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Abstract

Accurate multi-slice reconstruction from limited measure-
ment data is crucial to speed up the acquisition process in
medical and scientific imaging. However, it remains challeng-
ing due to the ill-posed nature of the problem and the high
computational and memory demands. We propose a frame-
work that addresses these challenges by integrating parti-
tioned diffusion priors with physics-based constraints. By do-
ing so, we substantially reduce memory usage per GPU while
preserving high reconstruction quality, outperforming both
physics-only and full multi-slice reconstruction baselines for
different modalities, namely Magnetic Resonance Imaging
(MRI) and four-dimensional Scanning Transmission Electron
Microscopy (4D-STEM). Additionally, we show that the pro-
posed method improves in-distribution accuracy as well as
strong generalization to out-of-distribution datasets.

Introduction
Reconstructing multi-slice images has become increasingly
important in scientific disciplines, such as medical imaging,
plant science, biology, and materials science (Midgley and
Weyland 2003; Lee et al. 2023; Schulz et al. 2012; Chung
et al. 2023; Bangun et al. 2025; Liu et al. 2024), mainly to
enhance the visualization, analysis, and interpretation of the
complex object structures. A persistent challenge in MRI is
the inherently slow data acquisition process, which is fur-
ther compounded by the growing demand for 3D object re-
construction through multi-slice (Zbontar et al. 2018; Ban-
gun et al. 2025). Hence, the main challenge in accelerat-
ing MRI is to reconstruct multi-slice images from under-
sampled measurements. Similarly, in four-dimensional scan-
ning transmission electron microscopy (4D-STEM) only
intensity measurements are recorded in electron detector,
thereby creating a demand to retrieve 3D phase information
of the object under investigation, i.e., electrostatic potential
of materials, through multi-slices model (Maiden, Humphry,
and Rodenburg 2012; Bangun et al. 2022; Diederichs et al.
2024). Most proposed model-based methods for multi-slice
reconstruction for both MRI and 4D-STEM, highly depen-
dent on the initialization of the algorithm, yielding poor flex-
ibility and often leading to suboptimal reconstructions.
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Diffusion models have become powerful tools for gener-
ating both 2D and 3D images, achieving notable success in
computer vision, data augmentation, and image/video gen-
eration (Ho, Jain, and Abbeel 2020; Ho et al. 2022; Sohl-
Dickstein et al. 2015; Song and Ermon 2019, 2020; Song
et al. 2020). These models excel at capturing complex data
distributions and generating high-fidelity images by itera-
tively refining samples from a random distribution into co-
herent structures. Despite their success with natural images,
applying diffusion models to scientific images is challenging
due to their unique characteristics, which arise from special-
ized modalities such as microscopy, spectroscopy, or med-
ical imaging. The incorporation of multi-slice reconstruc-
tion requirements further amplifies these challenges. In par-
ticular, scientific data requires volumetric consistency, ro-
bustness to acquisition physics, and interpretability, which
conventional diffusion frameworks do not provide directly.
Therefore, applying diffusion models directly to scientific
imaging raises questions about their suitability and whether
they can enhance reconstruction quality while enabling fast
image generation.

We propose a framework that integrates partitioned dif-
fusion priors with physics-based forward models, pro-
viding scalable training and physics-consistent inference
for multi-slice reconstruction, namely DART: Diffusion-
Alternating Multi-slice Reconstruction Technique and
DRIFT: Diffusion-Refined Initialization for Multi-slice Re-
construction. We empirically show that our algorithms are
efficient in computation and memory usage (more than 8×)
and robust to out-of-distribution (OOD) data.

Background
Diffusion Models
Diffusion models use a neural network Sθ (Xt, t) to learn
original data X0, where training data is perturbed at each
step t with variance βt,

Xt =
√

1− βtXt−1 +
√

βtZt−1, t ∈ [T ],

with Z a Gaussian noise. The trained model with optimal
parameters θ∗ is used in inference via sampling (Ho, Jain,
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Figure 1: Data acquisition of a brain in MRI (k-space) and 4D-STEM (diffraction patterns) of crystalline materials, as well as
proposed methods: DART (alternating update between trained diffusion prior and physics constraints) and DRIFT (diffusion
priors as initialization before applying physical constraints). Physical constraints G(X) are adapted depending on the modality
(MRI or 4D-STEM).

and Abbeel 2020; Ho et al. 2022)

Xt−1 = 1
1− βt

(Xt + βtS∗
θ (Xt, t)) +

√
βtZt. (1)

Intuitively, diffusion models learn to iteratively denoise ran-
dom noise into structured data samples. This makes dif-
fusion models attractive as generative priors for scientific
imaging.

Physics of MRI and 4D-STEM
In many physical modalities, due to accelerated data acquisi-
tion or physical limitations of the measurement process, only
limited data can be acquired. For example, to accelerate 3D
MRI acquisition, undersampled k-space data are collected
and can be modeled as Ŷs = M ◦ Ys, where M selects
rows/columns from full k-space Ys ∈ CN×N for each slice
s ∈ {1, 2, . . . S}.

A similar condition appears in multi-slice 4D-STEM,
where only intensity measurement can be recorded. In multi-
slice 4D-STEM, the exit wave after the first slice of crys-
talline materials X1 ∈ CN×N is given by

E(r)
1 = X1 ◦P(r),

where P(r) is the focused electron beam at scan point r in
two-dimensional coordinate axes with element-wise product
◦. The exit wave is propagated through vacuum distance be-
tween slices using Fresnel operator V ,

E(r)
s = Xs ◦ V

(
E(r)

s−1

)
, s ∈ {2, . . . , S}.

At the last slice S, the exit wave E(r)
S produces diffraction

patterns with Fourier transform F , recorded as

I(r) =
∣∣∣F (E(r)

S

)∣∣∣2 ∈ RN×N .

The acquisition process for both undersampled MRI and 4D-
STEM are shown in Figure 1.

The goal in both multi-slice MRI and 4D-STEM is to
reconstruct multi-slice object X ∈ CS×N×N given incom-
plete measurement data, i.e., undersampled k-space in MRI
or phase retrieval problem from projection intensities with
total scan R = Sx × Sy in 4D-STEM. The optimization
problem for 4D-STEM in terms of Frobenius norm is

X∗ = arg min
X∈CS×N×N

R∑
r=1

∥∥∥I(r) −
∣∣F (H (X, P(r)))∣∣2∥∥∥2

F
+ R (X) ,

(2)
whereHmodels slice interaction and Fresnel propagation in
forward 4D-STEM multi-slice, P(r) is the known focused
probe, and R is a regularizer. For MRI, the corresponding
optimization is

X∗ = arg min
X∈CS×N×N

S∑
s=1

∥∥Ŷs − M ◦ (F (Xs))
∥∥2

F
+ R (X) , (3)

In both settings, incomplete measurements (missing k-space
lines in MRI, missing phase information in 4D-STEM) make
recovery particularly challenging. Moreover, solutions to
these optimization problems depend heavily on initializa-
tion, motivating the integration of diffusion priors trained
on relevant data distributions. We denote optimization prob-
lems (2) (3) as G (X).

Methods
We propose a physics-guided partitioned diffusion inference
framework for multi-slice reconstruction by incorporating
trained neural network to generate multi-slice priors. Since
the training is straightforward by partitioning the multi-slice
data of the MRI object, i.e., brain, and the electron mi-
croscopy object, i.e., crystalline materials, we focus on the
inference aspect first and defer the training procedure to the
numerical section.

Measurement data (MRI k-space or 4D-STEM diffrac-
tion patterns) are incorporated through the respective physi-
cal models, ensuring that inference respects instrument con-
straints. To scale inference across multiple GPUs, S slices
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Figure 2: Example of cubic crystal materials: unit cells of gallium arsenide (GaAs) with volume dimension 5.65333Å3 (a),(b)
projection and 3D visualization, strontium titanate (SrTiO3) with volume dimension 3.9053Å3 (c), (d) projection and 3D vi-
sualization. In the multi-slice method, each slice is obtained by calculating the projection of each atomic plane along the z
direction.

Algorithm 1: Physics-Guided Partitioned Diffusion Infer-
ence (DRIFT / DART)

Require: #GPUs G, model G, measurement data Ŷs

(MRI) or I(r) (4D-STEM)

1: Initialize X =
{

X ∈ CL×S×N×N (DRIFT)
X ∈ CS×N×N (DART)

2: for t = T to 1 do
3: Slice size Bg = ⌈S/G⌉
4: for all GPU g = 0 . . . G− 1 in parallel do
5: Block Sg = min((g + 1)Bg, S)− gBg

6: Extract Xg ∈ CSg×N×N or
7: Xg ∈ CL×Sg×N×N

8: Xg ← DDPMSampler(Xg, t) in (1)
9: Send Xg → root

10: end for
11: Gather all Xg → X
12: if mode = DART then
13: X← G(Ŷs or I(r), X) ▷ apply physics model
14: end if
15: end for
16: if mode = DRIFT then
17: X← argmax

l∈[L]
SSIM(Ŷs or I(r), X)

18: X← G(Ŷs or I(r), X) ▷ physics refinement
19: end if
20: return X ∈ CS×N×N

are distributed uniformly over G GPUs (⌈S/G⌉ each), en-
abling parallel processing and efficient memory usage. Our
approach includes two complementary variants:
• DART (Diffusion-Alternating Multi-slice Reconstruc-

tion): alternates between diffusion prior updates and
physics-based constraints at each iteration.

• DRIFT (Diffusion-Refined Initialization for Multi-slice
Reconstruction): uses diffusion priors to generate a high-
quality initialization, followed by physics-based refine-
ment.

The inference procedure is summarized in Algorithm 1,
as well as in Figure 1 where the main difference between
DART and DRIFT is visualized. In DRIFT model, the SSIM

function is calculated to measure the similarity of the initial-
ization with the measurement data. For MRI, the SSIM is
evaluated after inverse Fourier transform of undersampled
k-space Ŷs per slice, i.e., F−1

(
Ŷs

)
. On the contrary, in

4D-STEM, the bright field image is calculated by integrat-
ing or summing the detector image to have two-dimensional
data related to the scan dimension before calculating SSIM,
i.e., sum over last two axes of dimension (Sy, Sx, N, N) to
get (Sy, Sx).

The operator G(X) enforces measurement consistency
with the underlying physical model. For MRI, this corre-
sponds to a data-consistency step that replaces the sampled
entries in k-space with the acquired measurements:

X(k+1)
s = Prox

(
X(k)

s − λ ∇Xs

S∑
s=1

∥∥Ŷs − M ◦ (F (Xs))
∥∥2

F

)
,

(4)
where F denotes the Fourier transform, M is the sampling
mask, and λ is a step size.

For 4D-STEM, G corresponds to one step of gradient de-
scent on the intensity-based loss in Eq. (2):

X(k+1) = Prox

(
X(k) − η ∇X

R∑
r=1

∥∥∥I(r) −
∣∣F(H(X(k), P(r)))

∣∣2∥∥∥2

F

)
,

(5)
where η is the step size and the strategy to choose the step
size is given for instance in (Xu et al. 2018). The function
Prox is the proximal function for regularization, for instance,
soft thresholding for the sparse structure of the data (Parikh,
Boyd et al. 2014).

In practice, we use a fixed number of physics-update it-
erations per diffusion step. For instance, in DART approach
for every diffusion step we perform one step gradient up-
date. In DRIFT, we perform 100 steps gradient update after
initialization from the diffusion model for complete step T .
This modular design allows the same framework to general-
ize across different modalities by substituting the appropri-
ate physical constraint G.

Numerical Experiments
We evaluate our methods on two scientific imaging applica-
tions: MRI and 4D-STEM. Apart from the contribution for



inference algorithms, DART and DRIFT, diffusion model is
also trained with multi-slice MRI and crystalline materials
data.

Training Procedures
For MRI, we use T2-FLAIR Brain Tumor Segmentation
(BraTS) 2020 (Bakas et al. 2017, 2018; Menze et al. 2014)
with dimensions 155 × 240 × 240. For 4D-STEM, we use
a cubic crystal system with lattice structure from the Mate-
rials Project (Jain et al. 2013). Multi-slice algorithm imple-
mented in (Durham et al. 2022) is used to generate slices
of atomic potentials. The dataset contains pixel dimensions
10 × 80 × 80 per file with a total of 3533 files. A visual-
ization of the material can be seen in Figure 2. We use
a video diffusion model (Ho et al. 2022) that extends 2D
U-Nets using convolutions and attention mechanisms that
operate separately over spatial and temporal dimensions, to
efficiently capture both the appearance and motion present
in video data, which is aligned with both multi-slice MRI
and crystalline materials. The model is used with base width
64 and channel multipliers (1, 2, 4, 8). Additionally, it is
trained with 700,000 steps using ℓ1 loss, learning rate 10−4,
batch-level gradient accumulation over 2 steps, and other
hyperparameters following (Ho et al. 2022). To address the
computational complexity of training, we adopt a slice-wise
training strategy. The axial slices of MRI and crystal data
are partitioned into G groups with respect to the number of
GPUs and each assigned to an independent diffusion model.
To guarantee the reconstruction of each measurement data
for MRI (k-space) and 4D-STEM (diffraction patterns), it
should be incorporated in the inference process, as presented
in Figure 1.

Magnetic Resonance Imaging
We report numerical results in terms of SSIM in Table 1
evaluated on 30 random multi-slice data. Figure 3 shows
the slice reconstruction for various algorithms. It can be
seen that DART achieves higher SSIM values for recon-
structing slices and preserves anatomical details close to the
ground truth despite the undersampled k-space using a uni-
form mask. Overall, these results demonstrate that both pro-
posed methods (DART and DRIFT) successfully reconstruct
the structural information, closely matching the fully sam-
pled ground truth data despite undersampled k-space.

4D-Scanning Transmission Electron Microscopy
For evaluation, 30 multi-slices ground truth crystalline ma-
terials are generated. The intensity of diffraction patterns is
acquired with total scan R = Rx × Ry = 80× 80 with de-
tector’s dimension 80×80. Table 1 presents a comparison of
SSIM values across other methods, namely Sparse Decom-
position (Bangun et al. 2022), 3PIE (Maiden, Humphry, and
Rodenburg 2012), and Torchslice (Diederichs et al. 2024).
The phase projection of materials is used to evaluate the
SSIM. DRIFT achieves the highest mean SSIM, suggest-
ing that it delivers the most accurate reconstruction quality
by leveraging a trained diffusion model before generating
promising initial guesses and refining them with a physics-
based iterative solver. One of the reasons DART performs

worse in 4D-STEM case is that, unlike the MRI case, where
for each slice we have a unique pair of k-space images, in
4D-STEM, the measurement data is only the projected in-
tensity, which leads to slow convergence. Figure 3 presents
2D phase projections for two cubic crystalline materials,
namely CoPt3 and Tb3InC. Each projection is annotated
with its SSIM value, reflecting the structural similarity to
the ground truth. SOTA algorithms also achieve high SSIM
for this dataset but lower SSIM on average.

Out-of-Distribution Data
We additionally validate our methods against baselines on
out-of-distribution (OOD) data, which is critical for real-
world deployment when large annotated datasets are not
available. In Table 2, we present the evaluation results on the
plant roots dataset (Schulz et al. 2012) and hexagonal crys-
talline materials from Material Projects (Jain et al. 2013).
Both DART and DRIFT perform reconstruction using mod-
els pre-trained on MRI BraTS and cubic crystal data, with
an 8× acceleration factor mask based on a Gaussian dis-
tribution to undersample MRI measurement data (k-space).
DART and DRIFT maintain higher SSIM under OOD set-
tings for both MRI and 4D-STEM, respectively, indicating
better generalization. Figure 4 shows example reconstruc-
tions, where both DART and DRIFT further preserve both
structural and intensity information, even when tested on
out-of-distribution data.

Ablation Studies
Incorporating diffusion models into scientific imaging re-
quires consideration of the physical characteristics of the
data acquisition process.

Figure 5 shows the trade-off between inference time and
the quality of reconstruction given measurement data for
vanilla diffusion model and the proposed algorithms across
8 GPUs. In the absence of physical constraints and mea-
surement data, the vanilla diffusion model fails to produce
reconstructions that are faithful to the ground truth, as in-
dicated by lower SSIM. It can be observed that DART in-
creases a small fraction of the run time for inference step
T ∈ {10, 100, 1000}. However, for DRIFT, the run time
highly depends on the number of images we generate.

We also show that distributing the data to more GPUs
helps to speed up the inference process and reduce mem-
ory allocation. The memory demand for the vanilla diffusion
model with multi-slice dimension 155 × 240 × 240 is very
high, i.e., 54.55 GB. This might exceed many common GPU
configurations and lead to out-of-memory issues. Therefore,
partitioning the job across multiple GPUs not only produces
a speed up but also helps to keep per-GPU memory usage
within our limits.

Quantitative Evaluation of Generated Multi-Slice
Beyond time and memory benchmarks, we assess the dis-
tributional similarity between multi-slice images generated
from a vanilla partitioned diffusion model and ground-truth
using FVD (Fréchet Video Distance) (Unterthiner et al.
2019; Ge et al. 2024) and JEDi (JEPA Embedding Distance)



Table 1: Mean and standard deviation of SSIM from BraTS data and cubic crystal data. The bold and underline represent the
best and second-best results.

Dataset Mask Types Methods SSIM (↑)

BRATS
MRI

Uniform
2×,0.15

DART 0.968 ± 0.011
DRIFT (L = 16) 0.938 ± 0.023

Projection-Based (Bangun et al. 2025) 0.844 ± 0.027
CS MRI (Lustig, Donoho, and Pauly 2007) 0.804 ± 0.025

TV (Block, Uecker, and Frahm 2007) 0.803 ± 0.024

Cubic
Crystal Data

DART 0.607 ± 0.406
DRIFT (L = 16) 0.899 ± 0.091

− Sparse Decom (Bangun et al. 2022) 0.831 ± 0.198
3PIE (Maiden, Humphry, and Rodenburg 2012) 0.887 ± 0.243

Torchslice (Diederichs et al. 2024) 0.823 ± 0.115

Mask Projection-Based

Sparse Decomp

DART Ground Truth

Ground Truth

TVCS-MRIDRIFT

DART DRIFT Torchslice 3PIE

Figure 3: Single slice MRI with zoomed-in region of interest from the volume reconstruction of file BraTS20 Training
338 t1ce (top) and BraTS20 Training 039 t1ce (bottom); Projection-based (Bangun et al. 2025); DART; DRIFT; CS MRI
(Lustig, Donoho, and Pauly 2007); Total Variation (Block, Uecker, and Frahm 2007). Phase Projection of crystalline materials
CoPt3 (top) and Tb3InC (bottom) benchmarking with Sparse Decomposition (Bangun et al. 2022); DART; DRIFT; Torchslice
(Diederichs et al. 2024); 3PIE (Maiden, Humphry, and Rodenburg 2012).Top right are visual quality metrics, namely SSIM.

(Luo et al. 2025). In the absence of physics-based condition-
ing, a vanilla diffusion model stochastically generates multi-
slice from the learned prior, so distribution-level metrics
such as FVD and JEDi are the appropriate measure. We re-
port three variants: FVD with i3D features, FVD with Video-

MAE features, and JEDi with V-JEPA features. Evaluations
span 50–366 generated multi-slice data under two configu-
rations: (i) single-GPU generation of 40 × 240 × 240 vol-
umes; (ii) 2-GPU distributed generation that produces two
independent 20 × 240 × 240 stacks and concatenates them



Table 2: Mean and standard deviation of SSIM from OOD data, namely Roots and Hexagonal Crystal Data. The bold and
underline represent the best and second-best results.

Dataset Mask Types Methods SSIM (↑)

Roots
MRI

Gaussian
8×,0.08

DART 0.813 ± 0.130
DRIFT (L = 16) 0.750 ± 0.174

Projection-Based (Bangun et al. 2025) 0.611 ± 0.169
CS MRI (Lustig, Donoho, and Pauly 2007) 0.676 ± 0.151

TV (Block, Uecker, and Frahm 2007) 0.577 ± 0.163

Hexa
Crystal Data

DART 0.588 ± 0.355
DRIFT (L = 16) 0.981 ± 0.010

− Sparse Decom (Bangun et al. 2022) 0.977 ± 0.011
3PIE (Maiden, Humphry, and Rodenburg 2012) 0.953 ± 0.041

Torchslice (Diederichs et al. 2024) 0.573 ± 0.025

Mask Projection-Based DART Ground TruthTVCS-MRIDRIFT

Sparse Decomp Ground TruthDART DRIFT Torchslice 3PIE

Figure 4: Single slice MRI from the volume reconstruction of file soybean roots; Projection-based (Bangun et al. 2025); DART;
DRIFT; CS MRI (Lustig, Donoho, and Pauly 2007); Total Variation (Block, Uecker, and Frahm 2007). Phase Projection of crys-
talline materials WSe2 benchmarking with Sparse Decomposition (Bangun et al. 2022); DART; DRIFT; Torchslice (Diederichs
et al. 2024); 3PIE (Maiden, Humphry, and Rodenburg 2012). Top right are visual quality metrics, namely SSIM.

# Generated FVD-i3D (↓) FVD-VideoMAE (↓) JEDi (↓)
3D (single) 2-GPU (stack) 3D (single) 2-GPU (stack) 3D (single) 2-GPU (stack)

50 2,099.01 2,638.97 251.70 751.61 7.74 9.64
100 2,109.51 2,675.64 261.79 762.91 7.49 9.54
150 2,187.89 2,653.14 263.68 759.70 7.36 10.06
200 2,051.56 2,653.39 257.39 753.80 7.76 9.92
250 2,036.96 2,626.47 256.36 749.66 7.78 9.81
300 2,018.10 2,584.11 252.91 750.68 7.71 9.67
366 2,034.72 2,615.10 254.56 754.38 7.76 9.79

Table 3: FVD and JEDi for MRI multi-slice generated data from vanilla diffusion model. 3D (single) denotes single-GPU
generation of 40 × 240 × 240. 2-GPU (stack) denotes distributed generation of two 20 × 240 × 240 stacks concatenated to
40× 240× 240. Lower is better.

into 40× 240× 240.

Table 3 shows that the single-GPU configuration consis-
tently outperforms the 2-GPU stacked setup across all sam-
ple sizes. The gap is largest for FVD with VideoMAE fea-

tures, moderate for FVD-i3D, and smallest for JEDi, indi-
cating that concatenating independently generated 20-slice
stacks degrades space–time coherence captured by FVD,
while JEDi is comparatively robust. Although the distributed
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Figure 5: Top row: run time and SSIM of pure (vanilla) diffusion models (Ho et al. 2022), DART, and DRIFT. The experiments
are conducted on a distributed process with 8 GPUs for multi-slice MRI data with dimension 155 × 240 × 240. Bottom row:
time and memory benchmarking for DART using various numbers of GPUs.

strategy performs worse, the absolute differences are lim-
ited, suggesting it remains viable under resource constraints.
However, as we show in Figure 5, a vanilla 3D diffusion
model without physics-based constraints (e.g., measurement
models such as k-space in MRI or diffraction patterns in
4D-STEM) can yield non-unique reconstructions for exact
ground truth data.

Conclusion
This work introduces a physics-guided framework that inte-
grates partitioned diffusion priors for multi-slice reconstruc-
tion in scientific imaging. In particular, we propose two algo-
rithms—DART: Diffusion–Alternating Multi-slice Recon-
struction Technique and DRIFT: Diffusion–Refined Initial-
ization for Multi-slice Reconstruction. By coupling learned
diffusion priors with explicit forward models (e.g., k-space
for MRI and diffraction patterns for 4D-STEM), our frame-
work provides a principled bridge between data-driven gen-
erative modeling and physics-based reconstruction, yielding
outputs that are both perceptually plausible and physically
consistent. The proposed methods are not only computation-
ally and memory efficient, but also effective in both MRI
and 4D-STEM applications, especially for general real-time
multi-slice reconstruction in scientific imaging applications.
Potential directions include training and evaluation on ex-

perimental 4D-STEM diffraction patterns.
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