutes per mutation–
evaluation cycle. The dominant computational cost is the
repeated evaluation of the fitness functions: computing star
discrepancy for the point-set tasks and running the rQMC
estimator with many randomizations for the Sobol’ task.
LLM inference time is comparatively small because we use
a hosted API and relatively short prompts.

The experiments were conducted on a workstation
equipped with an AMD EPYC 7763 CPU and 64 GB of
RAM. Due to computational constraints, no automated hy-
perparameter optimization was performed and only one evo-
lutionary run per problem was conducted.

Hyperparameter choices. The evolutionary hyperparam-
eters were chosen to balance diversity and computational
budget. A population of 60 programs distributed across four
islands provided enough diversity to avoid premature con-
vergence while keeping evaluation costs manageable. The
archive size of 25 and the 70% probability of selecting par-
ents from the archive bias the search toward exploiting high-
performing programs while still allowing exploration via the
remaining island-based sampling. For the LLM, the temper-
ature of 0.7 and top-p of 0.95 are standard settings for code
generation that encourage non-trivial mutations without pro-
ducing overly noisy outputs. Once selected, the same config-
uration was used for all experiments to provide a consistent
comparison across tasks.

Code, generated point sets, and Sobol’ parameters are
available at https://github.com/hockeyguy123/openevolve-
star-discrepancy.

Discovery of Low-Discrepancy Point Sets
A two-phase strategy was employed to balance broad explo-
ration with fine-tuned optimization.
• Phase 1: Direct construction. The LLM was prompted

to generate Python code that directly constructs an N -
point set in a d-dimensional space. The initial parent
program in 2D implemented a simple shifted Fibonacci
lattice (Listing 1) and in 3D implemented a scrambled



Listing 1: Initial program for 2D point-set search.
1 def construct_star():
2 A = np.zeros((N, 2))
3 phi = (math.sqrt(5) - 1) / 2
4 for i in range(N):
5 A[i, 0] = (i + 0.5) / N
6 A[i, 1] = ((i * phi) % 1 + (0.5

/ N)) % 1
7 return A

Listing 2: Initial program for 3D point-set search.
1 def construct_star():
2 A = Sobol(d=3, scramble=True, seed

=42).random(n=N)
3 return A

Sobol’ sequence (Listing 2). This phase encouraged the
LLM to explore a wide range of constructive heuristics.

• Phase 2: Iterative optimization. After a sufficient num-
ber of iterations, the LLM was prompted to generate
Python code that uses iterative optimization routines
(e.g., scipy.optimize.minimize) to refine an ini-
tial guess. This shifted the search from finding explicit
constructions to a direct optimization of the point coor-
dinates.

• Fitness function. The fitness score was 1
1+D∗

N
, where

D∗
N is the star discrepancy of the generated point set.

Discovery of Sobol’ Direction Numbers
• Program representation. The evolved programs are

Python functions that return a list of dictionaries. Each
dictionary contains the Sobol’ parameters (s, a, m i) for
a single dimension.

• Initialization. The initial population contains the stan-
dard implementation of the direction numbers (Joe and
Kuo 2008).

• Fitness function. The primary fitness metric is 1
1+MSE ,

where MSE is the mean squared error of an rQMC es-
timate for a 32-dimensional Asian option price. The
MSE is calculated for N = 8192 points and averaged
over 1000 consistent randomizations (left-matrix scram-
ble followed by a Cranley–Patterson random shift, i.e.,
LMS+shift) to ensure robustness and reproducibility.

Experiments and Results

Listing 3: Directly Constructed 16 Point Set (N = 16)
1 def construct_star():
2 A = np.zeros((N, 2))
3 phi=(math.sqrt(5)-1)/2
4 for i in range(N):
5 A[i, 0]=(i+(1/math.sqrt(3)))/N
6 A[i, 1]=((0.5+(i*phi)%1))%1
7 return A

N Fibonacci MPMC LLM Clément et al.

1 1.0000 0.6180 0.6180 0.6180
2 0.6909 0.3660 0.3660 0.3660
3 0.5880 0.2847 0.2847 0.2847
4 0.4910 0.2500 0.2500 0.2500
5 0.3528 0.2000 0.2000 0.2000
6 0.3183 0.1692 0.1667 0.1667
7 0.2728 0.1508 0.1500 0.1500
8 0.2553 0.1354 0.1328 0.1328
9 0.2270 0.1240 0.1235 0.1235
10 0.2042 0.1124 0.1111 0.1111
11 0.1857 0.1058 0.1039 0.1030
12 0.1702 0.0975 0.0960 0.0952
13 0.1571 0.0908 0.0892 0.0889
14 0.1459 0.0853 0.0844 0.0837
15 0.1390 0.0794 0.0791 0.0782
16 0.1486 0.0768 0.0745 0.0739
17 0.1398 0.0731 0.0712 0.0699
18 0.1320 0.0699 0.0676 0.0666
19 0.1251 0.0668 0.0654 0.0634
20 0.1188 0.0640 0.0611 0.0604

30 0.0792 N/A 0.0438 0.0424
40 0.0638 N/A 0.0331 0.0332
50 0.0531 N/A 0.0278 0.0280
60 0.0442 0.0273 0.0234 0.0244
100 0.0275 0.0188 0.0150 0.0193

Table 1: 2D Star Discrepancy Comparison for N =
1...100 between Fibonacci, MPMC (Message-Passing
Monte Carlo), LLM evolutionary search, and Clément et al.
(provably optimal for N ≤ 20). Best values are bolded.

Discovery of Low-Discrepancy Point Sets
We first applied our two-phase strategy to the canonical
problem of discovering N -point sets in 2D and 3D with min-
imal star discrepancy. We illustrate the discovery process for
a 2D, 16-point set (Fig. 1). The initial program, a Fibonacci
lattice (Listing 1), had a discrepancy of 0.0962. After 243 it-
erations in the direct construction phase, a new construction
was found with a discrepancy of 0.0924 (Listing 3), which
consisted of fine-tuning optimal shifts to the Fibonacci lat-
tice. After switching to the iterative optimization phase, the
framework further refined the point set, achieving a final dis-
crepancy of 0.0744, which is within 0.68% of the known
optimal value of 0.0739. The final program creates an ini-
tial guess, consisting of a randomly jittered Fibonacci lat-
tice, followed by a SLSQP optimization loop with stochastic
restarts (Listing 4).

We then benchmarked our method against Fibonacci,
MPMC (Rusch et al. 2024), and known optimal point sets
(Clément et al. 2024) for N = 1...100 (Table 1). Our method
successfully rediscovers the known optimal point sets for
N ≤ 10 and remains highly competitive for larger N . The
most significant results came from searching for larger point
sets where optimal solutions are not known. For 2D point
sets with N > 30, LLM evolutionary search discovered new
configurations with lower star discrepancy than the best-
known values from the literature. For instance, for N = 100,
our method found a point set with a discrepancy of 0.0150,



Figure 1: Visualization of N = 16 point set generation in two dimensions. (A) Initial shifted Fibonacci lattice (Discrepancy:
0.0962). (B) Best direct construction found in Phase 1 (Discrepancy: 0.0924). (C) Final optimized point set from Phase 2
(Discrepancy: 0.0744), which is within 0.68% of the known optimal value of 0.0739.

Figure 2: The Star Discrepancy D∗
N of Sobol’, Halton, Hammersley, Fibonacci, Rank-1-Lattic, MPMC (message passing Monte

Carlo), and LLM evolutionary search sequences for increasing number of points N = 100...1020 in 2D.

N MPMC LLM Clément et al.

1 0.6833 0.6823 0.6823
2 0.4239 0.4239 0.4239
3 0.3491 0.3445 0.3445
4 0.3071 0.3042 0.3038
5 0.2669 0.2618 0.2618
6 0.2371 0.2326 0.2326
7 0.2158 0.2090 0.2090
8 0.1993 0.1937 0.1875

Table 2: 3D Star Discrepancy Comparison for N = 1...8 be-
tween MPMC (Message-Passing Monte Carlo), LLM evolu-
tionary search, and Clément et al. (provably optimal).

a substantial improvement over the previous best of 0.0188.
We generated 2D point sets up to N = 1020 with lower star
discrepancy than previously reported (Appendix A).

In 3D, our method matched the known optimal point sets
for N = 1, 2, 3, 5, 6, 7 (Table 2) and provided the first

D S A Mi

4 3 1 1 3 5
5 3 2 1 3 7
6 4 1 1 1 3 7

Table 3: Sobol’ direction number parameters updated by
LLM evolutionary search. D is the dimension, S is the poly-
nomial degree, A is the polynomial’s coefficients, and Mi are
the initial direction numbers. All other dimensions remained
unchanged.

known explicit low-discrepancy constructions for N > 8
, establishing new benchmarks (Appendix A).

Improved Direction Numbers for rQMC
Integration
Having demonstrated the framework’s ability to construct
point sets, we next applied it to the discrete optimization
problem of discovering improved Sobol’ direction numbers.



Figure 3: The % reduction in MSE (rQMC integration over
10000 random scrambles and shifts) using Sobol’ direction
numbers found via LLM evolutionary search vs. those of
Joe and Kuo (2008). The % reduction in MSE are averaged
across all scenarios of that particular option (Appendix C).

Scenario S0 K σ Strue

Training Example 50.00 45.00 0.3 7.06
Out-of-the-Money 50.00 60.00 0.3 1.02
At-the-Money 50.00 52.50 0.3 2.98
In-the-Money 50.00 40.00 0.3 11.02
High Volatility 50.00 52.50 0.6 6.43
Low Volatility 50.00 52.50 0.1 0.69

Table 4: Asian Option scenarios used for testing. The Train-
ing Example was used in the evaluation routine of the evo-
lutionary search. All options have T=1.0 and r=0.05.

After several hundred evolutionary iterations, our LLM
evolutionary search routine discovered a more performant
set of parameters, focusing its modifications on the early di-
mensions, which are known to explain the vast majority of
the variance in Asian option pricing. Specifically, the param-
eters for dimensions 4, 5, and 6 were updated (Table 3). All
other dimensions (up to 32) remained identical to the Joe
and Kuo (2008) baseline.

To validate these new direction numbers, they were
benchmarked against the standard Joe and Kuo (2008) pa-
rameters across a suite of six Asian option pricing sce-
narios with varying parameters (Table 4). The true option
price was computed by taking the average of 1000 randomly
scrambled Sobol sequences with N = 221 points each. The
rQMC MSE was evaluated over 10000 random seeds for
N = 32...8192 points. The direction numbers discovered
by LLM evolutionary search produced a significantly lower
integration MSE for larger sample sizes N ≥ 512 under
one-sided Wilcoxon rank sum test with false discovery rate
correction (Table 5).

To ensure the evolved parameters were not merely overfit-

Listing 4: Iteratively Optimized 2D Point Set (N = 16)
1 def construct_star():
2 x = np.zeros((N, 2))
3 for i in range(N):
4 x[i, 0] = (i + np.random.rand())

/ N
5 x[i, 1] = ((i * 0.38196601125) %

1) + np.random.rand()/(2*N)
6 def discrepancy_wrapper(x):
7 points = x.reshape(N, 2)
8 return star_discrepancy(points)
9 x0 = x.flatten()

10 bounds = [(0.0, 1.0)] * (N * 2)
11 best_result = None
12 best_discrepancy = float(’inf’)
13 for _ in range(25):
14 x0_restart = x.flatten() + np.

random.normal(0, 0.01, N * 2)
15 x0_restart = np.clip(x0_restart,

0.0, 1.0)
16 result = minimize(

discrepancy_wrapper,
x0_restart, method=’SLSQP’,
bounds=bounds, options={’
maxiter’: 30000, ’ftol’: 1e
-15, ’iprint’: 0})

17 discrepancy =
discrepancy_wrapper(result.x)

18 if discrepancy <
best_discrepancy:

19 best_discrepancy =
discrepancy

20 best_result = result
21 optimized_points = best_result.x.

reshape(N, 2)
22 return optimized_points

ted to the Asian option’s specific payoff structure, we tested
their generalizability on a diverse suite of high-dimensional
exotic options, including Lookback, Barrier, Basket, and
Bermudan options (Appendices C, D). The evolved direction
numbers demonstrated strong, generalizable performance,
achieving significantly lower integration error across this
wider range of financial instruments for larger sample sizes
(N ≥ 512) with the sole exception of Barrier options. This
suggests that the evolutionary search discovered a Sobol’ se-
quence with fundamentally more robust and broadly appli-
cable projection properties.

Discussion
Using an LLM evolutionary framework, we generate 2D and
3D point sets with state-of-the-art star discrepancy and dis-
cover Sobol’ direction numbers that lower rQMC integration
error for high-dimensional exotic financial option pricing.

Recent state-of-the-art methods, such as the mathemati-
cal programming approach of Clément et al. (2024) and the
GNN-based MPMC framework (Rusch et al. 2024), are de-
signed to construct point sets for a fixed number of points
N and dimensions d. In contrast, our approach generates the
direction numbers that define a Sobol’ sequence, offering



Training Example Out-of-the-Money At-the-Money
N Sobol LLM p-value Sobol LLM p-value Sobol LLM p-value
32 0.2484 0.2523 0.9757 0.1920 0.1979 0.9757 0.3246 0.3346 0.9757
64 0.0642 0.0665 0.9980 0.0605 0.0631 0.9980 0.0873 0.0908 0.9980
128 0.0183 0.0192 0.9999 0.0220 0.0231 0.9999 0.0277 0.0282 0.9999
256 0.0056 0.0061 1.0000 0.0086 0.0089 1.0000 0.0092 0.0098 1.0000
512 0.001646 0.001614 0.2841 0.003469 0.003311 0.0208 0.003248 0.003106 0.0208
1024 0.000542 0.000524 0.0548 0.001457 0.001313 3.45e-08 0.001228 0.001168 0.0304
2048 0.000233 0.000225 0.0199 0.000619 0.000535 1.45e-14 0.000550 0.000521 0.0131
4096 9.876e-05 9.346e-05 0.0058 0.000258 0.000243 4.51e-04 0.000240 0.000226 0.0019
8192 4.523e-05 4.104e-05 7.03e-06 0.000117 0.000107 1.06e-06 0.000102 9.523e-05 0.0100

In-the-Money High Volatility Low Volatility
N Sobol LLM p-value Sobol LLM p-value Sobol LLM p-value
32 0.1398 0.1428 0.9757 2.0816 2.1493 0.9757 0.0238 0.0246 0.9757
64 0.0367 0.0382 0.9980 0.5714 0.5958 0.9980 0.0066 0.0068 0.9980
128 0.0106 0.0111 0.9999 0.1811 0.1877 0.9999 0.002174 0.002205 0.9999
256 0.003083 0.003373 1.0000 0.0598 0.0643 1.0000 0.000756 0.000803 1.0000
512 0.000868 0.000859 0.2841 0.0205 0.0196 0.0073 0.000285 0.000275 0.0208
1024 0.000261 0.000260 0.2581 0.007565 0.007060 3.38e-04 0.000113 0.000109 0.0717
2048 0.000101 0.000100 0.3878 0.003145 0.002867 1.75e-06 5.214e-05 4.961e-05 0.0056
4096 4.037e-05 3.949e-05 0.2180 0.001293 0.001233 0.0022 2.323e-05 2.196e-05 5.68e-04
8192 1.766e-05 1.683e-05 0.0047 0.000566 0.000532 0.0156 1.008e-05 9.300e-06 1.27e-04

Table 5: Mean Squared Error (MSE) and p-values for Asian Option scenarios. The table compares the standard Sobol’ sequence
against a sequence found via LLM evolutionary search (LLM). P-values are from a one-sided Wilcoxon signed-rank test con-
ducted over the 10000 randomizations and are false discovery rate (FDR) corrected. P-values below 0.05 are bolded.

several key advantages:

1. Extensibility to any N: Unlike fixed approaches where
a new, computationally expensive optimization must be
performed from scratch for each value of N , a single,
compact set of discovered direction numbers can be used
to generate a high-quality point set for any desired num-
ber of points. This makes the solution immediately ap-
plicable to a wide range of practical problems without
requiring any re-computation.

2. Support for Progressive Integration: An integration
can be performed with N points, and if more accuracy
is needed, the next N points from the sequence can be
added to refine the estimate while reusing all previous
calculations. This is a fundamental capability that static
point set generation methods inherently lack.

3. Easy Randomization: Unlike highly optimized, deter-
ministic point sets, the LLM optimized Sobol’ sequence
can make use of standard randomization techniques, such
as Owen scrambling (Owen 1995, 1998), to obtain unbi-
ased error estimates of rQMC.

4. High-Dimensional Applicability: The Sobol’ frame-
work is designed from the ground up for high-
dimensional integration. By optimizing the parameters
within this framework, our approach is directly applica-
ble to problems such as the 32-dimensional option pric-
ing benchmarks used in our tests, a domain where direct
coordinate optimization for a large N would be compu-
tationally intractable.

It is notable that the performance gains from the LLM-
evolved Sobol’ parameters did not extend to the pricing of
Barrier options (Appendix D). We hypothesize that this is a

direct consequence of our fitness function, which was opti-
mized for the integration of a 32-dimensional Asian option.
The payoff of an Asian option is dependent on the average
of the asset path, resulting in a comparatively smooth and
continuous integrand. In contrast, the payoff of a Barrier op-
tion contains a significant discontinuity, which poses a well-
known challenge for QMC integration by introducing high
or even unbounded Hardy-Krause variation.

Our evolutionary search likely discovered parameters that
are highly specialized for integrating functions of low-to-
moderate variation, a property that does not generalize well
to discontinuous integrands. This suggests that the notion of
an ’optimal’ Sobol’ sequence may be problem-dependent.
Future work could explore multi-objective optimization,
where the fitness function is a composite score from pric-
ing both smooth (e.g. Asian) and discontinuous (e.g. Bar-
rier) options. Such an approach might lead to the discovery
of more robust, universally applicable direction numbers at
the potential cost of peak performance on any single prob-
lem class.

Other limitations include the computational intensity of
the evolutionary search that must be run independently for
each specific case. In addition, the quality of the gener-
ated solutions is also fundamentally tied to the capabilities
of the underlying LLM and the amount of compute avail-
able. Future work could explore alternative prompting tech-
niques, optimization of evolutionary programming hyperpa-
rameters, and meta-model methods that generates optimal
direction numbers for any given dimension d or points sets
for any given dimension d or number of points N .



Conclusion
We have demonstrated the application of an LLM-driven
evolutionary framework to tackle complex discovery prob-
lems in the field of low-discrepancy sets. Our method has
discovered new 2D and 3D point sets with star discrep-
ancy values lower than any previously published, setting
new benchmarks in a field of long-standing mathematical
interest. Furthermore, it has produced novel Sobol direction
numbers that improve the accuracy of rQMC integration for
a variety of 32-dimensional financial derivatives. This work
strengthens the case for using LLMs as core components in
an automated scientific discovery process, capable of gener-
ating novel and valuable mathematical knowledge.
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Appendix
This appendix provides the full numerical results for the
star discrepancy (D∗

N ) values of the point sets discovered
by LLM evolutionary search. These tables serve as a com-
prehensive record of the performance of our method, estab-
lishing new state-of-the-art benchmarks and offering a de-
tailed comparison against established low-discrepancy con-
struction methods.

New Benchmarks in Three Dimensions
We report high-quality constructions for N from 9 to 16 (Ta-
ble 6).

Performance in Two Dimensions for N ≥ 140

In two dimensions, while the problem is better understood
than in 3D, optimal solutions for larger point sets (N > 21)
are not known. We provide a detailed comparison of the 2D
star discrepancy values achieved by LLM evolutionary op-
timization against several key baselines for N ranging from
140 to 1020 (Table 7).

• Consistent Outperformance: Across every single value
of N tested, the point sets discovered by LLM evolution-
ary search achieve a lower star discrepancy than all other
methods, including classical sequences (Halton, Sobol’,
Hammersley, Fibonacci) and the recent state-of-the-art
MPMC method.

• Significant Improvement Margin: The performance
gap is not trivial. For example, at N = 140, the LLM
discrepancy of 0.01151 is approximately 16% lower than
the next-best method (MPMC at 0.01373) and over 57%
lower than the widely used Halton sequence. At N =
1020, the LLM discrepancy of 0.00245 is nearly 20%
better than MPMC’s 0.00303.

• Superior Scaling: The results demonstrate that the LLM
evolutionary search’s ability to find superior configura-
tions is not limited to a specific range of N , but holds
consistently as the number of points increases. This sug-
gests that the two-phase discovery strategy (direct con-
struction followed by iterative optimization) is effective
at navigating the increasingly complex search space as-
sociated with larger point sets.

N LLM Discrepancy (D∗
N )

9 0.1758
10 0.1652
11 0.1551
12 0.1483
13 0.1402
14 0.1337
15 0.1275
16 0.1207

Table 6: The Star Discrepancy Values for N > 8 3D point
sets found via LLM evolutionary search.

LLM Prompts
This appendix provides the full instructional text of the
prompts provided to the Large Language Model (LLM)
within the OpenEvolve framework. These LLM prompts
were used to generate programs to construct point sets di-
rectly (Fig. 4), iteratively optimize point sets (Fig. 5), and
directly construct Sobol’ direction numbers (Fig. 6).

It is important to note that the text shown in the figures
below constitutes the instructional component of a larger
prompt. This text is dynamically combined with the source
code of a ”parent” program selected for mutation and often
includes code from other high-performing ”inspiration” pro-
grams to encourage crossover of ideas.

Option Scenarios
To ensure a rigorous evaluation of the Sobol’ direction
numbers discovered, we designed a comprehensive suite of
benchmark scenarios. This suite includes the primary opti-
mization target (the Asian option) as well as a diverse set
of exotic options known to be challenging for Quasi-Monte
Carlo integration. The purpose of this suite is twofold: first,
to confirm superior performance on the target problem class,
and second, to test for generalizability and ensure that the
evolved parameters were not merely overfitted to the spe-
cific payoff structure of the Asian option.

The configuration parameters for all tested scenarios are
consolidated in (Table 8). For all options, the time to expira-
tion (T) was set to 1.0 year and the risk-free interest rate (r)
was 0.05. The underlying asset prices are assumed to follow
a geometric Brownian motion.

Asian Options
An Asian option is a path-dependent exotic option whose
payoff is determined by the average price of the underlying
asset over a pre-set period of time. This is in contrast to a
standard European option, which only depends on the asset
price at expiration. The averaging feature reduces volatility
and makes the option generally cheaper than its European
counterpart. Because its value depends on the entire price
path, pricing it requires simulating all 32 time steps, making
it an excellent candidate for QMC methods.

Lookback Options
A lookback option is another path-dependent option whose
payoff is determined by the maximum or minimum price
of the underlying asset over the option’s life. The scenar-
ios tested here are for a floating strike lookback call option,
whose payoff at expiration is the difference between the final
asset price and the minimum price achieved (ST − Smin).

Barrier Options
A barrier option is a path-dependent option that is either
activated (”knocks-in”) or extinguished (”knocks-out”) if
the underlying asset price crosses a predetermined ”barrier”
level. This feature introduces a significant discontinuity in
the payoff function.



N Halton Sobol’ Hammersley Fibonacci MPMC LLM

140 0.03686 0.02794 0.02701 0.01870 0.01373 0.01151
180 0.03200 0.02300 0.02283 0.01454 0.01147 0.01058
220 0.02323 0.01924 0.01868 0.01190 0.00975 0.00891
260 0.02062 0.01546 0.01581 0.01063 0.00843 0.00831
300 0.01994 0.01341 0.01424 0.00972 0.00752 0.00741
340 0.01950 0.01353 0.01266 0.00858 0.00710 0.00696
380 0.01659 0.01167 0.01170 0.00768 0.00695 0.00638
420 0.01617 0.01194 0.01058 0.00694 0.00584 0.00563
460 0.01279 0.00972 0.00966 0.00634 0.00540 0.00471
500 0.01172 0.00848 0.00889 0.00583 0.00518 0.00509
540 0.01101 0.00967 0.00823 0.00540 0.00488 0.00407
580 0.01261 0.00956 0.00766 0.00503 0.00476 0.00377
620 0.01140 0.00782 0.00744 0.00470 0.00454 0.00386
660 0.01074 0.00956 0.00699 0.00463 0.00437 0.00360
700 0.00933 0.00865 0.00682 0.00437 0.00416 0.00379
740 0.00891 0.00709 0.00646 0.00435 0.00397 0.00346
780 0.00870 0.00662 0.00612 0.00412 0.00376 0.00310
820 0.00881 0.00678 0.00583 0.00392 0.00360 0.00294
860 0.00914 0.00604 0.00556 0.00374 0.00356 0.00316
900 0.00751 0.00561 0.00531 0.00357 0.00319 0.00296
940 0.00785 0.00481 0.00508 0.00342 0.00321 0.00289
980 0.00768 0.00558 0.00487 0.00328 0.00308 0.00280
1020 0.00777 0.00395 0.00468 0.00315 0.00303 0.00245

Table 7: 2D Star Discrepancy Comparison for N ≥ 140. This table compares the performance of LLM evolutionary search
against classical low-discrepancy sequences and the state-of-the-art MPMC method for larger point sets where optimal solutions
are not known. Lower values indicate better uniformity. The best result in each row is bolded.

Basket Options
A basket option’s payoff depends on the value of a portfo-
lio or ”basket” of multiple underlying assets. It is an inher-
ently high-dimensional problem where the correlation (ρ)
between the assets is a critical parameter. For these tests,
we assume a uniform initial price of S0 = 100.00 for all 32
assets in the basket.

Bermudan Options
A Bermudan option is a hybrid between a European option
(exercisable only at expiration) and an American option (ex-
ercisable at any time). It can be exercised on a discrete set of
pre-specified dates. Pricing a Bermudan option is a highly
complex problem that requires solving a dynamic program-
ming problem to determine the optimal exercise strategy.

RQMC Integration Results
This appendix provides the detailed results for the primary
benchmark (Asian Option) and the generalizability tests (ex-
otic options). Each table compares the performance of the
standard Sobol’ sequence (Joe & Kuo) against the direc-
tion numbers discovered by LLM evolutionary search. We
report the Mean Squared Error (MSE) and its constituent
parts, Squared Bias and Variance, for an increasing num-
ber of points (N). We consistently found lower variance and
MSE for all options types for all N ≥ 512 with two excep-
tions: close barrier option (N = 2048) and a high correlation
basket option (N = 2048).



LLM Prompt for Direct Construction

You are an expert mathematician specializing in the construction of QMC sam-
pling points in a square. Your task is to improve a constructor function that
directly outputs the position of 16 points on a unit square ([0, 1] x [0, 1])
in a way that minimizes the star discrepancy.
The star discrepancy is a measure of how uniformly distributed the points are
in the square. It is defined as the supremum of the absolute value of the dif-
ference between the fraction of points and the area.
Focus on designing an explicit constructor that specifies the position of each
point (x, y) in the unit square, rather than an iterative search algorithm.
It should output the position of each point (x, y) in the square [0, 1] x [0,
1]. 0.0 and 1.0 are included in the square.

Figure 4: The full prompt provided to the LLM for generating programs that directly construct point sets with minimum star
discrepancy.

LLM Prompt for Iterative Optimization

You are an expert mathematician specializing in the construction of QMC sam-
pling points in a 2D square. Your task is to improve a constructor function
that finds the position of 16 points on a unit square ([0, 1] x [0, 1]) in a
way that minimizes the star discrepancy.
The star discrepancy is a measure of how uniformly distributed the points are
in the square. It is defined as the supremum of the absolute value of the dif-
ference between the fraction of points and the area.
Use scipy optimization routines such as scipy.optimize.minimize to fine-tune
the construction. The optimization routine and its initialization is critically
important.
It should output the position of each point (x, y) in the square [0, 1] x [0,
1]. 0.0 and 1.0 are included in the square.

Figure 5: The full prompt provided to the LLM for generating programs that iteratively optimize point sets to have minimum
star discrepancy.

Option Type Scenario Initial Price (S0) Strike Price (K) Volatility (σ) Other Parameters
Asian Training Example 50.00 45.00 0.3 —

Out-of-the-Money 50.00 60.00 0.3 —
At-the-Money 50.00 52.50 0.3 —
In-the-Money 50.00 40.00 0.3 —
High Volatility 50.00 52.50 0.6 —
Low Volatility 50.00 52.50 0.1 —

Lookback Base 100.00 — 0.2 —
High Volatility 100.00 — 0.4 —

Barrier Base 100.00 100.00 0.2 Barrier Level: 85.00
Close Barrier 100.00 100.00 0.2 Barrier Level: 95.00

Basket (32D) Low Correlation — 100.00 0.2 ρ: 0.1
High Correlation 100.00 100.00 0.2 ρ: 0.8
Mixed Volatility 100.00 100.00 U(0.15, 0.4) ρ: 0.5
Out-of-the-Money 100.00 110.00 0.2 ρ: 0.1

Bermudan At-the-Money 100.00 100.00 0.2 Exercise Dates: 4
In-the-Money 90.00 100.00 0.2 Exercise Dates: 4

Table 8: Configuration Parameters for All Tested Option Scenarios. This table details the parameters for the 32-dimensional
options used in the primary benchmark and generalizability tests. For all scenarios, the time to expiration (T) is 1.0 year and
the risk-free interest rate (r) is 0.05. An em-dash (—) indicates a parameter is not applicable to that option type.



LLM Prompt for Sobol’ Direction Numbers Search

You are an expert mathematician specializing in the construction of QMC sam-
pling points in a square. Your task is to improve a constructor function that
directly outputs the direction numbers for dimensions 2 to 32 of a Sobol Se-
quence.
Your goal is to minimize the approximation error of a 32 dimensional asian op-
tion price. The dimensions 1, 2, and 3 explain roughly 97% of the variance of
the price.
The Sobol sequence is defined by a polynomial of degree s, with coefficients
represented as an integer a, and direction numbers mi for each dimension i. The
direction numbers must be odd integers and within the specified range.
You must return a list of 31 dictionaries for directions 2 to 32, each contain-
ing the following keys:
- "s" (int): The degree of the polynomial. 1 <= s <= 30
- "a" (int): The coefficients of the polynomial, represented as an integer. 0
<= a < 2s-1

- "mi " (list[int]): The direction numbers for the Sobol sequence, represented
as a list of integers of length s. Each integer should be in the range [0,
2i+1] and has to be odd.
Focus on designing an explicit constructor that specifies these parameters,
rather than an iterative search algorithm.

Figure 6: The full prompt provided to the LLM for generating a program that directly specifies Sobol’ direction numbers to
have lower integration error for an Asian Option.



Scenario N Squared Bias Variance MSE p-value
Sobol LLM Sobol LLM Sobol LLM

Training Example 32 2.09e-05 5.59e-07 0.2484 0.2523 0.2484 0.2523 0.9757
64 5.37e-06 9.58e-06 0.0642 0.0665 0.0642 0.0665 0.9980
128 5.10e-06 4.96e-06 0.0183 0.0192 0.0183 0.0192 0.9999
256 2.87e-07 1.43e-07 0.0056 0.0061 0.0056 0.0061 1.0000
512 6.09e-08 3.51e-09 0.001646 0.001614 0.001646 0.001614 0.2841
1024 7.89e-08 1.33e-08 0.000542 0.000524 0.000542 0.000524 0.0548
2048 2.60e-08 2.30e-12 0.000233 0.000225 0.000233 0.000225 0.0199
4096 9.11e-10 3.46e-09 9.876e-05 9.346e-05 9.876e-05 9.346e-05 0.0058
8192 1.55e-09 1.93e-10 4.523e-05 4.104e-05 4.523e-05 4.104e-05 7.03e-06

Out-of-the-Money 32 3.73e-05 6.41e-07 0.1920 0.1979 0.1920 0.1979 0.9757
64 1.48e-06 9.78e-09 0.0605 0.0631 0.0605 0.0631 0.9980
128 3.74e-07 1.66e-06 0.0220 0.0231 0.0220 0.0231 0.9999
256 3.07e-07 2.60e-07 0.0086 0.0089 0.0086 0.0089 1.0000
512 4.47e-08 4.05e-11 0.003469 0.003311 0.003469 0.003311 0.0208
1024 1.29e-08 4.45e-08 0.001457 0.001313 0.001457 0.001313 3.45e-08
2048 2.92e-11 3.36e-08 0.000619 0.000535 0.000619 0.000535 1.45e-14
4096 5.09e-08 1.17e-09 0.000258 0.000243 0.000258 0.000243 4.51e-04
8192 3.71e-09 3.24e-09 0.000117 0.000107 0.000117 0.000107 1.06e-06

At-the-Money 32 5.90e-05 1.35e-09 0.3246 0.3346 0.3246 0.3346 0.9757
64 1.35e-05 1.17e-05 0.0873 0.0908 0.0873 0.0908 0.9980
128 9.72e-06 1.45e-06 0.0277 0.0282 0.0277 0.0282 0.9999
256 1.12e-06 2.06e-08 0.0092 0.0098 0.0092 0.0098 1.0000
512 1.83e-08 5.57e-10 0.003248 0.003106 0.003248 0.003106 0.0208
1024 3.60e-08 4.58e-09 0.001228 0.001168 0.001228 0.001168 0.0304
2048 7.85e-11 1.82e-08 0.000550 0.000521 0.000550 0.000521 0.0131
4096 3.16e-10 8.98e-10 0.000240 0.000226 0.000240 0.000226 0.0019
8192 7.47e-09 3.31e-09 0.000102 9.522e-05 0.000102 9.523e-05 0.0100

In-the-Money 32 1.93e-05 3.11e-09 0.1397 0.1428 0.1398 0.1428 0.9757
64 2.30e-06 2.86e-06 0.0367 0.0382 0.0367 0.0382 0.9980
128 1.67e-06 1.74e-06 0.0106 0.0111 0.0106 0.0111 0.9999
256 1.08e-09 3.54e-08 0.003083 0.003373 0.003083 0.003373 1.0000
512 3.07e-10 4.26e-08 0.000868 0.000859 0.000868 0.000859 0.2841
1024 1.53e-09 6.44e-10 0.000261 0.000260 0.000261 0.000260 0.2581
2048 3.54e-10 1.28e-08 0.000101 0.000100 0.000101 0.000100 0.3878
4096 2.15e-11 3.38e-09 4.037e-05 3.949e-05 4.037e-05 3.949e-05 0.2180
8192 2.77e-10 3.70e-09 1.766e-05 1.682e-05 1.766e-05 1.683e-05 0.0047

High Volatility 32 0.000333 2.83e-07 2.0813 2.1493 2.0816 2.1493 0.9757
64 5.87e-05 4.32e-05 0.5713 0.5958 0.5714 0.5958 0.9980
128 4.41e-05 5.25e-06 0.1810 0.1877 0.1811 0.1877 0.9999
256 1.78e-06 1.90e-06 0.0598 0.0643 0.0598 0.0643 1.0000
512 2.34e-09 1.49e-08 0.0205 0.0196 0.0205 0.0196 0.0073
1024 1.21e-07 2.19e-07 0.007565 0.007060 0.007565 0.007060 3.38e-04
2048 6.34e-08 1.22e-07 0.003145 0.002867 0.003145 0.002867 1.75e-06
4096 2.93e-10 6.09e-09 0.001293 0.001233 0.001293 0.001233 0.0022
8192 3.59e-08 4.35e-08 0.000566 0.000532 0.000566 0.000532 0.0156

Low Volatility 32 5.75e-06 1.26e-08 0.0238 0.0246 0.0238 0.0246 0.9757
64 1.28e-06 6.48e-07 0.0066 0.0068 0.0066 0.0068 0.9980
128 7.71e-07 2.71e-08 0.002173 0.002205 0.002174 0.002205 0.9999
256 1.08e-07 1.12e-08 0.000756 0.000803 0.000756 0.000803 1.0000
512 6.51e-09 1.55e-09 0.000285 0.000275 0.000285 0.000275 0.0208
1024 5.18e-09 1.20e-09 0.000113 0.000109 0.000113 0.000109 0.0717
2048 2.66e-10 2.17e-09 5.214e-05 4.961e-05 5.214e-05 4.961e-05 0.0056
4096 1.26e-10 1.39e-10 2.323e-05 2.196e-05 2.323e-05 2.196e-05 5.68e-04
8192 3.43e-10 3.09e-10 1.008e-05 9.300e-06 1.008e-05 9.300e-06 1.27e-04

Table 9: Integration results for the Asian Option across all six scenarios. The table compares the standard Sobol’ sequence (Joe
& Kuo) against the direction numbers discovered by LLM evolutionary search. We report the Mean Squared Error (MSE), its
constituent parts (Squared Bias and Variance), and the FDR-corrected p-value from a one-sided Wilcoxon signed-rank test.
P-values below 0.05 and the best methods are bolded.



Scenario N Squared Bias Variance MSE p-value
Sobol LLM Sobol LLM Sobol LLM

Base 32 3.90e-06 8.56e-05 1.2138 1.2443 1.2138 1.2444 0.9968
64 4.16e-06 3.01e-05 0.4725 0.4839 0.4725 0.4840 1.0000
128 3.14e-06 2.35e-07 0.1272 0.1352 0.1272 0.1352 1.0000
256 1.61e-06 4.90e-06 0.0352 0.0381 0.0352 0.0381 1.0000
512 8.86e-07 1.10e-06 0.0121 0.0120 0.0121 0.0120 0.4675
1024 9.64e-07 1.43e-06 0.005021 0.004905 0.005022 0.004907 0.0342
2048 6.88e-08 1.29e-07 0.001834 0.001744 0.001834 0.001744 4.13e-04
4096 1.32e-07 5.59e-08 0.000807 0.000768 0.000807 0.000768 2.38e-04
8192 5.21e-08 3.61e-08 0.000407 0.000377 0.000407 0.000377 9.84e-09

High Volatility 32 2.13e-04 4.44e-04 8.5591 8.7869 8.5593 8.7873 0.9968
64 6.04e-08 1.16e-04 3.3964 3.5134 3.3964 3.5136 1.0000
128 2.87e-05 2.57e-06 0.8854 0.9982 0.8854 0.9982 1.0000
256 3.14e-06 1.46e-05 0.2403 0.2663 0.2403 0.2663 1.0000
512 7.96e-07 1.11e-07 0.0809 0.0792 0.0809 0.0792 0.3836
1024 2.57e-06 7.04e-06 0.0325 0.0312 0.0325 0.0312 6.24e-04
2048 3.37e-07 4.92e-08 0.012003 0.011234 0.012003 0.011234 2.26e-06
4096 1.47e-07 2.32e-08 0.004862 0.004558 0.004862 0.004558 2.65e-06
8192 2.12e-10 6.25e-09 0.002335 0.002057 0.002335 0.002057 9.79e-17

Table 10: Integration results for the Lookback Option across two scenarios. We report FDR-corrected P-values from a one-sided
Wilcoxon signed-rank test. P-values below 0.05 and the best methods are bolded.

Scenario N Squared Bias Variance MSE p-value
Sobol LLM Sobol LLM Sobol LLM

Base 32 1.13e-04 2.87e-05 2.2540 2.3339 2.2541 2.3339 0.9968
64 2.17e-05 4.56e-06 0.8386 0.8894 0.8386 0.8894 1.0000
128 2.32e-05 2.37e-05 0.2533 0.3101 0.2534 0.3101 1.0000
256 1.97e-06 7.40e-06 0.0707 0.0834 0.0707 0.0834 1.0000
512 5.72e-07 4.84e-06 0.0245 0.0241 0.0245 0.0241 0.4675
1024 7.63e-07 7.40e-07 0.009948 0.009819 0.009948 0.009819 0.3313
2048 4.03e-07 1.12e-06 0.004277 0.004230 0.004277 0.004231 0.3025
4096 8.61e-08 1.00e-07 0.002019 0.001992 0.002019 0.001992 0.3863
8192 1.82e-08 5.70e-08 0.000985 0.000955 0.000985 0.000955 0.0859

Close Barrier 32 9.55e-04 1.27e-04 3.2150 3.2754 3.2160 3.2755 0.9968
64 6.55e-05 1.44e-05 1.1229 1.2054 1.1229 1.2054 1.0000
128 5.52e-05 1.14e-05 0.4541 0.5183 0.4542 0.5183 1.0000
256 3.62e-05 8.39e-07 0.1733 0.1775 0.1733 0.1775 1.0000
512 3.76e-05 7.16e-07 0.0723 0.0690 0.0723 0.0690 0.2364
1024 2.27e-05 2.62e-06 0.0328 0.0326 0.0328 0.0326 0.4459
2048 1.52e-06 1.13e-09 0.01594 0.01648 0.01594 0.01648 0.9126
4096 3.83e-07 4.25e-07 0.007027 0.006727 0.007028 0.006728 0.0574
8192 3.48e-09 3.79e-07 0.003379 0.003266 0.003379 0.003267 0.1613

Table 11: Integration results for the Barrier Option across two scenarios. We report FDR-corrected p-values from a one-sided
Wilcoxon signed-rank test. P-values below 0.05 and the best methods are bolded.



Scenario N Squared Bias Variance MSE p-value
Sobol LLM Sobol LLM Sobol LLM

Low Correlation 32 3.82e-06 5.13e-07 0.1152 0.1182 0.1152 0.1182 0.9968
64 6.60e-07 1.99e-06 0.0342 0.0358 0.0342 0.0358 1.0000
128 1.18e-06 1.38e-06 0.0109 0.0126 0.0109 0.0126 1.0000
256 5.16e-08 1.38e-08 0.0036 0.0039 0.0036 0.0039 1.0000
512 3.04e-07 1.15e-08 0.001259 0.001231 0.001259 0.001231 0.2381
1024 2.00e-07 1.79e-08 0.000504 0.000473 0.000504 0.000473 0.0051
2048 5.00e-08 6.46e-11 0.000229 0.000214 0.000229 0.000214 3.79e-04
4096 1.12e-10 1.32e-09 9.886e-05 9.038e-05 9.886e-05 9.038e-05 1.68e-04
8192 1.39e-09 1.72e-10 4.740e-05 4.157e-05 4.740e-05 4.157e-05 1.92e-11

High Correlation 32 9.26e-05 9.80e-05 0.2483 0.2557 0.2484 0.2558 0.9968
64 7.77e-06 1.10e-05 0.0602 0.0570 0.0602 0.0571 2.61e-05
128 6.94e-06 2.65e-06 0.0163 0.0168 0.0163 0.0168 1.0000
256 7.96e-07 8.54e-07 0.004907 0.004944 0.004908 0.004945 1.0000
512 6.53e-08 8.95e-08 0.001527 0.001518 0.001527 0.001518 0.4675
1024 3.80e-10 1.16e-08 0.000463 0.000447 0.000463 0.000447 0.0784
2048 3.45e-09 1.57e-09 0.0001750 0.0001779 0.0001750 0.0001779 0.7419
4096 8.68e-10 7.39e-09 7.132e-05 6.609e-05 7.132e-05 6.610e-05 8.20e-04
8192 6.90e-09 1.17e-10 2.598e-05 2.448e-05 2.599e-05 2.448e-05 5.32e-03

Mixed Volatility 32 2.19e-04 9.65e-05 0.7753 0.7993 0.7755 0.7994 0.9968
64 9.78e-06 1.28e-05 0.2098 0.2071 0.2099 0.2071 0.5396
128 1.95e-05 2.19e-06 0.0647 0.0702 0.0647 0.0702 1.0000
256 4.42e-06 1.52e-06 0.0211 0.0216 0.0211 0.0216 1.0000
512 6.51e-07 6.07e-07 0.006202 0.006112 0.006202 0.006112 0.6395
1024 1.17e-08 5.20e-09 0.002089 0.002026 0.002089 0.002026 0.0784
2048 1.09e-08 4.65e-11 0.000947 0.000932 0.000947 0.000932 0.0672
4096 3.40e-09 2.79e-08 0.000447 0.000393 0.000447 0.000393 1.45e-10
8192 1.80e-08 2.19e-12 0.000156 0.000143 0.000156 0.000143 1.48e-05

Out-of-the-Money 32 2.43e-05 2.29e-09 0.1165 0.1205 0.1166 0.1205 0.9968
64 2.81e-06 4.90e-09 0.0367 0.0387 0.0367 0.0387 1.0000
128 2.55e-06 2.01e-07 0.0127 0.0143 0.0127 0.0143 1.0000
256 5.97e-07 4.26e-10 0.004370 0.004627 0.004371 0.004627 1.0000
512 2.65e-07 2.67e-08 0.001602 0.001553 0.001602 0.001553 0.2364
1024 3.70e-08 2.12e-09 0.000652 0.000623 0.000652 0.000623 0.0651
2048 5.68e-09 3.00e-11 0.000292 0.000281 0.000292 0.000281 0.0856
4096 1.01e-08 5.67e-09 0.000125 0.000120 0.000125 0.000120 0.0027
8192 1.58e-11 1.66e-09 5.949e-05 5.392e-05 5.949e-05 5.392e-05 2.53e-06

Table 12: Integration results for the 32-dimensional Basket Option across four scenarios. We report FDR-corrected p-values
from a one-sided Wilcoxon signed-rank test. P-values below 0.05 and the best methods are bolded.



Scenario N Squared Bias Variance MSE p-value
Sobol LLM Sobol LLM Sobol LLM

At-the-Money 32 0.8165 0.8272 0.5744 0.5826 1.3909 1.4098 0.9968
64 0.2544 0.2627 0.2403 0.2372 0.4948 0.4999 1.0000
128 0.0698 0.0725 0.0941 0.0951 0.1639 0.1677 1.0000
256 0.0182 0.0192 0.0441 0.0445 0.0624 0.0637 1.0000
512 0.0044 0.0041 0.0218 0.0221 0.02621 0.02622 0.4675
1024 9.87e-04 9.33e-04 0.0118 0.0112 0.0128 0.0122 0.0115
2048 2.77e-04 2.46e-04 0.005957 0.005713 0.006234 0.005960 0.0018
4096 5.23e-05 4.25e-05 0.002696 0.002676 0.002749 0.002718 0.3863
8192 1.10e-05 8.45e-06 0.001324 0.001273 0.001335 0.001281 0.0457

In-the-Money 32 0.8888 0.8979 0.5629 0.5549 1.4518 1.4528 0.9968
64 0.2226 0.2296 0.2507 0.2509 0.4733 0.4805 1.0000
128 0.0478 0.0489 0.1183 0.1169 0.1662 0.1658 1.0000
256 0.0092 0.0093 0.0564 0.0563 0.0656 0.0656 1.0000
512 0.0020 0.0019 0.0284 0.0278 0.0304 0.0297 0.4675
1024 3.75e-04 4.09e-04 0.0145 0.0135 0.0149 0.0139 0.0142
2048 6.75e-05 7.12e-05 0.007354 0.006584 0.007422 0.006655 1.22e-05
4096 1.17e-05 9.36e-06 0.003369 0.003128 0.003381 0.003137 7.39e-04
8192 3.56e-06 3.86e-06 0.001660 0.001523 0.001664 0.001527 1.62e-04

Table 13: Integration results for the Bermudan Option across two scenarios. We report FDR-corrected p-values from a one-sided
Wilcoxon signed-rank test. P-values below 0.05 and the best methods are bolded.


