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Abstract

Large Language Models (LLMs) excel in linguistic reason-
ing but remain limited in processing structured scientific data
such as tables and measurement datasets. We introduce a scal-
able framework that converts tabular scientific data into val-
idated natural-language question–answer (Q&A) corpora for
LLM fine-tuning. The pipeline integrates statistical quantiza-
tion, automated Q&A generation, linguistic refinement, and
LLM-as-a-judge evaluation to ensure factual and linguistic
quality. Applied to the QM9, QMOF, and PubChem datasets,
it produced over 1.3 billion tokens across 12.5 million sam-
ples with high fluency and grammatical accuracy. This data-
to-text paradigm bridges numerical and linguistic modalities,
enabling LLMs to reason over empirical data and advancing
the development of scientifically grounded, multimodal lan-
guage models. All resulting corpora will be open-sourced.

Introduction
The advent of large language models (LLMs) has trans-
formed the landscape of scientific computing and data-
driven discovery (Zhang et al. 2025; Guo et al. 2024). LLMs
have shown remarkable capabilities in reasoning, summa-
rization, and contextual understanding across a wide range
of domains (Matarazzo and Torlone 2025; Huang and Chang
2022). However, most LLMs are primarily trained on un-
structured textual data—scientific articles, technical manu-
als, and web text—whereas the majority of real-world scien-
tific information exists in structured formats such as tables,
spreadsheets, or multidimensional measurement datasets
(Van Breugel and Van Der Schaar 2024; Hollmann et al.
2025). These tabular datasets capture rich quantitative rela-
tionships among physical, chemical, or biological variables,
but they remain largely inaccessible to LLMs in their na-
tive form (Medupin, Bannister, and Schwartz 2020). Conse-
quently, while current models excel at linguistic reasoning,
they often lack the ability to interpret, analyze, or explain
patterns that emerge from numerical data, thereby limiting
their potential for true scientific understanding (Akhtar et al.
2023; Huang et al. 2024).

Bridging this gap requires new methodologies that can
translate structured numerical data into rich textual repre-
sentations suitable for natural-language processing (Suadaa
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et al. 2021; Ruan et al. 2024). Yet, this transformation is
nontrivial: tabular data encapsulates implicit relationships
between features that must be rendered explicitly through
linguistic abstraction (Wang et al. 2022). For example, a
simple correlation between temperature and reaction yield
in a chemistry dataset might correspond to a verbal state-
ment such as “Higher reaction temperatures tend to increase
yield up to an optimal point.” Such textualization demands
not only statistical summarization but also contextual fram-
ing that mirrors how scientists interpret and communicate
findings (Saebi et al. 2023; Raghavan et al. 2023). Without
this bridge, LLMs remain disconnected from the quantita-
tive backbone of empirical science.

To address this challenge, we introduce a systematic
framework for converting tabular scientific datasets into
high-quality textual question–answer (Q&A) pairs suitable
for LLM fine-tuning (Fig. 1). The process begins with sta-
tistical analysis of the numerical and categorical features
to identify key patterns—such as correlations, trends, and
outliers—within the dataset. These insights inform a Q&A
generation module that formulates natural-language ques-
tions and corresponding factual answers derived from the
data. A subsequent text humanization stage enhances lin-
guistic naturalness and domain relevance, producing coher-
ent, human-readable prompts. To ensure factual and inter-
pretive accuracy, the generated Q&A pairs undergo expert
validation and LLM-as-a-judge refinement, where human
reviewers and secondary models assess clarity, correctness,
and explanatory depth. The resulting collection of validated
prompts forms a textualized corpus that encapsulates the
original tabular knowledge, enabling efficient fine-tuning of
domain-specific LLMs.

This data-to-text paradigm unlocks new possibilities for
integrating structured and unstructured scientific informa-
tion within a unified language model. Fine-tuned mod-
els trained on the generated Q&A corpus can reason over
both textual and numerical content—explaining correla-
tions, summarizing dataset properties, and generating hy-
potheses in natural language. More broadly, the proposed
framework offers a scalable pathway for scientific knowl-
edge grounding, allowing LLMs to assimilate insights from
large experimental databases without manual annotation. By
transforming tabular data into interpretable linguistic form,
our approach paves the way for data-aware scientific assis-



tants capable of interactive analysis, automated report gen-
eration, and context-sensitive discovery across disciplines
such as materials science, chemistry, biology, and engineer-
ing.
In summary, the main contributions of this work are:
1. A novel pipeline for converting tabular scientific data

into validated natural-language Q&A prompts suitable
for LLM fine-tuning.

2. An automated statistical-to-textual translation method
that integrates quantitative analysis, linguistic transfor-
mation, and expert or model-based validation.

3. A framework for grounding LLMs in structured scien-
tific knowledge, improving their ability to reason about
empirical data, generate insights, and assist in data inter-
pretation tasks.

4. A demonstration of scalability and adaptability, showing
how the approach can generalize across diverse domains
and datasets with minimal manual intervention.

Proposed Pipeline
The objective of this work is to design a reproducible
and extensible data pipeline that converts tabular scientific
datasets into formats compatible with large language mod-
els (LLMs), including support for multimodal inputs. The
proposed pipeline restructures structured numerical data into
question–answer (Q&A) pairs suitable for fine-tuning lan-
guage models while preserving traceability across all trans-
formation stages. Figure 1 illustrates the complete data flow,
exemplified for the QM9 dataset, though the framework is
designed to be dataset-agnostic and easily adaptable to other
scientific domains.

The pipeline begins by parsing tabular datasets containing
numerical and categorical features. For each dataset, indi-
vidual properties are statistically analyzed to determine their
underlying distribution and modality. Continuous numerical
variables are discretized into categorical intervals to enhance
interpretability and improve alignment with the token space
of language models. This quantization step allows the model
to operate on linguistically meaningful labels (very low, low,
medium, high, very high) instead of raw numerical values.
Each transformation step—including statistical distribution
type, thresholds used for binning, and property metadata—is
stored to ensure full traceability of the data generation pro-
cess.

Q&A Generation and Linguistic Refinement
Following discretization, the framework automatically gen-
erates Q&A pairs derived from the feature columns of the
dataset. Each Q&A item associates a scientific observation
(e.g., a molecular property) with its corresponding value,
expressed in natural language. Three complementary Q&A
formats are supported:

• Single-property pairs: Each entry corresponds to one
property and its associated textual description.

• Property-category pairs: Each entry summarizes a subset
of related properties (e.g., electronic or thermodynamic
properties) into categorical groups.

• All-properties pairs: Each entry contains questions and
answers covering all available properties in a given sam-
ple.

Initially, Q&A pairs are generated with fixed syntactic
templates to ensure structural consistency. These structured
templates are then refined using an instruction-tuned lan-
guage models, which enhances lexical diversity and im-
proves the fluency of the generated text. During this stage,
the model paraphrases and reformulates the answers while
maintaining their factual content. The refinement process
can be orchestrated by a LLM platform, such as Ollama,
that programmatically interfaces with the LLM and stores
the outputs in a relational database, preserving all interme-
diate versions of the text.

LLM-as-a-Judge Evaluation
To ensure the linguistic and factual quality of the gener-
ated Q&A pairs, a secondary model acts as an evaluator
in an LLM-as-a-judge configuration. This evaluation step
assesses three main dimensions: (i) semantic coherence be-
tween question and answer, (ii) factual correctness with re-
spect to the original tabular data, and (iii) linguistic rele-
vance and clarity. The resulting evaluation reports are saved
alongside the Q&A corpus, providing quantitative and qual-
itative diagnostics for each dataset.

Among the three main dimensions, we define four eval-
uation criteria for the LLM-as-a-judge framework for each
generated Q&A sample:

• C1 – Naturalness: Judges linguistic fluency and human-
likeness, focusing solely on writing flow, tone, and vari-
ation. Ignores factual correctness and minor grammatical
errors.

• C2 – Faithfulness: Checks factual alignment between
the generated text and the original tabular record.

• C3 – Clarity and Scope: Evaluates whether the answer
explicitly covers all six schema properties, stays within
scope (no applications, comparisons, or unrelated meth-
ods), and maintains readability and cohesion.

• C4 – Surface Form: Detects spelling, grammar, punctu-
ation, capitalization, and formatting inconsistencies.

These criteria are applied automatically by the evaluator
model and later aggregated into dataset-level pass rates.

Multimodal Integration
Although the framework is primarily designed for tabular
data, it also supports multimodal extensions. In the case of
the QM9 dataset, each molecule is represented not only by
its SMILES string but also by a corresponding 3D electron-
density grid. These grids, stored as .npy tensors of dimen-
sion 128×128×128, encode spatial electron-density distri-
butions and are referenced within the Q&A structure using
unique identifiers. This design allows the resulting dataset
to serve both unimodal (text-only) and multimodal (text +
3D grid) fine-tuning pipelines, broadening its applicability
to generative and retrieval-based multimodal tasks.



Figure 1: LLM Finetune Dataset Pipeline Generation.

Dataset #Samples #Tasks Description
QM9 133,885 19 Quantum-mechanical properties of small organic molecules.

QMOF 20,373 6 Quantum-chemical and structural descriptors for metal–organic frameworks.
PubChem 55,433 7 Large-scale database of molecular structures and physicochemical properties.

Table 1: Tabular datasets used for pipeline validation. Each dataset was processed through the proposed framework to generate
structured and linguistically refined Q&A corpora.

Categorization and Statistical Quantization
To convert continuous molecular properties into inter-
pretable classes, a statistical analysis is performed to de-
termine each property’s distributional characteristics (Gaus-
sian, symmetric, or skewed). Outliers are removed to avoid
distortion, and percentile-based thresholds are computed ac-
cording to predefined intervals (0–5–30–70–95–100). Each
interval is assigned a categorical label corresponding to
qualitative bins such as very low, low, medium, high, and
very high. The quantization process is fully documented in a
JSON descriptor , which records thresholds, units, and sta-
tistical summaries for each property.

Large-Scale Processing and Parallelization
Given that datasets like QM9 and PubChem contain mil-
lions of molecular samples, the pipeline supports dis-
tributed execution on high-performance clusters (e.g.,
AWS). Lightweight instruction-tuned LLMs are employed
to maximize throughput while maintaining linguistic quality.
Multithreaded inference is implemented using the LiteLLM
library, which manages concurrent API requests and fault
recovery. The subsequent merging of LLM-enhanced re-
sponses with their structured counterparts is conducted us-
ing PySpark, ensuring scalability and fault tolerance. Final
outputs are stored in both JSONL and Parquet formats to
facilitate downstream processing and model training.

Traceability and Output Artifacts
A key design principle of the pipeline is end-to-end trace-
ability. For each dataset processed, the framework outputs:

1. A mapping table linking original and transformed fea-
tures.

2. Statistical metadata and quantization thresholds.

3. The prompts used for linguistic refinement.
4. The full Q&A dataset in multiple formats.
5. Evaluation reports from the LLM-as-a-judge step.

These artifacts ensure reproducibility and transparency,
allowing other researchers to audit or extend the data trans-
formation pipeline.

In summary, the proposed pipeline generalizes the process
of converting numerical and structured data into textual rep-
resentations suitable for LLM training and evaluation. By
integrating statistical quantization, automated Q&A gener-
ation, multimodal support, and LLM-based refinement and
evaluation, the framework provides a robust and extensible
foundation for creating high-quality scientific corpora that
bridge the gap between numerical data and natural language
understanding.

Datasets
This study leverages several well-established datasets in
computational chemistry and materials science to evalu-
ate the proposed pipeline for transforming tabular data into
question–answer (Q&A) pairs suitable for large language
model (LLM) fine-tuning and multi-modality. Each dataset
represents a distinct class of scientific tabular information,
ranging from quantum-mechanical molecular properties to
high-throughput materials descriptors. Table 1 summarizes
their key characteristics.

The QM9 dataset (Ramakrishnan et al. 2014) com-
prises 133,885 small organic molecules represented by their
SMILES strings and associated with 19 computed quantum-
mechanical properties, including HOMO/LUMO energies,
dipole moment, and heat capacity. Each molecule is also
paired with a corresponding 3D electron-density grid, which
enables multimodal extensions by combining textual and
volumetric representations.



The QMOF dataset (Rosen et al. 2021) contains over
20,000 metal–organic frameworks annotated with computed
quantum-chemical descriptors such as band gap, total en-
ergy, and formation enthalpy. Its diverse composition and
large property space make it an excellent benchmark for
evaluating the generalization capacity of tabular-to-text con-
version pipelines.

PubChem (Kim et al. 2021) is a large public repository
containing millions of molecules with annotated biological
and physicochemical properties. In this work, a representa-
tive subset of 55,433 samples was used to assess scalability
and robustness when applying the proposed Q&A genera-
tion and linguistic refinement pipeline to massive datasets.

All datasets were standardized and processed through the
same pipeline stages: feature analysis, statistical quantiza-
tion, Q&A generation, linguistic refinement, and evaluation
via an LLM-as-a-judge framework. The resulting corpora
enable controlled studies of how textualization quality and
lexical diversity vary across scientific domains and dataset
sizes.

Results
This section presents a comprehensive evaluation of our
LLM-based data generation pipeline. We begin by assess-
ing the quality of the generated text across three distinct
datasets: QM9, QMOF, and PubChem using an LLM-as-a-
judge framework to measure fluency and factual fidelity. We
then detail an analysis of the factual fidelity over the linguis-
tic refinement. Finally, we present a summary about the total
tokens and samples generated for this study.

LLM-as-a-Judge Evaluation
A baseline evaluation using raw, non-humanized templates
confirmed the reliability of the LLM-as-a-judge framework.
As expected, baseline texts scored 0% in Naturalness (C1)
but 100% in Fidelity (C2), Clarity (C3), and Grammar (C4),
validating that the evaluator distinguishes fluency from fac-
tual accuracy. After refinement, QM9 achieved near-perfect
fluency (100% C1/C4, 97% C3) but lower Fidelity (58%).
QMOF followed the same trend with strong fluency (100%
C1, 90% C4) yet reduced Fidelity (68%) and Clarity (42%),
likely due to higher structural complexity. PubChem showed
similar behavior (97% C1, 90% C4, 52% C2), reinforcing
that increased linguistic variation often lowers factual preci-
sion across domains.

Criterion Baseline QM9 QMOF PubChem
C1. Naturalness 0% 100% 100% 97%
C2. Fidelity 100% 58% 68% 52%
C3. Clarity 100% 97% 42% 82%
C4. Grammar 100% 100% 90% 90%

Table 2: LLM-as-a-judge evaluation pass rates (%) based on
100 random samples per dataset.

Factual Correctness Analysis
We observed that most of the C2 failures comes from in-
tensity swaps in denisty cat and charge cat (e.g.,

low ↔ very low, high ↔ very high). Less fre-
quent issues include band gap mismatch, occasional
pld cat mismatch/lcd cat mismatch, and a few
rule/omission cases for band gap. Overall, pushing fluency
without extra anchoring increases these label-intensity flips;
stricter surface rules help C4 but do not by themselves re-
cover C2/C3.

(a) density cat — expected
vs predicted

(b) charge cat — expected vs
predicted

Figure 2: Confusion matrices for density cat and charge cat
categories illustrating the main C2 (factual) swap patterns.

Generated Tokens
At the end of the pipeline process, the resulting corpora is
ready available for LLM finetune ingestion. For each dataset
we determine the number of generated tokens and the result-
ing amount of training samples, which are shown in Table 3.

Dataset Tokens #LLM Samples
QM9 836M 2.5M
QMOF 9.5M 179.2K
PubChem 454M 9.87M
Total 1.30B 12.5M

Table 3: Token statistics of the generated LLM data for the
QM9, QMOF, and PubChem.

Conclusion and Future Work
In this work, we present a general pipeline that helps trans-
form scientific tabular data into meaningful Q&A pairs for
LLM ingestion. The proposed pipeline enables reproducibil-
ity and traceability of the entire process generation, ensuring
standardization of the resulting corpora. Our experiments
with three distinct scientific tabular datasets demonstrate the
feasibility of the pipeline in providing validated content to
LLM finetuning. However, we recognize some limitations
that need to be addressed in future work. For example, we
aim to improve Q&A generation and linguistic refinement
within the evaluated LLM-as-a-judge dimensions, such as
the fidelity and clarity criteria. Similarly, the limitation of
the current approach for factual fidelity should be addressed
to reflect the categorical assertiveness, avoiding informa-
tion erroneous with the original data. Finally, all generated
LLM data will be open-sourced and publicly available for
the community.
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Supplementary Materials
Generated Dataset Examples
To illustrate the transformation process from structured data to natural-language text, we present representative examples gen-
erated by the proposed pipeline. Each sample demonstrates the evolution from the initial template-based rendering directly
derived from tabular input values to the linguistically refined form produced by the LLM-based enhancement stage. This com-
parison highlights how the model increases textual coherence, scientific fluency, and contextual interpretability while preserving
the underlying factual content.

(a) QM9 Dataset. The following pair of examples corresponds to the molecule CC(O)(CO)C(O)C=O from the QM9
dataset. The first block shows the template-based output, where each molecular property is rendered through deterministic
sentence templates. The second block presents the corresponding LLM-refined text, which integrates the same properties into
coherent scientific prose with added interpretive context.

Template-based example for the molecule CC(O)(CO)C(O)C=O:

For this molecule, the predicted properties are as follows:

• Rotational constant A: medium, measured in GHz.
• Rotational constant B: low, measured in GHz.
• Rotational constant C: medium, measured in GHz.
• Dipole moment: medium, measured in Debye.
• Isotropic polarizability: low, measured in Bohr3.
• HOMO energy: low, measured in Hartree.
• LUMO energy: low, measured in Hartree.
• HOMO–LUMO gap: medium, measured in Hartree.
• Electronic spatial extent: high, measured in Bohr2.
• Zero-point vibrational energy: medium, measured in Hartree.
• Internal energy at 0 K (u0): very low, measured in Hartree.
• Internal energy at 298.15 K (u298): very low, measured in Hartree.
• Enthalpy at 298.15 K (h298): very low, measured in Hartree.
• Free energy at 298.15 K (g298): very low, measured in Hartree.
• Heat capacity Cv: high, measured in cal/(mol·K).
• Per-atom internal energy at 0 K: medium, measured in Hartree.
• Per-atom internal energy at 298.15 K: medium, measured in Hartree.
• Per-atom enthalpy at 298.15 K: medium, measured in Hartree.
• Per-atom free energy at 298.15 K: medium, measured in Hartree.

The LLM-refined version below expresses the same physical quantities in a cohesive paragraph. It automatically rephrases
repetitive template structures into connected statements, introduces methodological details, and contextualizes the categorical
labels within the dataset distribution. The discrepancy in the heat capacity classification (high → very low) is intentionally
highlighted, illustrating how linguistic variation may occasionally introduce factual deviations during refinement.

LLM-refined (linguistically enhanced) example for the molecule CC(O)(CO)C(O)C=O:

The molecule under consideration, as per its properties derived from the QM9 dataset using DFT at the B3LYP/6-
31G(2df,p) level, exhibits a unique set of characteristics. Its rotational constants A and C are classified as medium, both
measured in GHz, while B is low. The dipole moment falls into the medium range, also in Debye units. The isotropic
polarizability is low, quantified in Bohr3. In terms of electronic properties, the HOMO energy is categorized as low,
the LUMO energy also low, and the HOMO–LUMO gap, a crucial parameter, is medium, all measured in Hartree.
The electronic spatial extent is high, represented in Bohr2, and the zero-point vibrational energy is medium in Hartree.
Notably, the properties u0, u298, h298, and g298 at 0 K and 298.15 K, respectively, along with their per-atom counterparts,
and the heat capacity Cv at 298.15 K, are all deemed very low. These qualitative labels—‘very low’, ‘low’, ‘medium’,
‘high’, and ‘very high’—are dataset-dependent, reflecting the percentile distributions of the QM9 properties. Hence, the
description encapsulates both numerical relationships and linguistic interpretability consistent with quantum-chemical
conventions.

This comparison demonstrates how the pipeline bridges structured numerical data and natural scientific language: the template
output ensures completeness and factual traceability, whereas the LLM-refined version introduces narrative fluency, contextual
grounding, and human-readable style suitable for model fine-tuning and downstream evaluation.



(b) QMOF Dataset. The following pair of examples illustrates the textualization process applied to a representative entry
from the QMOF dataset. The first excerpt corresponds to the template-based rendering, where the material properties are
enumerated directly from the structured table. The second excerpt shows the LLM-refined version, which integrates these
descriptors into cohesive, scientifically framed prose.

Template-based example for the material Ba2CuC6H14O16:

For this material, the predicted properties are as follows:

• Crystal system: triclinic.
• Pore-limiting diameter (PLD): between 0 Å and 5 Å.
• Largest cavity diameter (LCD): between 0 Å and 5 Å.
• Framework density: high, measured in g/cm3.
• Electronic classification: semiconductor.
• Maximum atomic charge: high.

LLM-refined (linguistically enhanced) example for the material Ba2CuC6H14O16:

The MOF, identified as Ba2CuC6H14O16, adopts a triclinic crystal system, consistent with its crystallographic descriptor.
Its geometrical features indicate extremely narrow pore and cavity diameters, both within the 0–5 Å interval, suggesting
potential for selective molecular adsorption or separation. The framework density of Ba2CuC6H14O16 is categorized as
very high, placing it in the top percentile of densities within the QMOF dataset. Electronically, the material is a semicon-
ductor with a band gap estimated between 0–4 eV, according to the QMOF classification scheme. Its maximum atomic
charge is also very high, based on the PBE-DDEC atomic site charge percentile range. Together, these attributes describe
Ba2CuC6H14O16 as a dense, semiconducting MOF with potentially high catalytic activity arising from its elevated atomic
charge—making it a promising candidate for applications in heterogeneous catalysis or gas storage and separation.

The comparison reveals how the LLM-refined description transforms a discrete property list into an integrated scientific narra-
tive. While the structural and electronic characteristics remain largely consistent, the model introduces two notable deviations:
the categorical labels for both framework density and maximum atomic charge are shifted from high to very high. This linguis-
tic intensification reflects the model’s tendency to amplify categorical extremes, possibly influenced by contextual correlations
within the training distribution. Additionally, the LLM-generated text extrapolates a band gap range (0–4 eV) and infers po-
tential functional implications—such as catalytic or adsorption behavior—that are not explicitly encoded in the original tabular
data.

These expansions exemplify how the refinement stage enhances interpretive depth and domain fluency but also highlights
the need for factual consistency checks to prevent semantic drift. Overall, the QMOF case underscores the dual nature of LLM-
based textualization: it improves readability, contextual richness, and scientific expressiveness, while introducing occasional
overgeneralizations that warrant post-hoc validation in high-stakes scientific applications.

(c) PubChem Dataset. The following pair of examples demonstrates the transition from a structured, template-based text
to a linguistically refined narrative for a representative molecule in the PubChem dataset. Both describe the same underlying
properties, yet differ markedly in structure, interpretive scope, and scientific expressiveness.

Template-based example for the molecule CC1(COC(=O)C1=O)C:

For this molecule, the predicted properties are as follows:

• Molecular weight: low, measured in g/mol.
• Exact mass: low, measured in Da.
• Monoisotopic mass: low, measured in Da.
• XLogP3: low.
• Topological polar surface area (TPSA): low, measured in Å2.
• Tautomer count: very low.
• Molecular complexity: low.



LLM-refined (linguistically enhanced) example for the molecule CC1(COC(=O)C1=O)C:

The molecule represented in the grid exhibits a striking simplicity, as evidenced by its low complexity score, monoiso-
topic mass, exact mass, molecular weight, and XLogP3 value. These attributes fall into the low category, based on
the dataset-specific quantization strategy employed by PubChem, implying that such values represent the lower end
of the distribution for these properties within their extensive chemical dataset. Furthermore, the molecule displays an
exceptionally low tautomer count, categorizing it under the ‘very low’ bracket according to PubChem’s standards. Its
topological polar surface area is similarly low and minimal, as are its hydrogen bond acceptor and donor counts, further
underscoring its simplicity. These characteristics suggest a small, hydrogen-dominant molecule with minimal capacity
for hydrogen bonding or complex three-dimensional configurations. The low number of heavy atoms, covalent units,
stereocenters, and undefined stereocenters corroborates this profile of minimal structural intricacy. However, it is crucial
to note that the classification into these categories is dataset-dependent, reflecting the statistical distribution of property
values within PubChem’s comprehensive chemical information repository.

Both outputs describe identical property categories—low molecular weight, low polarity, and very low tautomer count—yet
differ substantially in their communicative structure and scientific intent. The template-based text is factual and declarative, de-
signed to ensure deterministic correspondence with the original dataset. The LLM-refined output, in contrast, transforms these
discrete statements into a coherent chemical narrative: it not only restates the properties but contextualizes them by inferring
compositional implications such as hydrogen dominance, limited stereochemical complexity, and weak hydrogen-bonding ca-
pability. While all categorical values remain consistent (as indicated in blue), the model introduces inferred descriptors absent
from the original data—such as heavy atom count and stereocenter distribution—thereby enriching the interpretation. This shift
exemplifies the broader trade-off between factual alignment and linguistic richness: the LLM output preserves scientific cor-
rectness while augmenting the interpretive layer that connects structure and function. Ultimately, this transformation advances
the model’s ability to reason chemically, bridging the gap between tabular molecular descriptors and natural-language scientific
discourse.

Additional Confusion Matrices
For completeness, we include the remaining confusion matrices used in the Criterion C2 analysis. Each plot compares the
expected and predicted categorical bins for distinct QMOF properties not shown in the main text.



(a) PLD cat — expected vs predicted (b) LCD cat — expected vs predicted

(c) band gap cat — expected vs predicted (d) crystal system — expected vs predicted

Figure 3: Supplementary confusion matrices for additional QMOF property categories evaluated under Criterion C2 (Fidelity).


