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Abstract

While monitoring biodiversity through camera traps has be-
come an important endeavor for ecological research, identi-
fying species in the captured image data remains a major bot-
tleneck due to limited labeling resources. Active learning—a
machine learning paradigm that selects the most informative
data to label and train a predictive model—offers a promising
solution, but typically focuses on uncertainty in the individual
predictions without considering uncertainty across the entire
dataset. We introduce a new active learning policy, Vendi in-
formation gain (VIG), that selects images based on their im-
pact on dataset-wide prediction uncertainty, capturing both
informativeness and diversity. We applied VIG to the Snap-
shot Serengeti dataset and compared it against common active
learning methods. VIG needs only 3% of the available data to
reach 75% accuracy, a level that baselines require more than
10% of the data to achieve. With 10% of the data, VIG at-
tains 88% predictive accuracy, 12% higher than the best of
the baselines. This improvement in performance is consistent
across metrics and batch sizes, and we show that VIG collects
more diverse data in the feature space. VIG has broad appli-
cability beyond ecology, and our results highlight its value for
biodiversity monitoring in data-limited environments.

Introduction

The ability to monitor biodiversity at scale is critical for
understanding ecosystem health and informing conservation
efforts. Camera traps—remotely activated cameras triggered
by motion or heat—have become a key tool for ecological
data collection, enabling large-scale, non-invasive monitor-
ing of wildlife in their natural habitats (Trolliet et al. 2014;
Delisle et al. 2021; Tuia et al. 2022). These devices generate
vast volumes of image data, often spanning multiple times of
day and geographies. However, the subsequent task of iden-
tifying and labeling the species in these images remains a
significant bottleneck. Manual annotation is labor-intensive,
time-consuming, and may require expert knowledge, espe-
cially when dealing with rare species or poor image quality.

Recent advances in machine learning, specifically deep
learning for image classification, offer a promising direction
for automating species identification (Norouzzadeh et al.
2018; Beery, Van Horn, and Perona 2018). Yet the perfor-
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mance of these models crucially depends on the availabil-
ity of large amounts of high-quality labeled training data.
In many ecological applications, however, labels are scarce
and labeling is costly. These challenges motivate the need
for intelligent sampling strategies that maximize model per-
formance while minimizing labeling effort.

Active learning (Settles 2009; Bothmann et al. 2023) of-
fers a principled solution to this problem. By iteratively se-
lecting the most informative examples to label, active learn-
ing algorithms can achieve high accuracy with fewer labeled
instances than naive approaches. Existing active learning so-
lutions reason about the level of informativeness of candi-
dates for labeling on an individual basis—targeting data-
points that the model is most uncertain about—without ac-
counting for the effects of those datapoints post-labeling.
This perspective neglects the overall structure of the entire
image pool.

In this work, we propose Vendi information gain (VIG), a
novel active learning policy designed to optimize the global
informativeness of the training data. VIG builds on recent
advances in information-theoretic metrics and quantifies the
reduction in predictive uncertainty across the entire image
pool when a candidate image is labeled. This approach se-
lects datapoints not only because they yield high uncertainty,
but because they are likely to inform the model’s predictions
across the board. Figure 1 shows the schematics of VIG con-
sisting of the following steps. First, we sample candidate la-
bels for each unlabeled image using a dropout neural net-
work predictor. We then retrain the model on these fanta-
sized labels and sample predictions for the entire unlabeled
pool. These sampled predictions quantify the reduction in
Vendi entropy (Friedman and Dieng 2023; Nguyen and Di-
eng 2025) across the unknown labels, which guides the
search for the candidate with the highest information gain.
This process repeats iteratively, expanding the labeled set
until the labeling budget is exhausted. The use of a dropout
neural network for active learning is described in Section ,
and Section includes the computational details of VIG.

Applied to the Snapshot Serengeti dataset (Swanson et al.
2015)—a benchmark for camera trap classification—VIG
consistently outperforms standard active learning baselines
in terms of label efficiency and predictive accuracy. We show
that VIG collects more diverse data in feature space, lead-
ing to better generalization with fewer labels. Our results
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Figure 1: Overview of Vendi information gain (VIG) for active learning. We use a trained dropout neural network to sample
labels for a candidate datapoint. The neural network is then retrained on this fantasized data to sample labels of the entire pool.
Uncertainty in these predictions is captured by VIG, and we select the candidate that yields the highest information gain (i.e.,
lowest uncertainty) in the predictions to label. The result is then added to the training dataset, and the process repeats until the

labeling budget is exhausted.

suggest that VIG can serve as a general-purpose method for
data-efficient ecological monitoring.

Method

We first discuss the active learning framework and the use of
a dropout neural network as the predictor for this task. We
then provide background on VIG as a metric of information
gain and present its adoption to active learning.

Active Learning Policies

Active learning targets the common setting in machine
learning where labeling data is costly (in terms of time,
money, or some safety-critical conditions). The goal is to
design an active learning policy that selects a small amount
of data to label, so that the predictive model trained on
the labeled data achieves good generalization performance.
In our setting, we have access to a large database of un-
labeled images X = {z;}}Y,, where each x; denotes a
particular datapoint (image) within the database. These im-
ages are classified into a predetermined number of classes
[C] ={1,2,...,C}, and the unknown label y; of datapoint
x; denotes the membership of that point. Active learning
proceeds in an iterative manner where at each step, the ac-
tive learning policy selects a batch of images to label, adding
them to the training data. The process repeats such that we
accumulate a training set of increasing size until our labeling
budget is depleted.

The main focus of active learning is the design of the pol-
icy that selects which data to label. Increasing information
(or decreasing uncertainty) in the knowledge of the trained
model serves as a popular heuristic for this task. Formally,

assume that we have a probabilistic model that produces the
posterior probability that a point z € X belongs to class
¢ € [C], denoted as p(y = ¢ | ). (We omit the dependence
on the labeled data D that the model is trained on for con-
ciseness.) Many active learning policies seek to minimize
model uncertainty, quantified by various statistics from the
predictive distribution p(y | z). For instance, the Max en-
tropy policy finds the data that have the highest predictive
Shannon entropy H (Shannon 1948) to quantify uncertainty
in the predictions:

H(y|z)=- Y ply=cl|a)logply=c|z). (1)
ce[C]
Other policies target alternative ways to quantify predictive
uncertainty. This includes the Mean STD policy targeting the
average standard deviation in the predictions:

o@)= 5 Y VEBW=clo?] ~Elply=c| )"
ce[C]
2

which corresponds to the standard deviation statistic in the
regression setting, but has been recently adopted in classi-
fication as well (Kampffmeyer, Salberg, and Jenssen 2016;
Kendall, Badrinarayanan, and Cipolla 2017). Another pop-
ular active learning policy, BALD, maximizes the amount
of information gained about the predictive model’s parame-
ters w, which is equivalent to maximizing the mutual infor-
mation I between predictions and model posterior (Houlsby
etal. 2011):

IHw,y|z) = H(w)— Ep(y|z) [H(w | z,y)] . 3)
Finally, Kirsch, Van Amersfoort, and Gal (2019) proposed
BatchBALD that extends BALD to account for interactions




between datapoints within a batch. We use these active
learning policies as baselines to compare VIG against.

Dropout Neural Networks

The previously described active learning policies depend
on a probabilistic model producing predictions of the form
p(y = ¢ | x), and have been limited to models such as Gaus-
sian processes (Li and Guo 2013). In the context of image
classification, these methods require a kernel to operate on
images, which do not scale well to high-dimensional data or
capture spatial information within the input images. On the
other hand, convolutional neural networks (Rumelhart, Hin-
ton, and Williams 1985; LeCun et al. 1989) have proven to
be effective at learning from images and achieved human-
level performance at image recognition. However, neural
networks do not inherently produce probabilistic predictions
with calibrated uncertainty quantification.

Initially developed to regularize neural networks, the
dropout technique (Hinton et al. 2012; Srivastava et al.
2014) dictates that random nodes in the hidden layers of
a neural network are disabled at each forward pass dur-
ing training. Gal and Ghahramani (2016) further showed
that using dropout during inference produces Monte Carlo
samples from the predictive distribution of the correspond-
ing Bayesian neural network trained with variational infer-
ence, naming the technique MC dropout. Finally, Gal, Islam,
and Ghahramani (2017) used MC dropout as the predictive
model to perform active learning on high-dimensional image
data, showing that combined with MC dropout, the policies
previously described outperform kernel-based active learn-
ing methods as well as their counterparts that use the predic-
tions of a non-dropout neural network. We use this neural
network model with MC dropout as the probabilistic classi-
fier in our experiments.

Vendi Information Gain

VIG was based on the Vendi Score (VS), a flexible diver-
sity metric. First proposed by Friedman and Dieng (2023)
and later extended by Pasarkar and Dieng (2024), the VS
operates on a set of datapoints D = {6} ; sampled from
some domain O. To realize the VS, we first require a pos-
itive semidefinite kernel function k : © x © — R, where
k(6,0) = 1,V € ©. We then compute the kernel matrix
K € R™ ", where each entry K, ; = k(6;,6;). Finally, we

define the VS as:
log (Z(W)) )

1
VS, (D; k) = exp
q(Ds k) (1 4 2

where Aq, Ao, ..., A\, are the eigenvalues of K, normalized
so that they sum to 1, and the order ¢ > 0 is a hyperparam-
eter. The VS has since been extended and applied to vari-
ous domains, including evaluating generative models (Hall
et al. 2024; Senthilkumar et al. 2024; Jalali et al. 2024),
molecular simulations (Pasarkar et al. 2023), Bayesian op-
timization (Liu et al. 2024) and active search (Nguyen and
Dieng 2024), sequence generative models (Rezaei and Di-
eng 2025a), RAG approaches for LLMs (Rezaei and Di-
eng 2025b), analysis of large-scale data Pasarkar and Dieng
(2025), and reinforcement learning (Lintunen 2025).

In particular, Nguyen and Dieng (2025) introduced VIG
as a metric of information gain, defining it as the difference
in the Vendi entropy Hy of a random variable 6 before and
after conditioning on another variable y:

VIG(0,y;q) = Hv(D;q) — Ey[Hv(Dy;q)],  (5)

where D = {6}, is a set of samples of §, and D, =
{0; | y}?_, is the corresponding set of samples conditioned
on a particular value of y. Here, the Vendi entropy is the
logarithm or the VS, or the Rényi entropy of the normal-
ized eigenvalues of the kernel matrix computed from a set
of samples:

Hy(D;q) =

1 n o .
2 log@;(m ) (6)

Nguyen and Dieng (2025) demonstrated many of VIG’s
advantages over mutual information, the default measure of
information gain in the scientific literature (Shannon 1948;
Cover 1999). Namely, VIG works well with only samples
of the random variable of interest and offers a more prin-
cipled quantification of information gain that accounts for
sample similarity. The authors showcased VIG’s superior
performance in a wide range of tasks, including experimen-
tal design problems and level-set estimation.

Vendi Information Gain for Active Learning

We adopt the VIG criterion for active learning, proposing a
policy that minimizes the Vendi entropy of the posterior pre-
dictions across the entire database of images, conditioned
on a candidate datapoint. Formally, denote @ as the vector
that concatenates the unknown labels of the images within
the database, the VIG policy finds the datapoint = that mini-
mizes the posterior Vendi entropy in 0:

VIG(6,2) = Hy(D) ~ By, [Hv(Dy | )], ()

where D is a set of samples of the label vector 8, and D,, is
the corresponding set of samples conditioned on a particular
label y of image x. These samples can be generated using the
MC dropout neural network when predicting on the images
in the database.

The computation of Vendi entropy requires a kernel that
compares two given sample label vectors 6; and 05. We
compute the Hamming distance dy between these vectors
and subtract the normalized distance from 1 to produce a
similarity measure:

dp(61,02)
— N 8

where N is the length of the label vectors. Note that this
is not the same kernels in the kernel-based active learning
policies, which seek to operate on the images themselves.
This choice of kernel is natural, as two labels are similar
to each other only if they belong to the same class. When
there is only one datapoint in the pool, the Vendi entropy
induced by this kernel coincides with the Shannon entropy
of the datapoint’s class distribution—a reassuring feature.
Overall, while traditional active learning policies target
individual predictive uncertainty measures, VIG selects dat-
apoints expected to reduce uncertainty in predictions over

k(61,0:) =1—
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Figure 2: Average test accuracy (41 standard error) by various active learning policies. VIG obtains a large gain right from the
start and maintains its lead throughout the active learning loop. It takes VIG only 150 datapoints to achieve the accuracy of 75%
that other methods need 500 points to achieve. Meanwhile, at 500 points, VIG achieves close to 90% accuracy. In comparison,
training on all available training data (5000+ images) yields an accuracy of 99%.

the entire unlabeled pool, accounting for global informative-
ness. To compute the VIG score for a candidate image z, we
sample possible labels y, retrain the model with the labeled
x, then sample predictions @ for the full pool. The candidate
with the highest VIG score is selected.

Experiments

We benchmark our method VIG against existing baselines
described in Section . At each iteration of the active learning
loop, each policy obtains a batch of 20 images to label, and
the process repeats until 500 images are collected.

Figure 2 shows the accuracy on a hold-out test set of the
model trained on data collected by various active learning
policies, averaged across repeated, as a function of the num-
ber of datapoints labeled. VIG significantly outperforms the
baselines, achieving a higher accuracy with fewer labels. Af-
ter obtaining 500 labeled datapoints, VIG yields a test ac-

curacy close to 90%, while other policies reach 75%. To
achieve the same performance, VIG needs only 150 labels.
In comparison, assuming unlimited labeling resources, the
model trained on all available training data (5585 images)
yields a test accuracy of 99%.

To inspect the learned behavior of VIG’s model, Figure 3
visualizes the top five most and least accurate predictions on
the test set by VIG. On the top row that the trained model re-
assuringly makes accurate predictions with high confidence
on instances where the animal is visibly in the middle of the
camera trap images. On the bottom row, the model under-
standably makes mistakes on instances with low visibility,
including those taken in the dark—situations even humans
find challenging.

Table 1 lists other metrics of classification performance
than accuracy in Figure 2. This includes the cross-entropy
loss, which accounts for the model’s predictive confidence,
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Figure 3: The 5 most (top row) and 5 least (bottom row) accurate predictions by the model trained with data collected by VIG.
In the bottom row, the model understandably makes mistakes on instances where the animal is barely visible.

Table 1: Average test statistics by various active learning policies at 500 labeled datapoints. (Recall is omitted as it coincides
with accuracy by definition.) VIG consistently outperforms the baselines across the different metrics.

Max entropy BALD Mean stddev

BatchBALD  VIG

Precision 1 0.780
F1 score 1 0.755
Cross-entropy loss | 0.705

0.799
0.775
0.635

0.780 0.764 0.888
0.765 0.738 0.883
0.625 0.707 0.402

rewarding confident correct predictions and punishing con-
fident incorrect ones. Overall, VIG consistently achieves the
best performance across the metrics.

To understand what drives VIG’s performance, we inspect
the diversity of the data collected by each method in Fig-
ure 4. The left panel shows diversity in the labels of the col-
lected data, measured by the Shannon entropy of the class
distribution. Here, all policies are comparable. In the right
panel we show diversity in the features of the images, quan-
tified by the Vendi score (VS) (Friedman and Dieng 2023)
of the labeled images. The VS is a flexible diversity met-
ric whose output has the natural interpretation of the effec-
tive number of unique elements in a set. The VS requires
a kernel function to compute the similarity of two given
datapoints. Following previous works (Friedman and Di-
eng 2023; Pasarkar and Dieng 2024; Askari Hemmat et al.
2024), we choose the cosine kernel operating on the image
embedding. To have a consistent embedding across different
active learning policies, we train a neural network classifier
on all available data and use the features in the second-to-
last layer. Right from the start of the active learning loop,
VIG collects more diverse data (feature-wise), a behavior
previous works have demonstrated to be beneficial for active
learning (Yang et al. 2015; Du et al. 2015; Buchert, Navab,
and Kim 2022).

Figure 2 shows the performance of the active learning
policies when the batch size (the number of images selected

to be labeled at each step of the learning loop) is set to 20.
We repeat these experiments while varying this batch size
to investigate the effect of this parameter. The left panel of
Figure 5 shows the same results under batch size 10, repre-
senting a low-throughput setting, while the right panel gives
batch size 50 (a high-throughput setting). We see the reason-
able trend that policies tend to perform better when the batch
size is small, as they get more frequent feedback from the
labels and thus can be more adaptive in their selections. Fur-
ther, VIG stays competitive across the different batch sizes,
illustrating the benefits of our method. These results collec-
tively show that VIG’s reasoning allows it to extract more
information from fewer labels, making it suitable for eco-
logical settings with limited annotation budgets.

We now present the result of an ablation study where we
investigate the effect of the hyperparameter ¢ in the formu-
lation of VIG. Pasarkar and Dieng (2024) showed that the
order g controls the sensitivity of the Vendi score (and thus
the Vendi entropy and VIG) to rarity: low values of ¢ lead to
more sensitivity to rare features, while high values of ¢ pri-
oritize common features of the samples. By setting this hy-
perparameter, we can induce a family of VIG policies with
different levels of sensitivity to rare samples. Figure 6 shows
the results of VIG across a wide range of values for ¢, where
test performance is comparable across the VIG policies. This
shows that the performance improvement from existing ac-
tive learning baselines we obtain is mainly due to VIG’s in-
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Figure 4: Diversity of the collected data by various active learning policies. Left: The Shannon entropy of the class distribution
of the collected data. Here, all methods are comparable. Right: The Vendi score of the collected data using the embedding in
the second-to-last layer of the neural network classifier trained on all available data. VIG selects more diverse data right from
the beginning.
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Figure 5: Test accuracy by various active learning policies under different batch sizes. VIG’s superior performance stays con-
sistent in both low- and high-throughput settings, underscoring its robustness to selection frequency.
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Figure 6: Average test accuracy and one standard error by
VIG of different orders ¢q. VIG’s performance is robust
against the value of q.

formation gain-based reasoning, which is robust against the
order ¢ when computing Vendi entropy.

Limitations

VIG requires evaluating fantasized scenarios for each can-
didate image. For every possible label, the method (1) re-
trains the model on the augmented training set, (2) gener-
ates n posterior label samples over the unlabeled pool of
size N via T forward passes of MC dropout that scales
like O(TN), and (3) computes Vendi entropy, which in-
cludes an eigen-decomposition of an n X n similarity matrix
that scales like O(n?). The overall complexity scales like
O(m(R+TN +n?)), where m is the number of fantasized
labels we use when considering each candidate image, and
R is the cost of retraining the model on each fantasized la-
bel. In our experiments, we fantasize using the top m = 3
most-likely labels and set n = 100.

To make the method more efficient, we employ early stop-
ping for the retraining step, terminating the training process
early if the training loss converges. Our justification is that
during VIG’s computation, as we add one single sampled
label to the training set, the model trained at the previous
step is already close to an optimum. Further, due to the diffi-
culty in obtaining labels in active learning settings, the size
of the training set is often limited, which allows for faster
training. In our experiments, VIG takes about 4 seconds per
evaluation—an acceptable speed given the boost in perfor-
mance from the method.

Under extremely large datasets, we can sub-sample the
unlabeled pool and conduct the current iteration’s search
within the sampled subset. This sub-sampling technique was
studied in Mirzasoleiman et al. (2015) and used in other ac-
tive learning settings (Nguyen, Modiri, and Garnett 2021;
Nguyen and Garnett 2023).

Conclusion

We study a new active learning policy, Vendi information
gain (VIG), and demonstrate its effectiveness in image-
based biodiversity monitoring. By selecting images that
maximize information gain over the entire unlabeled pool,
VIG prioritizes examples that not only have high uncer-
tainty but are also informative and diverse. With camera trap
data from the Snapshot Serengeti dataset, VIG achieves sub-
stantial gains in label efficiency and predictive performance
compared to established baselines.

Though we focus on species classification from camera
trap images, VIG is general-purpose and model-agnostic.
The method only requires a probabilistic predictor capable
of generating samples, such as a dropout neural network like
ours or a Gaussian process. This makes VIG generalizable
to a broad range of tasks beyond ecological applications.

VIG’s superior performance highlights the value of using
structured diversity to quantify uncertainty—an approach
that aligns well with the complexity and richness of ecolog-
ical data. Future work may explore its application in regres-
sion tasks such as estimating the abundance of species, or
integration with crowd-sourced labeling platforms to elicit
expert labeling effort when it is most needed.
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