CloudNFMM: A Hybrid Hierarchical and Local Neural Operator Inspired by the
Fast Multipole Method

Emilio McAllister Fognini', Marta M. Betcke'*, Ben T. Cox?

' Department of Computer Science, University College London, United Kingdom
’Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
emilio.fognini.17@ucl.ac.uk, m.betcke @ucl.ac.uk, b.cox @ucl.ac.uk

Abstract

The Fast Multipole Method (FMM) is an efficient numeri-
cal algorithm used to calculate long-range forces in many-
body problems, leveraging hierarchical data structures and
series expansions. In this work, we present the Cloud Neu-
ral FMM (CloudNFMM), a new neural operator architec-
ture that integrates the hierarchical structure of the FMM to
learn the Green’s operator of elliptic PDEs on point cloud
data. The architecture efficiently learns representations for
both local and far-field interactions. The core innovation is
the local attention, a specialised local attention mechanism
which models complex dependencies within a small neigh-
bourhood of points. We demonstrate the effectiveness of this
approach, and discuss possible extensions and modifications
to the CloudNFMM architecture.

Introduction

Solving partial differential equations (PDEs) is fundamen-
tal to countless fields in science and engineering. While tra-
ditional numerical solvers are highly refined, they can be
either brittle — needing to be tuned for each new problem
— or computationally expensive for large computational do-
mains. This has spurred the development of deep learning-
based methods, particularly neural operators, which aim to
learn the underlying solution operator mapping from in-
put parameters to the solution function. Among these, the
Fourier Neural Operator (FNO) (Kovachki et al. 2021a)
has emerged as a state-of-the-art architecture, demonstrat-
ing remarkable success by performing convolutions in the
frequency domain. However, a significant limitation of the
FNO is its reliance on the Fast Fourier Transform (FFT),
which constrains it to data structured on uniform, regular
grids.

Many real-world problems are defined on irregular do-
mains or are naturally represented by unstructured data, such
as point clouds or meshes. To address this, architectures
based on Graph Neural Networks (GNNs) and Transform-
ers (Vaswani et al. 2017) have been proposed. However,

“Use footnote for providing further information about author
(webpage, alternative address)—not for acknowledging funding
agencies. Funding acknowledgements go at the end of the paper.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

neural operators based on these methods introduce signifi-
cant bottlenecks for large-scale simulations; either requiring
many message-passing steps or by relying on global atten-
tion mechanisms, incurring a O(N?) computational cost.

To overcome these challenges, we draw inspiration from
a very successful class of direct solver algorithms: FMM.
The FMM is designed to compute long-range interactions
in N-Body problems with near-linear complexity, typically
O(N) or O (Nlog (N)). This is achieved by hierarchically
decomposing the computational domain and using low-rank
approximations of the interaction kernel for far-field interac-
tions. This principle of separating local and global computa-
tions provides a blueprint for a more scalable and geometri-
cally robust neural operator architecture.

Contribution We introduce the CloudNFMM, a neural
operator which uses the hierarchical structure of the FMM
for global interactions with a local attention mechanism
for local interactions. The proposed architecture operates
directly on unstructured points (point clouds), making it
resolution-invariant and freeing it from the grid-based con-
straints of methods like the FNO. We demonstrate the ef-
ficacy of the CloudNFMM on a variety of time-harmonic
PDE problems, showing that our model achieves perfor-
mance that is superior to, or on par with, other established
neural operator architectures at a fraction of the parameter
count.

Background
Fast Multipole Method

We will outline a high-level discussion of the FMM’s infor-
mation flow. For a more detailed discussion of the FMM, see
Appendix . The FMM (Rokhlin 1985) designed to efficiently
compute long-range forces in N-Body problems utilising
both a low-rank approximation of the kernel, G(z,y), and
a hierarchical decomposition of the domain D via a quad-
tree in 2D (or an oct-tree in 3D).

The FMM decomposes the domain D into 4% disjoint
boxes (in 2D, it is 8% in 3D), 3;, where L is the depth of the
FMM’s quad-tree. For all 3., we partition the domain into its
far-field, F,, and near-field, N, neighbours. A source-box
B+ belongs to the near-field AV, of a target-box 3, if we de-
fine the far-field, 7, and near-field, N, of 3, respectively,

furthermore, we denote the sub-scripts 7 and o to indicate a
given target box and source box respectively. Boxes belong
to F, if 8, — with ¢, and ¢, being the centre of each respec-
tive box — satisfies 2b; < |¢; — ¢, | with b; being the length
of a box at a given level [.

Upwards Pass: The upwards pass aggregates information
from the source points up the tree using the following oper-
ators:

TO® — this computes the compact representation vector q,
for each box on the leaf level.
T — shifts the g, between the tree’s levels towards level

2 of the tree', creating the outgoing potential tensors’ for
each level [; Q. This is done to the parent box gy, from the
children boxes, q, € Cs. This operation is described math-
ematically in (7) and (8).

Downward Pass: The downward pass gathers the vectors
outgoing potentials tensors q, € Q; corresponding to boxes
B, € F, for each 7 € Q; using the following operators:
Tinf’U — this computes the incoming vector h, from the out-
going vector q,-.

T, — shifts h, between the tree’s levels from level 2 to
the leaves, going from a parent box S to 5 € Cr. This
operation is described mathematically in (9).

Leaf Pass: The leaf pass computes the potential at a point

2 from the contributions from both - and ., using the fol-
lowing operators:
TtTﬁ —evaluates the potential h, at all the points x; € 3., this
is the contribution to the potential from the points x; € F.
G(x,y;) —is the kernel, which directly evaluates the poten-
tial between x and all the points y; € N. This operation is
described mathematically in (1):

Near Field Contribution Far Field Contribution

—
S Glay)fy)+ T (xh,) (1)
v ENZ\{z}

v(z) =

Collectively, the upward and downward passes constitute
the tree-level operations — they are responsible for communi-
cating information across the domain by aggregating sources
into compact representations (up the tree) and propagating
their far-field influence back down (down the tree). The leaf-
level operations — described in the leaf pass — involve direct
kernel evaluation in a local neighbourhood. This separation
of long-range (tree) and short-range (leaf) computations is
the core principle we adapt in our architecture.

Requirements: To achieve resolution independence for
the NFMM, we need to:

Firstly remove the dependence of the NFMM on requiring
that data is on a uniform grid>.
Secondly, reformulate the NFMM’s local interactions to

' As the spatial resolution in the higher levels, levels 0 and 1, is
too coarse to allow for separation of the near-field and far-field.

Note that each q, € Q; corresponds to a box 3, on level I of
the quad-tree.

3This would require that the T°®, T'", and G4 operators are
can handle variable sized inputs.

learn a local interaction kernel*, and have the information
flow as the near-field contribution in (1).

Neural Operator

Neural operators (Kovachki et al. 2021a; Kovachki, Lan-
thaler, and Stuart 2024), aim to learn operators between dif-
ferent function spaces with some light conditions on their
domains. Originally outlined by Kovachki et al. (2021a), and
further formalised by Berner et al. (2025), neural operators
have two key properties. One, neural operators should be
discretisation-agnostic’. Two, they should have a fixed num-
ber of parameters for every discretisation.

Neural operators were inspired by the DeepONet (Lu
et al. 2021), neural operators are fashioned after a traditional
deep learning architecture, where for each layer ¢ contains
a linear operation with a bias followed by a non-linearity.
In the neural operators framework, there are 3 major com-
ponents: the lifting operator, P, the blocks, {B;}Z_;, and
the projection operator Q. Note that P and Q are channel
wise and only B, operate along the spatial domain. There
are T' blocks, with each block containing: a channel-wise
linear layer, Wy, and spatial kernel operator, X, followed
by a non-linearity, oy,

Lo=Qoar(Wr +Kr +br)o---001(Wi+K1i+b1)oP. (2
| S — | S ——

-

Block T Block 1

Let v; be our solution at our current step and x*) be
our learnt integral kernel at a layer ¢, which may depend
on (z,y,a(x),a(y),vi(x), v (y)). To mathematically define
our spatial kernel operator — dubbed the ‘non-local® oper-
ator — we represent /C; as an integral. For some measure,
dvi(dy), on the domain of integration D, we define /C; in
terms of x(*) as follows:

(Ki(ve))(2) = /D “(t)(% Y, a,v)v(y) dre(dy). (3)

Depending on the class of problems and type of kernel we
aim to learn, the structure of the kernel, n(t), and the com-
putation of the integral transform in (3) can be simplified,
giving rise to different architectures. Boullé and Townsend
(2023), viewing operator learning through the lens of linear
algebra, outline four main approaches: these are the ‘Graph
neural operator’ (GNO), ‘Low-rank neural operator’, ‘Mul-
tipole Graph neural operator’, and the FNO.

Related work

Neural Fast Multipole Method The Neural Fast
Multipole Method (NFMM) (Fognini, Betcke, and Cox
2025), a novel architecture that integrates the hierarchical
information flow of the classical FMM into a neural opera-
tor framework for learning the Green’s operator of elliptic

*With the following requirements: One, no self interactions for
sources/targets in 3. Two, that we only compute the contribution
to the points in 3., from the points in A/, not the other way around.

5This is typically loosened to being resolution-agnostic for ar-
chitectures such as the FNO.

PDEs. The core idea is to replace the FMM’s traditional,
handcrafted translation operators, which depend on an
analytically available Green’s kernel, with MLPs. This
approach preserves the FMM’s efficient partitioning of near
and far-field interactions, including its characteristic upward
and downward passes through a hierarchical tree structure,
while circumventing the need for a-priori knowledge of the
interaction kernel. For a detailed breakdown of the NFMM
architecture, we refer the reader to Appendix . Our present
work is expanding the NFMM to be discretisation-agnostic
— much like the original FMM.

‘H-matrix neural networks Fan et al. (2019b) propose
an approach to learning the solution operator for PDEs
through adapting hierarchical matrices, H-matrices, into a
neural network architecture. This allowed these H-matrices
to solve non-linear problems, and to learn these matrices
from data. This was done by introducing a local deep neu-
ral network at each hierarchical scale, allowing them to
approximate nonlinear maps like those found within the
Schrédinger equation. However, this method required stor-
ing separate basis functions at each level, leading to large
memory requirements. Expanding upon this, Fan et al.
(2019a) developed an improved architecture incorporating
nested bases inspired by #2-matrices and the FMM. These
operators are very parameter efficient, despite some imple-
mentation complexity, and could perhaps replace some com-
ponents of the long-range interaction part of this work. How-
ever, this core of this work is focused on local interactions
and ensuring that our FMM-based Neural Operators param-
eters are not dependent on discretisation; which this work
doesn’t address.

Multipole Graph Neural Operator: The Multipole
Graph Neural Operator (MgNO) (Li et al. 2020) is a model
that merges concepts from graph neural operators and low-
rank neural operators to efficiently learn PDE solution op-
erators. Inspired by the FMM and #?-matrices, it uses a
message-passing algorithm called a V-Cycle on hierarchi-
cal graphs to enforce a low-rank structure on the interac-
tion kernel, particularly for long-range components. This
architecture functions as an iterative solver, with the final
learned kernel resembling a hierarchical H-matrix (Martins-
son 2019). The MgNO differs significantly from the NFMM;
while both draw inspiration from the FMM, the NFMM is a
more direct adaptation that replaces the FMM’s handcrafted
operators with learnable MLPs, while explicitly preserving
the upward and downward pass structure. In contrast, the
MgNO employs a more generalised graph-based V-Cycle
for its message passing, focusing on kernel decomposition
rather than adapting the FMM’s information flow.

Graph Neural Operators: Work on learning physics sim-
ulations directly on meshes has been significantly advanced
by modern deep learning architectures. The MeshGraphNets
(Pfaff et al. 2020) architecture is a Graph Neural Network
(GNN) using an Encode-Process-Decode structure. Its key
innovation is a dual message-passing scheme that operates
in two distinct spaces: mesh-space, using the mesh’s con-
nectivity to model internal dynamics like material proper-

ties, and world-space, using proximity-based edges to cap-
ture external interactions such as collisions. Building on this,
EAGLE (Janny et al. 2023) addresses the challenge of mod-
elling more complex, unsteady turbulent flows and the in-
efficiency of iterative message passing for capturing long-
range dependencies using a novel mesh transformer archi-
tecture. To overcome the quadratic complexity of attention
on large meshes, the model first performs geometric cluster-
ing and learned graph pooling to create a coarser represen-
tation of the mesh, then applies multi-head self-attention on
the expressive cluster embeddings. This allows the model
to integrate global information and capture long-range in-
teractions, such as airflow patterns, in a single step, out-
performing iterative GNNss like MeshGraphNet on complex
benchmarks. Similarly, the CloudNFMM also avoids the
quadratic-complexity of transformers by solving the global
solve on a coarse-grid, however, EAGLE only uses attention
on the coarse graph and uses a decoder to update the fine
global mesh.

Transformer Neural Operators: Recent advancements
in neural operators have focused on overcoming the geo-
metric and discretisation limitations of earlier models for
solving PDEs, leveraging the improvements in transformer
implementation and theory. The Geometry-aware Fourier
Neural Operator (Geo-FNO) (Li et al. 2022) addresses a
key constraint of the popular FNO, which is its reliance on
uniform rectangular grids due to its use of the Fast Fourier
Transform (FFT). The Geo-FNO introduces a framework
that learns a diffeomorphic deformation to map from an ir-
regular domain into a regular domain where the FNO can be
efficiently applied, before the result is mapped back to the ir-
regular domain. The Operator Transformer (OFormer) (Li,
Meidani, and Farimani 2022) proposes an attention-based
architecture that makes few assumptions about the input grid
structure. It leverages self and cross-attention to function as
a learnable integral operator, with the cross-attention mech-
anism decoupling the input and output domains to allow for
queries at arbitrary locations. For time-dependent problems,
the OFormer employs a recurrent MLP to propagate the sys-
tem’s dynamics efficiently in the latent space. The grapH
transforMer neurAl opEraTor (HAMLET) (Bryutkin et al.
2024) is the first neural operator framework to employ a
graph transformer for solving PDEs. HAMLET constructs a
graph from the input data and uses graph transformer blocks
for encoding, a cross-attention operator for integrating query
locations, and a similar recurrent MLP as OFormer for
time-dependent PDEs. These neural operators are similar to
the CloudNFMM, using a transformer-based architecture to
learn an integral operator. However, the CloudNFMM dif-
fers from these approaches by splitting the computational
domain into long-range and local interactions, as opposed
to using an attention-mechanism between all points in the
domain.

Method
Cloud NFMM

In the CloudNFMM, we expand upon the original NFMM —
outlined in Appendix — by reworking the T°% T and A

operators; although we will denote A as Gy in this work.
The driving motivation behind this work is to replace the
K from (2) with an operator which models the information
flow of the FMM. As the FMM is a hierarchical algorithm,
our FMM-inspired neural operator is also a hierarchal algo-
rithm; having both a tree pass and a leaf pass. The tree pass
is handled by the original version of the NFMM and was
constructed by simply replacing each FMM operator with
either a linear layer, or a 2—layer MLP. The leaf pass is the
focus of this work, and is implemented via the use of a spa-
tially local attention mechanism. In order to exchange in-
formation between the leaf level and the tree level, we also
need to rework the T°® and T operators from the original
NFMM to meet the requirements outlined above.

Data Preprocessing To enable the hierarchical structure
of the NFMM for point-based data, the input domain is first
partitioned into a uniform grid of square cells, referred to
as boxes, similar to the patches used by a Vision Trans-
former (Dosovitskiy et al. 2020). Our input data, consist-
ing of {x; }/¥, points represented as a tensor of feature vec-
tors f; € R~ with the pre-processing partitioning assigning
each point x; to a specific patch. As this architecture should
be resolution invariant, in general there will not be a constant
number of points within each patch. To create a tensor with
full dimensions, each patch’s point list is processed to have
a fixed size, Np, which is the maximum number of points
in a given patch®. The output of this preprocessing step is
a structured tensor of shape [B, M, Ny, dr], where B is the
batch size, M is the number of boxes, [V is the (maximum)
number of points in each box, and dj, is the dimension of
the leaf feature space. This format is crucial for the hybrid
local and hierarchical structure of the NFMM, as the hierar-
chical FMM operator works on the box grid while the local
operator works on the points in the spatial boxes.

Cloud NFMM Components

OFS Operator The T°" operator is responsible for the
crucial aggregation step in the upward pass of the NFMM.
Its primary purpose is to compress the rich information con-
tained within a set of points in a single box into a compact,
representative feature vector for the box. This is achieved
by first lifting the leaf-level features — x; € RY —into a
higher-dimensional — q; € RYT — space using a MLP. The
representative vector — q, — for each box is then computed
as a magnitude-weighted centre of mass of these lifted fea-
tures. The magnitude of each lifted feature vector is used to
determine the relative contribution of each point to the final
aggregated vector. This approach — outlined in (4) — is simi-
lar to a soft aggregation, allows points with more significant
or prominent features to have a greater influence on the final
aggregated vector.

TFI Operator The T operator is the final stage of the
downward pass, translating the coarse-level FMM approxi-
mations into point-level updates. It takes the aggregated fea-

The value of N, only needs to be done per example or batch,
however to speed up training we process all examples in a dataset
to have n;, points.

Qj—» Local Attention Mechanism 1‘@0 Vi1 (x)

Figure 1: The architecture of the CloudNFMM neural oper-
ator.

ture vector from a parent box and uses it to update the indi-
vidual point representations within each of its child boxes.
This is achieved by an inverse-weighted update mechanism,
which is outlined in (5). First, the operator calculates the
distance between each individual point’s feature vector and
the incoming representative vector in the high-dimensional
space — d; = ||q; — h,||2. This distance is then used to
compute an interaction weight, using an inverse weighting
scheme, which is then normalised. The point’s features are
then updated by "pulling’ them toward the incoming vector,
with the strength of this pull determined by the calculated
weight. The updated features, q;, now incorporating infor-
mation from the parent box, are projected back to the origi-
nal dimension using a MLP,

Z ||q7||2 q; @)

i Sics, laill2’

-1
& = + lai —h-[l3" - (h- 7?%). (5)
Zie[}T Hqi - h‘r||2
Local Attention Operator In order to satisfy the require-
ments outlined above, the only architectures available were
either GNNs, transformer-based architectures, and state-
space architectures. Latent-space models were not consid-
ered for A due to the fixed state dimension found within
these models’, leaving GNNs and transformers as possible
architectures to build the Ggy operator. We note that trans-
formers are a special class of message passing neural net-
works — this is outlined in Appendix , with a similar dis-
cussion seen within (Bryutkin et al. 2024) — thus, we have
focused on transformers due to existing efficient implemen-
tations and as we do not need to construct graphs due to the
patched nature of the data.

7 As learning a fixed rank approximation to the Greens function
— G(z,y) — may cause an issue for oscillatory PDE problems.

‘E‘ Local

Attention
Mechanism

X o
O ;
F [R

N,

Figure 2: The architecture of the Local Attention Operator,
where G is a gathering operation for the local boxes.

The algorithm represented in Figure 2 is a shared attention
mechanism, using the same learnable parameters for both
cross and self-attention but constructing the sequences from
both the near field — AV, — and the points in 3, respectively®.
The new near-field operator, Gg(x;,x;) — represented in
Figure 2 — is a local attention-based operator modelling the
local contribution from (1). This is achieved by implement-
ing a shared multi-head attention mechanism to compute in-
teractions within the spatially local 3 x 3 neighbourhood. For
each box, it gathers the features of the central box and their
eight neighbours, performing two parallel attention passes:
self-attention for within each box, and a cross-attention pass
that incorporates the influence from neighbouring boxes.
These outputs are added, and passed through an MLP and
residual connections are applied — approximating the direct
pairwise interaction kernel. We satisfy most of the require-
ments, as we mask-out self-interactions via a masked self-
attention mechanism and cross-attention only computes the
contribution from N, to 3,. However — as we do not cur-
rently use a relative position encoding scheme — we cur-
rently use RoPE (Su et al. 2021) in the local attention op-
erator, however, using a relative position encoding scheme
is a current focus of future work.

Numerical Experiments

To evaluate the CloudNFMM against other neural opera-
tors, we utilised two time-harmonic datasets; PDEBench
(KHOO, LU, and YING 2020), and WaveBench (Liu et al.
2024a). These datasets are both for time-harmonic PDE
problems, these were used as the CloudNFMM is a direct
solver and is in its present form not designed to solve time-
dependent PDE problems.

The same hyperparameters were used for all the follow-
ing numerical experiments on the CloudNFMM architec-
ture. All scores in the tables below are the average relative
Lo error®, £ values over the validation set. We trained the
CloudNFMM using the average relative Lo loss, L', for
more information on training and implementation details see
Appendix .

8We split up the attention between the self and local contribu-
tion, this is done to prevent saturation of the Softmax within the
attention scores.

This is also occasionally called the normalised root mean
squared error (nRMSE).

Results

WaveBench Table 1 shows the results of the CloudNFMM
against the WaveBench benchmarks, which contain different
Helmbholtz problems. These results for the baseline architec-
tures are referenced from the WaveBench paper, they have
all been trained with the protocol outlined in Appendix .

Table 1: Results of neural operators on the 2D acoustic
Helmbholtz datasets

GRF Type Freq. CloudNFMM FNO-depth-4 FNO-depth-8
10 Hz 0.037 0.063 0.040
Kotroni 15 Hz 0.059 0.093 0.057

sotropic
P 20Hz 0064 0.122 0.070
40 Hz 0.111 0.283 0.165
10 Hz 0.034 0.059 0.025
Anisotroni 15 Hz 0.050 0.098 0.039
nisotropic

P 20 Hz 0.064 0.135 0.060
40 Hz 0.160 0.315 0.172
Total Parameters 1.8M 4.2M 8.4M

Epoch 1 Epoch 2 Epoch 3 Target

Epoch 4 Epoch 5 Epoch 6 Input

Figure 3: The first 6 epochs of the CloudNFMM model train-
ing on the ‘Anisotropic 40Hz* dataset.

We present Figure 3, where we have visualised the first
6 epochs of the CloudNFMM model being trained on the
‘Anisotropic 40Hz* dataset.

PDEBench Table 2 shows the results of the CloudNFMM
against the Darcy Flow benchmarks. These results for the
baseline architectures are referenced from the HAMLET pa-
per (Bryutkin et al. 2024), this was done so that we could
best compare the CloudNFMM against other graph and
transformer-based neural operators. They were all trained
with the hyperparameters from the default implementation
of baseline methods found within their respective papers'?,
and trained and evaluated on 64 x 64 grids.

Analysis

The results indicate that the CloudNFMM approach, out-
lined in this paper, is a potentially powerful performance-to-
parameter efficiency class of neural operators. This is most

10The authors note that the, ”...dataset-specific hyperparameters
follow the PDEBench setting, while model-specific hyperparame-
ters follow the default setting of baseline methods suggested by the
code repositories or their papers.”

Table 2: Results of Neural Operators on the 2D Darcy Flow
datasets.

Darcy Flow 3 OFormer GeoFNO HAMLET CloudNFMM

B =0.01 2.21e-03 2.70e-03 2.45e-03 2.53e-01
B8 =0.1 2.55e-03 4.15e-03 2.60e-03 1.06e-01
B =1.0 3.00e-03 6.20e-03 2.74e-03 4.50e-02
B =10.0 7.32e-03 2.08e-02 5.51e-03 1.39e-02
B = 100.0 4.91e-02 1.65e-01 3.37e-02 1.18e-02

Figure 4: Examples from the validation set of: (Top) Darcy
Flow 8 = 100, (Middle) Helmholtz Anisotropic 20Hz, and
(Bottom) Helmholtz Anisotropic 40Hz

apparent from the WaveBench dataset results — see Table 1,
Figure 4, and Figure 3. Here, the model demonstrates excep-
tional performance, consistently outperforming most base-
line models — particularly at higher frequencies — while hav-
ing the lowest parameter count (1.8M) by a significant mar-
gin. This suggests that the FMM-inspired hierarchical struc-
ture is highly effective at capturing the complex, this is sup-
ported by the first few epochs within training — as seen in
Figure 3. Here the model quickly builds robust representa-
tions for far-field interactions using the hierarchical compo-
nent, while the local transformer layer uses these to produce
a smooth field. Conversely, the model’s performance on the
PDEBench Darcy Flow dataset — see Table 2 — is less com-
petitive, especially for low to moderate values of the per-
meability coefficient 3. Here the current CloudNFMM ap-
proach struggles compared to fully transformer-based oper-
ators — like OFormer and HAMLET.

Limitations and Next Steps

However, it is noteworthy that as 3 increases to 100.0 — rep-
resenting a very high-contrast problem — the CloudNFMM’s
performance improves to best-in-class. This result suggests
that the current mechanism for exchanging information be-
tween the hierarchical FMM tree and the local attention op-
erator may be a cause of the performance bottleneck. This
suggests that the mechanism linking the coarse FMM tree
and the fine-grained leaf interactions needs refinement. The
current T° and T operators might prevent local operator
from building good representations for classes of PDEs with

very smooth solutions.

Secondly, the current architecture is only formulated as a
direct solver for time-harmonic problems!!. We suggest ad-
dressing this using the same mechanism used by Bryutkin
et al. (2024) in HAMLET, and originally outlined by Li,
Meidani, and Farimani (2022) for the OFormer — incorpo-
rating a recurrent structure in the latent space after the final
layer of the model (before we apply Q in (2)), which would
propagate solutions through time.

Finally, while we deploy RoPE within the local attention
layer, we aim to build representations which are informed by
a learnt relative positional encoding. The absence of this in-
formation'? may be preventing the CloudNFMM from learn-
ing fine-grained, geometry-dependent physical laws within
the local neighbourhood.

Additional directions we aim to address in future work
are: experimenting with replacing the MLPs in the Cloud-
NFMM with SIREN (Sitzmann et al. 2020) — and KAN (Liu
et al. 2024b) — models, and more comprehensive testing of
the CloudNFMM on variable point densities and irregular
samplings.

Conclusion

In this work, we introduced the Cloud Neural Fast Multi-
pole Method (CloudNFMM), a discretisation-agnostic neu-
ral operator designed to solve time-harmonic PDEs on vari-
able point densities (point cloud) data. We achieve this by
adapting the information flow of the FMM, creating a hy-
brid method containing a hierarchical and local component.
This allows our model to efficiently capture both long-range
and short-range physical interactions without being con-
strained to a regular grid. Our experiments demonstrate that
the CloudNFMM achieves state-of-the-art performance and
remarkable parameter efficiency on challenging, highly os-
cillatory wave propagation problems. While its performance
on smooth problems is an area of improvement in the cou-
pling of local and global information flow, the results un-
derscore the significant potential of this simple approach.
The CloudNFMM represents a promising step towards cre-
ating scalable, discretisation-agnostic neural operators, in-
dicating that fusion of principled numerical algorithms and
deep learning architectures is a fruitful path for the future of
scientific machine learning.

Acknowledgments

We acknowledge the use of Google’s LLM, Gemini, as a
writing assistant. The model was used to enhance grammar,
improve phrasing, and improve the overall clarity of the text
— but was not used for retrieval, discovery, or ideation. The
authors carefully reviewed, revised, and take full responsi-
bility for the scientific integrity and final content of this pa-
per.

!!'This could be formulated as a fixed time horizon solver as well.
"2This already included as an input to P in (2), but this indicates
that this is a weak signal to the local attention operator.

References

Berner, J.; Liu-Schiaffini, M.; Kossaifi, J.; Duruisseaux, V.;
Boneyv, B.; Azizzadenesheli, K.; and Anandkumar, A. 2025.
Principled approaches for extending neural architectures to
function spaces for operator learning.

Boullé, N.; and Townsend, A. 2023. A Mathematical Guide
to Operator Learning. ArXiv:2312.14688 [cs, math].
Bryutkin, A.; Huang, J.; Deng, Z.; Yang, G.; Schonlieb, C.-
B.; and Aviles-Rivero, A. 2024. HAMLET: Graph trans-
former neural operator for partial differential equations.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2020.
An image is worth 16x16 words: Transformers for image
recognition at scale.

Fan, Y.; Feliu-Faba, J.; Lin, L.; Ying, L.; and Zepeda-Nunez,
L.2019a. A multiscale neural network based on hierarchical
nested bases. ArXiv:1808.02376.

Fan, Y.; Lin, L.; Ying, L.; and Zepeda-Nunez, L. 2019b. A
multiscale neural network based on hierarchical matrices.
arXiv:1807.01883.

Fognini, E. M.; Betcke, M. M.; and Cox, B. T. 2025. Learn-
ing greens operators through hierarchical neural networks
inspired by the Fast Multipole Method.

Janny, S.; Béneteau, A.; Nadri, M.; Digne, J.; Thome, N.;
and Wolf, C. 2023. Eagle: Large-scale learning of turbulent
fluid dynamics with mesh transformers.

KHOO, Y.; LU, J.; and YING, L. 2020. Solving paramet-
ric PDE problems with artificial neural networks. European
Journal of Applied Mathematics, 1-15.

Kovachki, N.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhat-
tacharya, K.; Stuart, A.; and Anandkumar, A. 2021a. Neu-
ral Operator: Learning Maps Between Function Spaces.
arXiv:2108.08481 [cs, math]. ArXiv: 2108.08481.
Kovachki, N. B.; Lanthaler, S.; and Stuart, A. M. 2024. Op-
erator learning: Algorithms and analysis.

Kovachki, N. B.; Li, Z.; Liu, B.; Azizzadenesheli, K.; Bhat-
tacharya, K.; Stuart, A. M.; and Anandkumar, A. 2021b.
Neural Operator: Learning Maps Between Function Spaces.
CoRR, abs/2108.08481.

Li, Z.; Huang, D. Z.; Liu, B.; and Anandkumar, A. 2022.
Fourier neural operator with learned deformations for PDEs
on general geometries.

Li, Z.; Kovachki, N.; Azizzadenesheli, K.; Liu, B.; Bhat-
tacharya, K.; Stuart, A.; and Anandkumar, A. 2020. Multi-
pole graph neural operator for parametric partial differential
equations.

Li, Z.; Meidani, K.; and Farimani, A. B. 2022. Transformer
for partial differential equations’ operator learning.

Liu, T.; Benitez, J. A. L.; Faucher, F.; Khorashadizadeh, A.;
de Hoop, M. V,; and Dokmani¢, 1. 2024a. WaveBench:
Benchmarking Data-driven Solvers for Linear Wave Propa-
gation PDEs. Transactions on Machine Learning Research.
Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.;
Soljaci¢, M.; Hou, T. Y.; and Tegmark, M. 2024b. KAN:
Kolmogorov-Arnold Networks.

Lu, L.; Jin, P; Pang, G.; Zhang, Z.; and Karniadakis, G. E.
2021. Learning nonlinear operators via DeepONet based on
the universal approximation theorem of operators. Nature
Machine Intelligence, 3(3): 218-229. Number: 3 Publisher:
Nature Publishing Group.

Martinsson, P.-G. 2019. Fast Direct Solvers for Elliptic
PDEs. Society for Industrial and Applied Mathematics.
ISBN 9781611976045.

Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; and
Battaglia, P. W. 2020. Learning mesh-based simulation with
graph networks.

Rokhlin, V. 1985. Rapid solution of integral equations
of classical potential theory. Journal of Computational
Physics, 60(2): 187-207.

Sitzmann, V.; Martel, J. N. P.; Bergman, A. W.; Lindell,
D. B.; and Wetzstein, G. 2020. Implicit neural represen-
tations with periodic activation functions.

Su, J.; Lu, Y.; Pan, S.; Murtadha, A.; Wen, B.; and Liu, Y.
2021. Roformer: Enhanced Transformer with Rotary Posi-
tion Embedding.

Su, J.; Lu, Y.; Pan, S.; Wen, B.; and Liu, Y. 2022. Ro-
Former: Enhanced Transformer with Rotary Position Em-
bedding. arXiv preprint arXiv:2104.09864.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, 1. 2017. At-
tention Is All You Need.

Ying, L.; Biros, G.; and Zorin, D. 2004. A kernel-
independent adaptive fast multipole algorithm in two and
three dimensions. Journal of Computational Physics,
196(2): 591-626.

The FMM

The FMM is originally an efficient, hierarchical, numerical
algorithm for computation of long-range forces in /N-Body
problems within gravitational and electrostatic fields devel-
oped by Rokhlin (1985) and has been extended by Ying,
Biros, and Zorin (2004) to apply the FMM to any Elliptic
PDE with a Green’s kernel. We will outline a high-level dis-
cussion of the FMM’s information flow, for a deeper han-
dling and derivation of the FMM we refer you to Martinsson
(2019) for reference material. The FMM belongs to a family
with linear or close to linear complexity for evaluating all
pairwise interactions between n-particles, which is achieved
by using two key ideas: a low-rank decomposition of the
kernel, as seen in Figure 6, and hierarchically partitioning
the spatial domain.!*> The FMM was originally designed to
solve a N-Body interaction problems of the form (6), with
G(x,y) being the Green’s kernel of the underlying physical
problem, x; the set of point locations, ¢; the set of corre-
sponding sources, and u(z;) being the set of potentials we
wish to compute forall 1 <¢ < N.

The functionality of the FMM stems from approximat-
ing far-field interactions using translation operators while
directly computing only near-field interactions. We can best
describe how these translation operators work together to

BThis is done via a Quadtree in 2D and an OctTree in 3D.

compute a full level of the FMM by inspecting the operators
needed to compute the interaction between two sufficiently
separated boxes /3, and [3;. Here the 7 and o subscripts in-
dicate the target box and source box respectively, and ‘suffi-
ciently separated’ means that 2b < ||¢, — ¢, || with ¢, and ¢,
being the centre of 5, and (3, respectively and b being the
length of a box at a given coarseness.

We denote F, = {f, < — ¢oll1} and N, =
{Bs]2b > ||cr — ¢, |1} to be the far-field and near-field of 5,
respectively. We can compute v, from ¢, by either a direct
evaluation of G(x,y) or compute it approximately by using
the operators defined in equations (7) and (10).

Mz

Gz, z)dj, i=1,2,3,...,N (6)

j=1

During the upwards pass, the sources ¢, within a region
B, are translated into a single, compact outgoing vector,
qo € R™. Next, the downward pass maps this outgoing vec-
tor to a compact incoming vector, h, € R™, which is then
propagated from the root down to the leaf level. Finally, the
leaf level pass expands the far-field vector h. into approxi-
mate potentials v and combines them with the direct evalu-
ation of G(z, y) for near-field particles.

How to Construct a Quad-Tree

The FMM uses a quad-tree to hierarchically decompose a
2D domain, it is constructed in the following way:

e Let the total domain be represented by a unit square
[0,1] x [0, 1].

e This domain is recursively and uniformly subdivided
down to a fixed depth, d.

e The number of patches, M, at this finest level, is given
by M = 44,
* Each patch m € {1,...,

M} is a square region of side
length [= 1/24.

13 14 7 18

Level 0 Level 1 Level 2

Figure 5: The Subdivision of the domain D into a QuadTree.

Upwards pass

We begin with (7), which embeds the source terms into an
outward potential in R™. To avoid repeated computation,
this potential, ¢,,;,'* is translated from level [in the tree, to

'“The number corresponds to which level of the tree that the
operator or vector corresponds to. For example T correspond to
T'" on level 2 of the Tree.

level [— 1. This is done by another operator,'> T°®, which
combines the four child outward potentials into one outward
potential for the parent box, By, with the potential centred
at the centre of the parent box. This is mathematically rep-
resented in (8), letting Cx; denote the children boxes of Oy .

e =T (¢) (7)
s =y T (qr) (8)
TECY

Downward pass

Starting at level 2 and propagating down to the leaf level'®,
denoted as level [, we combine potentials from the far-
field. As moving down the quad-tree allows for finer spa-
tial reﬁnement We can Npht up the incoming potential for a
box, hr = T k + hT &> into two distinct components to
reuse computation from the previous level. These two dis-
tinct components correspond to potential from the previous
level of refinement, hﬁ «» and a component corresponding to

the increased refinement from descending the tree, A%, . To

compute hJT\’[r we apply Ti,go to every sufficiently separated
box not within the previous level of refinement, denoted ..
The incoming potential from the parent box corresponds to
hf’ &> this is shifted from the parent box, 37, to the children

boxes, (-, by Tifi, We define Dy, to be the downward pass
for level k, which is mathematically represented for a single
target box, 5., in (9).

he =Tihr + > Tig, ©)
ocEU,

Leaf level Pass

At the finest level of refinement, the leaf level, we are left to
calculate the contribution from both A and from the points
in the near-field, N,. We apply T to expand h., into the
far-field contribution of v,. Those sources which lie within
N we may compute by directly evaluating G(z, y) between
the sources in the near-field. This process is mathematically
represented in (10).

)+Z Gz, zj)+

vr(z;) = T (b, Z G(zi,zj) (10)

jel, oeN,
i2£] JjEl,
The Neural FMM

The efficiency of the FMM stems from approximating far-
field interactions using translation operators while comput-
ing near-field interactions directly. However, a fundamen-
tal limitation of the traditional FMM is the requirement for
an explicit, analytically available Green’s kernel to derive

1SWe simplify this process by only having one operator for T
and T,

16 As the spatial resolution in the higher levels, levels 0 and 1, is
too coarse to allow for separation of the near-field and far-field.

Figure 6: A visualisation of the decomposition of D about
B, the blue square. Here we can see the different interac-
tion sets of 3, with the dashed blue and yellow boxes being
the parent of 3., 3r. The yellow boxes being N, the green
boxes being the far field of 57, Fr. The red and green (tech-
nically the children of the green boxes, but they define the
same region) boxes being the far field of 5, F.- and the red
boxes being its unique far field, U/, .

these operators, which is difficult for problems in hetero-
geneous domains or where the kernel is unknown. Build-
ing upon the discussion of neural operators, our contribu-
tion is the Neural Fast Multipole Method, which integrates
the information flow of the FMM while replacing the hand-
crafted, kernel-dependent translation operators with learnt
operators parameterised by a learnable operators. We lever-
age the FMM'’s hierarchical partitioning and computation
flow, outlined in (7) and (10), to split up and learn repre-
sentations of local and far-field interactions. These passes
are integrated into a single computational unit, the Neural
FMM Block, with multiple of these blocks stacked together
to form a deeper model, the Deep Neural FMM, enhancing
expressivity of the model and mirroring (2).

Neural FMM implementation

The Neural FMM deviates from this by replacing each trans-
lation operator with an MLP while still following the non-
local information flow for computing the far-field contribu-
tion, namely summing contributions from sufficiently sepa-
rated boxes, rather than using a local operation at each level.
The largest deviation from the FMM has been using one op-

erator per level, Tigff’k, to represent the family of linear maps

which are derived from the translation function formula!’
from level k, represented by Tlef’U; with a different matrix
operator for each 7, o pair.

Position encoding As the operators are applied channel-
wise to every element in out domain at once, the network
does not inherently know the spatial position of each ele-
ment, which is core to how the Multipole-to-Local transla-
tion formula in the FMM performs the translation from out-
going potentials to incoming potentials. This required the
inclusion of a spatial encoding scheme to reintroduce this
spatial dependence for our MLP’s. This was handled by the

" This is also called the Multipole-to-Local translation formula
in the literature.

FMM
Block T

1

Wl

)

Figure 7: The Deep Neural FMM Architecture — We follow
the neural operator framework from (2), with a lifting func-
tion Q and a projection function P, while replacing each
K+ (vt)) with a Neural FMM Block (outlined within the red
box). Within the Neural FMM Block, v;_; passes up the
Tree via the Upward Pass (7) and (8). This we then apply
Tif to convert the outgoing potentials to their incoming po-
tentials followed by propagating the information down the
Tree via the Downward pass (9). The Leaf Pass then com-
putes the contribution from the near-field, N, using a MLP.

use of Rotary Position Embeddings (RoPE) (Su et al. 2021,
2022) applied to the vectors corresponding to each box, us-
ing the position of each box in the 1D Morton ordering as the
position for RoPE. This approach was chosen as it was found
to encode position information more directly, leading to bet-
ter preservation of the spatial relationships between boxes
when compared to additive sinusoidal encodings, and sim-
pler to implement than a custom position encoding scheme.

Downward pass implementation The summations over
interaction sets, particularly in the Downward Pass for the
unique far-field U/, (9) is computationally intensive due to
the non-local/non-contigous locations of the boxes within
U, with respect to the location of 3. In order to increase the
efficiency of the aggregation within the downward pass, we
pre-compute masks corresponding to these interaction sets
at the initialisation of the architecture.

Attention as Message Passing

Now that we have outlined that self-attention and cross-
attention can be thought of as working on K (a directed
complete graph) or Ky a7 (a complete undirected bipartite
graph) respectively, we will now outline the corresponding
form of:

* The Message Function: Ky(e,e)

* The Aggregation Function: [I(e,--- ,e)

* The Update Function: U (e, e)

Without loss of generality, we will only consider the

self-attention mechanism applied to a sequence of tokens

{t1,...,ty} with input embeddings {z1,...,zx}, as the
only difference between cross and self attention is the topol-
ogy of the underlying graph'® while the mechanism itself is
the same.

Message Function

In a general MPNN, the message function Méffl) =
My(xt, 2t e,) computes a message dependent on the
source node w, the target node v, and the edge features e,,,.
Suppose we are on a graph without edge embeddings, so
the adjacency matrix is a binary matrix indicating if nodes
are connected together or not; the message function would
then drop the dependence on e,,,. If we constrict the class
of message functions to some kernel function, K(e,e)
RP x RP — R. Within the attention mechanism, this K is
actually a bilinear product parameterised by two affine trans-
formations, Key - K and Query - Q, which means K has the
following form:

aij = K(z;,2;) = (Ka;)" (Qu;) (11)

Aggregation Function

Since attention is a weighted sum, the aggregation function
is summation, to produce the context vector c; for token/n-
ode x;. However, within attention, there are two additional
permutation invariant functions we apply. Firstly, we apply
Softmax to the attention scores to compute a distribution,
secondly we then apply the affine transformation - V - to
the vector associated with the node/token, so the aggrega-
tion function has the following form:

[exp(a; ;)
JEN(z3) ZkeN(azi) exp

exp (K (zi, ;)
C; =
Z [ZkeN(zi) exp (K (x;, zy,

JEN ()

¢ = Z (Softmax (,,) [K (i, 2;)]) Va; (14)
JEN ()

C; =

(@ wﬂ & (12

)>V] z; (13)

Where Softmaxy(,,) is Softmax normalised with re-
spect to the neighbourhood of edges from ;. As summation,
Softmax, and matrix multiplication are permutation invari-
ant, this is a valid message passing aggregation function.

Multiple Heads Multi-head attention does not change the
core message passing framework, but instead parallelises the
core logic over h heads, which are subspace projections
in which we perform attention independently. Each head
h € {1,..., H} contain their own set of affine transforma-
tions, (Qp, Kpn, V) : R# — R7, although in practice one
large affine transformation is used for the token sequence,
which is then reshaped to match the number of heads. The
individual head outputs are concatenated to form a single,
larger aggregated message, ¢/ = ¢M||cl2||- .- ||cM. This

8However, assuming S or T are disjoint sets does allow for
more efficient computation.

concatenated vector is then passed through a final affine
transformation, parameterised by PO, to produce the final
output embedding:

¢ = PO (cf) = PO (el i) 9)

In this view, multi-head attention is equivalent to com-
puting multiple directional edges between each of the to-
ken/node embeddings, with the output of each of these sub-
space attention mechanisms being combined in the aggrega-
tion step.

K (i, 2;) = (2K)" (Quy)

h €xXp (Kh(zﬁ IJ))
cl = Vil x;
z jENZ@i) leGN(Ii) exp (Kn(2i, 7x)) 1

¢ = PO (el 2]+ ek)

Since the update function is applied to the context vectors
¢;, multi-headed attention only modifies the message and ag-
gregation function of the attention mechanism.

Update Function

Once we have computed the context vector c; via the mes-
sage and aggregation function, we then need to update the
representation of the token/node with respect to the con-
text vector. In standard Transformer architectures the update
function is a MLP with residual connections before and af-
ter the MLP, there are typically several normalisation opera-
tions!?, so the form of the update function is:

U(.’EZ‘, Ci) =x; + MLP[CB, + Ci] (16)

Thus, we can see that the attention mechanism imple-

ments a message passing scheme on a graph, where each

weight is determined via the kernel message function a;; =
K (z;,z;) - the query-key mechanism.

CloudNFMM Implementation Details
Metrics and Loss Functions

Relative L, The relative loss function — £ — computes
a l, norm between the predicted and ground truth values,
which is normalised by the [, norm of the ground truth —
as originally outlined by N. Kovachki et al. (Kovachki et al.
2021b). For a predicted output tensor, v, and ground truth
tensor, u, the relative error loss and relative error metric —
8;31 — are computed as:

rel ||UZ ul”p
17
Er () Z il 4
rel ||U - U’HP
&y (v,u) = 7||u||p (18)

These are typically either a pre-/post-application of Layer-
Norm between the residual connection and application of the MLP,
but I have removed them for simplicity as they are added to im-
prove stability during training.

where p represents the order of the norm, and N is the
batch size. This loss provides a scale-invariant measure of
error, particularly useful when dealing with solutions that
may vary significantly in magnitude.

Training Protocols

Default Training Protocol We found that training using
Table 3 provided satisfactory results on a large class of prob-
lems.

Table 3: Default Training Protocol for the CloudNFMM

Parameter Value

of Epochs 50
Optimiser AdamW
Scheduler OneCycle
lrstart 36 —4
ITend 3e—6

Train/Test Split ~ 80/20

WaveBench Training Protocol This is the training proto-
col outlined in the WaveBench paper can be seen in Table 4.

Table 4: WaveBench Training Protocol

Parameter Value

of Epochs 50

Optimiser AdamW
Scheduler Cosine Annealing
I7gart le—4

ITend le—6

Train/Test Split 99/1

Note: In the original WaveBench paper, they have [7g =
le—3 & Ilreng = le—5. However, due to the training insta-
bilities of transformer-based architectures at high learning
rates, we reduced both [rg, & Ireng by an order of magni-
tude.

