
Resilient AI Infrastructure by Design: A Spatially-Aware Framework for
Tolerating Clustered Failures

Yiquan Wang,1 Ziyang Liu,2 Jingfan Zai,1 Jingyi Chen,1 Eminjan Sabir1*

1College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China
2School of Future Science and Engineering, Soochow University, Suzhou 215000, China

eminjan20150513@163.com

Abstract

Training large-scale AI models is a massive investment, yet
these multi-million dollar runs are extraordinarily vulnera-
ble to physical infrastructure failures. A single component
failure, like a rack power supply, can trigger a cascade of
spatially correlated, clustered network failures, catastrophi-
cally terminating the entire task. This fragility presents a crit-
ical challenge to the reliable deployment of AI in the real
world, stemming from a fundamental flaw in system design:
abstract fault models are blind to the physical reality of fail-
ures. They cannot capture spatial correlation, leading to sys-
tems that are either over-provisioned or deceptively brittle.
We address this challenge by proposing the Region-Based
Fault (RBF) framework, a new paradigm in computing sys-
tems design for AI that treats the physical topology of failures
as a first-order parameter. We formally prove a key princi-
ple for resilient system design: the geometric dispersion of
faults is a more critical determinant of network resilience
than their aggregate count. We prove that strategically in-
creasing the physical separation (dsep) between potential
fault regions provides disproportionately high gains in re-
silience. We prove that the k-ary n-cube, a prevalent AI in-
terconnect topology, maintains Hamiltonian connectivity—a
property essential for high-performance, deadlock-free com-
munication—under a wide range of realistic, clustered fault
conditions. This work provides system architects with a math-
ematical foundation and actionable algorithms to design next-
generation AI infrastructures that are not only more resilient
to real-world failures but also more cost-effective, directly
tackling a fundamental deployment challenge and paving the
way for more reliable and accelerated AI-driven discoveries.

Keywords: Region-Based Fault Model (RBF), Spatially-
Aware Fault Tolerance, AI Infrastructure, k-ary n-cubes,
Hamiltonian Connectivity.

Introduction
The success of large-scale AI, from foundation models to
scientific discovery, is built on computation at scale, with
systems integrating tens of thousands of processors (Jouppi
et al. 2017, 2023; NVIDIA 2025). The k-ary n-cube (Qk

n)
topology, with its scalable and regular structure, remains
a cornerstone of these architectures, from Google’s TPU
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Pods to specialized accelerators (Dally 2002; Sarbazi-Azad,
Ould-Khaoua, and Mackenzie 2001; Qiao and Zhang 2024).
However, the scale and complexity that enable AI break-
throughs also render these systems fragile to physical fail-
ures. This operational fragility has become a key challenge
in applying and deploying AI in the real world, where sta-
bility over weeks or months is required.

The root of this challenge lies in a disconnect between
the physical reality of failures and the abstract models
used for system design. In large-scale infrastructure, failures
are rarely random. A single physical event, like a cooling
unit malfunction, can create a spatially correlated, clustered
“hole” in the network by disabling an entire rack (Hacker,
Romero, and Carothers 2009; Vishwanath and Nagappan
2010; Pinheiro, Weber, and Barroso 2007; Xia et al. 2020;
Chen, Chao, and Wu 2015). Such an event can trigger com-
munication deadlocks, crashing expensive training jobs and
compromising network properties like Hamiltonian connec-
tivity, which is important for deadlock-free routing (Dean
et al. 2012; Ali, Abbas, and Khan 2004; Dong et al. 2025).
However, prevailing fault models are blind to this physical
reality. The classic Fault-Tolerant (FT) model’s assumption
of independent, arbitrary faults ignores the primary risk of
clustered events (Yang, Tan, and Hsu 2007; Ashir and Stew-
art 2002; Lv et al. 2018). Even more advanced models, while
accounting for logical dimensions, remain blind to physical
locality, misinterpreting a single physical failure as multiple
unrelated faults (Zhuang et al. 2023b, 2024, 2023a). This
disconnect leaves system architects designing in the dark,
unable to build systems resilient against probable and dam-
aging real-world failure scenarios.

To address this deployment challenge, we introduce the
Region-Based Fault (RBF) framework, a contribution to the
design and optimization of computing systems for AI. RBF
is a hardware-software co-design paradigm that explicitly
incorporates the spatial geometry of the physical system
into network analysis by modeling failures as connected
”fault clusters” with parameters for size, shape, and phys-
ical separation (dsep). In this context, we formally prove
that fault dispersion is a more critical determinant of re-
silience than aggregate fault count, showing that increasing
dsep yields super-linear gains. We provide a constructive,
spatially-aware algorithm that guarantees Hamiltonian con-
nectivity in Qk

n networks and validate its performance ex-



perimentally, demonstrating its robustness far beyond theo-
retical guarantees.

Related Work
Research on fault tolerance in large-scale interconnection
networks has evolved toward more realistic failure models.
The traditional Fault-Tolerant (FT) model provides worst-
case guarantees by assuming faults can be independent
and arbitrarily placed. While foundational, its random fail-
ure assumption leads to overly pessimistic assessments, ill-
suited for real-world, clustered events like rack-level failures
(Yang, Tan, and Hsu 2007; Ashir and Stewart 2002). For in-
stance, the FT model limits the fault tolerance of a k-ary
n-cube to 2n − 3 edges, a bound dictated by the pathologi-
cal (and improbable) scenario of all faults targeting a single
node.

To overcome this limitation, the Partitioned Edge Fault
(PEF) model marked a significant step forward by distin-
guishing failures across logical dimensions (Zhuang et al.
2023b). This insight, motivated by architectures where di-
mensional links have different failure characteristics, dra-
matically improved the theoretical fault tolerance bounds
from linear to exponential in the network’s dimension. How-
ever, the PEF model’s critical flaw lies in its blindness to
physical proximity. A single physical event—such as a local-
ized cooling failure—can sever links across multiple logical
dimensions, which PEF misinterprets as multiple indepen-
dent faults. This reveals a critical gap in existing models:
their inability to capture the ”physical geometry” of fail-
ures. Our Region-Based Fault (RBF) model fills this void
by treating the spatial distribution and clustering of failures
as first-class citizens, providing a framework to realistically
evaluate and design highly resilient AI infrastructure.

While other advanced conditional and structure-based
models have been proposed to avoid the FT model’s worst-
case scenarios, they often focus on the properties of the sur-
viving graph rather than the topology of the fault region it-
self. For a detailed survey of classical and conditional fault
models, including specific theoretical bounds and a compar-
ative analysis, please refer to Appendix A.

Preliminaries
Graph-Theoretic Notation. We model the network as a
graph G = (V,E). A network with link failures F ⊆ E is
denoted as the faulty graph G − F . A path is a sequence of
distinct, connected vertices. A Hamiltonian path visits every
vertex in the graph exactly once, and a graph is Hamiltonian-
connected if such a path exists between any pair of distinct
vertices. For notational convenience, we use [n] to denote
the set {1, 2, . . . , n}.

The k-Ary n-Cube (Qk
n) Topology

The k-ary n-cube (Qk
n) is a foundational topology in parallel

computing. Its structure is formally defined on a vertex set
V (Qk

n) = {0, 1, . . . , k − 1}n, where each vertex is an n-
digit vector in base k. Two vertices are connected by an edge
if and only if their vector representations differ in exactly
one coordinate i, where their values are adjacent modulo k
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(a) A 3-ary 3-cube (Q3
3).
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Sd ≥ 1

(b) RBF model in a 3-ary 3-
cube.

Figure 1: Illustration of the RBF model in a 3-ary 3-cube
(Q3

3). (a) The standard topology. (b) An example demon-
strating two distinct fault clusters (F1, F2) constrained by a
minimum separation distance (Sd), which are core concepts
of the RBF model.

(i.e., ui ≡ vi ± 1 (mod k)). This definition yields a 2n-
regular graph with kn vertices, a node and edge connectivity
of 2n, and a diameter of n⌊k/2⌋ (Dally 2002; Ghozati and
Wasserman 1999; Mao and Nicol 2003; Sarbazi-Azad et al.
2004).

A key property of the Qk
n for fault tolerance analysis is its

recursive structure. By partitioning vertices based on their
value in a chosen dimension i, the graph is divided into k
disjoint subgraphs, Q[0], . . . , Q[k−1]. Each subgraph Q[l] is
induced by vertices whose i-th coordinate is l and is isomor-
phic to a lower-dimensional k-ary (n−1)-cube, Qk

n−1. This
structural decomposition provides the mathematical frame-
work for our RBF model. To formalize this, we denote the
unique neighbor of a vertex u ∈ V (Q[l]) in an adjacent sub-
graph Q[l′] as nl′(u), where l′ ≡ l ± 1 (mod k). Conse-
quently, Fi[l, l + 1] is the set of faulty edges in F ∩Ei con-
necting regions Q[l] and Q[l + 1]. Figure 1 illustrates this
topology.

The Region-Based Fault (RBF) Model
To model the clustered nature of real-world failures, we in-
troduce the Region-Based Fault (RBF) model. RBF formally
captures the spatial and topological characteristics of fault
patterns, a paradigm shift from traditional approaches.

Core Concepts: Fault Clusters
The fundamental unit of failure in the RBF model is the fault
cluster.

A fault cluster C is defined as a connected component of
the fault-induced graph GF = (VF , F ), where VF = {w ∈
V (Qk

n) | ∃(u, v) ∈ F such that w = u or w = v} is the set
of all nodes incident to faulty edges, and F is the set of faulty
edges. Each cluster represents a single, physically correlated
failure event.

The model is defined by three key parameters that charac-
terize these clusters:

• Cluster Separation Distance: For two distinct fault
clusters Ci and Cj , their separation is defined as
d(Ci, Cj) = minu∈V (Ci),v∈V (Cj) dH(u, v), where
dH(u, v) is the Hamming distance between nodes u and
v. This enforces that distinct failure events are spatially
isolated.



(a) Complete
(K4) (b) Star (S4) (c) Path (P4) (d) Cycle (C4)

Figure 2: Examples of allowed fault cluster shapes, assum-
ing the total number of faulty nodes per cluster is bounded.

• Cluster Size: The size of a cluster is the number of faulty
edges it contains. Bounding this parameter limits the im-
pact of a single failure event.

• Cluster Shape: The shape is determined by the topol-
ogy of the cluster’s induced subgraph. We define a set
of allowed shapes, S, to model common failure patterns,
such as a complete graph (e.g., a failed router), a star (a
failed switch port), a path/tree, or a cycle, as illustrated
in Figure 2.

Formal Definition of the RBF Model
Building upon these concepts, we provide the formal defini-
tion of the RBF model.

Definition 1 (Region-Based Fault (RBF) Model). Let F ⊆
E(Qk

n) be a set of faulty edges. Let GF = (VF , F ) be the
fault-induced graph, where VF is the set of nodes incident to
edges in F . A fault cluster decomposition of F is a partition
C = {C1, C2, . . . , Cm}, where each Ci = (V (Ci), E(Ci))
is a connected component of GF .

The set F is a valid RBF fault set characterized by the
parameter tuple (kmax, smax, dsep,S) if its decomposition C
satisfies the following four constraints:

1. Cluster Count Bound: The total number of clusters is
bounded, i.e., m = |C| ≤ kmax.

2. Cluster Size Bound: The size of any individual cluster,
measured by its number of faulty edges, is limited, i.e.,
∀Ci ∈ C, |E(Ci)| ≤ smax.

3. Cluster Separation Bound: Any two distinct clusters
are spatially isolated by a minimum Hamming dis-
tance, i.e., ∀Ci, Cj ∈ C with i ̸= j, d(Ci, Cj) =
minu∈V (Ci),v∈V (Cj) dH(u, v) ≥ dsep.

4. Cluster Shape Constraint: The topology of each clus-
ter’s induced subgraph belongs to a predefined set of al-
lowed shapes, i.e., ∀Ci ∈ C, shape(Ci) ∈ S.

The specific feasibility constraint on this parameter tuple
that guarantees Hamiltonian connectivity is established in
Theorem 1.

Properties and Advantages of the RBF Model
The RBF model’s power stems from its core structural prop-
erties, which fundamentally bridge the gap between theo-
retical analysis and the physical reality of system failures.
By representing faults as connected clusters with a bounded
size (|Ei| ≤ smax) and enforcing a minimum spatial sepa-
ration between them (d(Ci, Cj) ≥ dsep), the model ensures

that the influence regions of distinct failure events are lo-
calized and disjoint. This structural constraint directly trans-
lates into a significant advantage: enhanced analytical pre-
cision. Unlike traditional models that assume uniform fault
distributions, RBF can accurately account for the clustered
nature of real-world events like rack-level outages, leading
to more realistic resilience estimates. Furthermore, this ex-
plicit spatial awareness creates new opportunities for algo-
rithmic optimization, enabling the design of strategies that
can isolate and efficiently route around fault zones—a capa-
bility that models lacking spatial context cannot exploit. The
parameterized nature of the framework, defined by the tu-
ple (kmax, smax, dsep,S), adds practical utility, offering sys-
tem architects the flexibility to tailor the model to specific
hardware architectures and environmental conditions. For
detailed guidance on selecting these parameters in practice,
see Appendix C.

Fault-Tolerant Hamiltonian Path Embedding
Theoretical Foundation
In this section, we establish the theoretical foundation for
our algorithm and prove its correctness under a sufficient set
of conditions.

Basic Definitions and Properties

Definition 2 (Fault Cluster Properties). Let Ci be a fault
cluster with edge set Ei and let V (Ci) denote the set of
nodes incident to edges in Ei. The cluster has the follow-
ing properties:

• Size: |Ei| ≤ smax

• Shape: shape(Ci) ∈ S
• Affected nodes: |V (Ci)| ≤ 2smax

Lemma 1 (Bounding Cluster Diameter). Let Ci be a fault
cluster of size |Ei| ≤ smax. The Hamming diameter of its af-
fected node set, diamH(V (Ci)) = maxu,v∈V (Ci) dH(u, v),
is bounded by smax.

Proof. For any two nodes u, v ∈ V (Ci), a simple path of
edges from Ei connects them, as Ci is connected. Let the
length of the shortest such path be l. By the triangle inequal-
ity, the Hamming distance dH(u, v) is less than or equal to
the sum of the Hamming distances of the edges along this
path. Since each edge in Qk

n has a Hamming distance of 1,
we have dH(u, v) ≤ l.

The maximum length of a shortest path between any two
nodes in the cluster graph Ci is its diameter. From the case
analysis on allowed shapes in S, the maximum number
of nodes in a cluster is at most smax + 1 (for a path/tree
shape), and the diameter of the cluster graph is at most smax.
Thus, the maximum shortest path length l is at most smax.
Therefore, diamH(V (Ci)) = maxu,v∈V (Ci) dH(u, v) ≤
smax.

Core Theoretical Results Our central theoretical result
establishes the sufficient conditions for Hamiltonicity under
the RBF model.



Lemma 2 (Cross-Layer Edge Availability). Let F be a fault
set satisfying RBF conditions (kmax, smax, dsep,S) in Qk

n.
Let the network be decomposed along dimension d∗. The
number of faulty edges |Fj,j+1| between any adjacent sub-
cubes Q[j] and Q[j + 1] is bounded by:

|Fj,j+1| ≤ smax ·min (kmax,Kbound(n, k, dsep))

where Kbound(n, k, dsep) = kn−1∑⌊(dsep−1)/2⌋
i=0 (n−1

i )(k−1)i
is the

Hamming bound on the number of clusters that can simulta-
neously damage the interface.

Proof. Step 1: Bounding the number of ”damaging”
clusters. Let Cj,j+1 ⊆ C be the set of fault clusters that
damage the interface between Q[j] and Q[j + 1]. For any
cluster Ci ∈ Cj,j+1, its node set V (Ci) must contain at least
one node in Q[j] and one node in Q[j + 1].

For each such cluster Ci ∈ Cj,j+1, we can select a repre-
sentative node ui ∈ V (Ci) ∩ V (Q[j]). Now, consider any
two distinct clusters Ci, Cl ∈ Cj,j+1 with their representa-
tive nodes ui, ul ∈ V (Q[j]).

By the RBF condition, the Hamming distance between
any node in Ci and any node in Cl is at least dsep. Thus,
dH(ui, ul) ≥ dsep. Since both ui and ul are in the subcube
Q[j], their d∗-th coordinates are identical. This means their
Hamming distance is entirely determined by the other n− 1
coordinates.

Step 2: Applying a packing argument in the subcube.
We now have a set of nodes {ui}i∈I within the subcube Q[j]
(which is isomorphic to Qk

n−1) such that the pairwise Ham-
ming distance is at least dsep. The size of this set, |Cj,j+1|, is
the number of damaging clusters.

We can bound this size using a standard sphere-packing
argument (the Hamming bound). The ball B(u, r) of radius
r around a node u in Qk

n−1 contains
∑r

i=0

(
n−1
i

)
(k − 1)i

nodes. If we place disjoint balls of radius r = ⌊(dsep−1)/2⌋
around each representative node ui, these balls must all fit
within the total volume of the subcube Qk

n−1, which has
kn−1 nodes.

Therefore, the number of damaging clusters is bounded
by:

|Cj,j+1| ≤
|V (Qk

n−1)|
|B(u, r)|

=
kn−1∑⌊(dsep−1)/2⌋

i=0

(
n−1
i

)
(k − 1)i

=: Kbound

This bound is derived from established combinatorial prin-
ciples and is therefore rigorous. For any non-trivial dsep ≥ 3,
the denominator grows, making Kbound a powerful con-
straint.

Step 3: Calculating the total faulty edges. Each of
the |Cj,j+1| damaging clusters can contribute at most smax

faulty edges in total. Thus, the total number of faulty edges
on the interface is bounded by the product of the maximum
number of damaging clusters and the maximum size of each
cluster:
|Fj,j+1| ≤ |Cj,j+1| · smax ≤ Kbound(n, k, dsep) · smax

Step 4: Finalizing the bound with a dual constraint.
The sphere-packing argument in Step 2 provides a power-
ful local geometric bound, Kbound, on the number of clus-
ters that can physically affect the interface. However, this

must be reconciled with the global model bound: the num-
ber of damaging clusters, |Cj,j+1|, obviously cannot exceed
the total number of clusters, kmax, permitted in the entire
network by the RBF model’s definition. To form the tight-
est possible (most stringent) mathematical upper bound, we
must enforce both of these independent constraints simulta-
neously. Therefore, the effective maximum number of dam-
aging clusters is the minimum of the global limit and the
local geometric limit. Multiplying by the maximum size of
each cluster, smax, yields the final expression:

|Fj,j+1| ≤ smax ·min (kmax,Kbound(n, k, dsep))

This demonstrates mathematically how separation distance
limits the ”conspiracy” of clusters against a single inter-
face. It is important to note that Kbound represents a worst-
case packing limit; as shown experimentally, typical cluster
placements result in far fewer damaging clusters.

Lemma 3 (Inductive Property Preservation). Let F be a
fault set satisfying RBF conditions (kmax, smax, dsep,S) in
Qk

n. When decomposed along dimension d∗, the induced
fault set Fj within any subcube Q[j] satisfies a set of RBF-
like conditions (k′max, s

′
max, d

′
sep,S ′). Specifically, s′max ≤

smax and d′sep ≥ dsep. The number of clusters k′max is
bounded by k′max ≤ kmax · smax.

Proof. Let C be the cluster decomposition of F in Qk
n. The

induced fault set Fj in a subcube Q[j] consists of all edges
from F that are internal to Q[j].

• Size (s′max): Any new cluster in Q[j] is a subgraph of an
original cluster from C. Therefore, its size cannot exceed
the original maximum size, i.e., s′max ≤ smax.

• Separation (d′sep): The Hamming distance between any
two nodes within the subcube Q[j] is calculated over
n − 1 dimensions. This distance is never less than their
distance in the full n-dimensional space. Thus, the mini-
mum separation between any two new clusters in Q[j] is
at least dsep, so d′sep ≥ dsep.

• Number of clusters (k′max): A single cluster Ci ∈ C that
spans multiple subcubes may be partitioned into several
disconnected components within a single subcube Q[j].
A cluster with |Ei| ≤ smax edges has at most smax +
1 nodes (if it’s a tree/path). The number of components
it can split into within Q[j] is bounded by its number
of edges, smax. In the worst case, all kmax clusters are
split this way, leading to a new maximum cluster count
of k′max ≤ kmax · smax.

The shapes of the new cluster components, S ′, will be sub-
graphs (typically forests) of the original shapes in S. The
induced fault set thus satisfies a well-defined, albeit poten-
tially weaker, set of RBF-like conditions.

Theorem 1 (RBF Hamiltonian Connectivity). For odd k ≥
3 and n ≥ 2, if a fault set F ⊆ E(Qk

n) satisfies the RBF
conditions (kmax, smax, dsep,S) and the constraint:

min (kmax,Kbound(n, k, dsep)) · smax <
kn−1

4



where Kbound(n, k, dsep) is defined as in Lemma 2, then
Qk

n − F remains Hamiltonian-connected.

Proof. The proof proceeds by induction on n.
Base case (n = 2): For Qk

2 (a torus), the num-
ber of cross-layer edges is k. The condition becomes
min(kmax,Kbound) ·smax < k/4. This ensures that the fault
density is sufficiently low for known algorithms to construct
Hamiltonian paths in faulty 2D tori.

Inductive step: Assume the theorem holds for dimen-
sions up to n − 1. Consider Qk

n with an RBF fault set F
satisfying the theorem’s condition.

1. Select an optimal decomposition dimension d∗ that
maximizes fault cluster separation. 2. Decompose Qk

n along
d∗ into k subcubes Q[0], Q[1], . . . , Q[k − 1], each isomor-
phic to Qk

n−1. The total number of edges between any adja-
cent subcubes Q[j] and Q[j+1] is kn−1. 3. By Lemma 3, the
induced fault set Fj within each subcube Q[j] satisfies a set
of RBF-like conditions. For the inductive hypothesis to ap-
ply, we must ensure these induced conditions are sufficiently
strong. As s′max ≤ smax and d′sep ≥ dsep, the critical condi-
tion on cross-layer faults for the subproblem (of dimension
n − 1) will also hold. 4. By the inductive hypothesis, each
subcube Q[j] that is not overly damaged is Hamiltonian-
connected. 5. By the newly proven Lemma 2, the number
of faulty cross-layer edges |Fj,j+1| is bounded by Fupper =
min(kmax,Kbound(n, k, dsep)) · smax. 6. The condition of
the theorem, Fupper < kn−1/4, guarantees that the number
of healthy cross-layer edges between Q[j] and Q[j + 1] is
at least kn−1 − Fupper > kn−1 − kn−1/4 = (3/4)kn−1.
This vast number of available edges ensures that the path
stitching step in our recursive algorithm will succeed.

Therefore, by recursively finding Hamiltonian paths in
the subcubes and stitching them together using the abundant
healthy cross-layer edges, a global Hamiltonian path can be
constructed between any two nodes.

Algorithm Design and Correctness
This section presents our RBF-based Hamiltonian path con-
struction algorithm and its proof of correctness.

Algorithm Overview Our algorithm employs a recur-
sive divide-and-conquer approach specifically designed for
the RBF model. The primary contribution consists of
an adaptive dimension selection strategy that maximizes
fault cluster separation. The overall procedure, shown
in Algorithm 1, first validates the RBF conditions. The
SelectOptimalDimension function (line 8) imple-
ments a crucial heuristic to find a decomposition that maxi-
mizes fault isolation. It iterates through all possible dimen-
sions d ∈ {0, . . . , n−1}. For each dimension d, it calculates
a cost score, defined as the number of fault clusters that have
edges in more than one subcube if the network were to be de-
composed along dimension d. The function then returns the
dimension d∗ with the minimum cost:

d∗ = argmin
d∈{0,...,n−1}

|C|∑
i=1

I(spans dimension(Ci, d))

Algorithm 1 RBF Hamiltonian Path Construction

Require: Qk
n: k-ary n-cube network, F : RBF fault edge set,

s, t: source and target nodes
Ensure: Hamiltonian path from s to t, or NULL if impos-

sible
1: C ← AnalyzeFaultClusters(F )
2: if Theorem 1 condition is not met then
3: // Proceed with best-effort, as condition is sufficient

but not necessary
4: end if
5: if n = 2 then
6: return HamiltonianPath2D(Qk

2 , F, s, t)
7: end if
8: d∗ ← SelectOptimalDimension(C, n)
9: {Q[0], . . . , Q[k − 1]} ← DecomposeNetwork(Qk

n, d
∗)

10: SubPaths← []
11: for i = 0 to k − 1 do
12: Fi ← F ∩ E(Q[i])
13: if i = s.layer then
14: start node← s
15: else
16: start node ← SelectStartNode(Q[i],SubPaths[i −

1])
17: end if
18: if i = t.layer then
19: end node← t
20: else
21: end node← SelectEndNode(Q[i], Q[i+ 1], d∗)
22: end if
23: Pi ← RBF HamiltonianPath(Q[i], Fi, start node, end node)
24: if Pi = NULL then
25: return NULL
26: end if
27: SubPaths.append(Pi)
28: end for
29: return StitchPaths(SubPaths, d∗)

where I(·) is the indicator function and
spans dimension(Ci, d) is true if cluster Ci contains
nodes whose d-th coordinates differ. This adaptive selection
is critical, as it allows the algorithm to proactively find a
decomposition that minimizes inter-subcube disruption,
often resulting in performance far exceeding the worst-case
theoretical guarantees. For n > 2, it recursively decomposes
the network along the selected optimal dimension, solves
for Hamiltonian paths in the subcubes, and then stitches
these paths together to form a global Hamiltonian path.

Algorithm Complexity Analysis

The time complexity of Algorithm 1 is O(n · kn) and space
complexity is O(kn). The algorithm achieves near-optimal
performance with only a factor of n overhead compared to
the theoretical lower bound, which comes from the adap-
tive dimension selection process that is essential for the im-
proved fault tolerance.
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Figure 3: 3D illustration of the recursive path stitching
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Table 1: Fault tolerance comparison for RBF, PEF, and FT
models.

Network Config. RBF Tol. PEF Tol. FT Tol.
3-ary 5-cube (Q3

5) 41 24 3
4-ary 4-cube (Q4

4) 134 77 5
5-ary 5-cube (Q5

5) 1,607 770 7
6-ary 4-cube (Q6

4) 2,648 1,353 9
7-ary 4-cube (Q7

4) 10,403 5,447 11
8-ary 3-cube (Q8

3) 5,934 3,265 13
9-ary 3-cube (Q9

3) 17,561 9,824 15
10-ary 3-cube (Q10

3 ) 52,009 29,505 17

Experimental Evaluation and Analysis
We now experimentally evaluate our algorithm’s perfor-
mance and validate our claims of enhanced fault tolerance.

Experimental Setup
The simulations were performed using a custom-built
Python framework implementing the Qk

n topology and our
RBF-based algorithm. We compared our RBF model against
the traditional Fault-Tolerant (FT) model and the Partitioned
Edge Fault (PEF) model. The experiments covered network
configurations with dimensions n from 3 to 10 and radix k
from 3 to 10.

Fault Tolerance Benchmarking
Our experiments quantified the fault tolerance improvement
of the RBF model. Table 1 shows that the RBF model con-
sistently tolerates significantly more faults than competing
approaches.

Structural and Spatial Sources of Resilience
Our experimental results consistently show that the RBF al-
gorithm tolerates significantly more faults than predicted by
prior models. To explain this performance gain, we intro-
duce a correction factor model. This model serves as an an-
alytical tool, not part of the formal proof, to decompose the
sources of resilience. The effective fault tolerance is mod-
eled as:

ΘRBF = kmax · smax · αstruct · αspatial

Figure 4: Our RBF model achieves orders-of-magnitude
greater fault tolerance than prior art. The logarithmic scale
on the Y-axis highlights that across all tested network config-
urations, our approach (blue) dramatically outperforms both
the PEF (purple) and traditional FT (orange) models, with
the performance gap widening as network scale increases.

Here, αstruct captures the structural effect, where our adap-
tive algorithm finds a decomposition that isolates faults more
effectively than the worst case. Concurrently, αspatial repre-
sents the spatial effect, where the dsep constraint limits fault
packing—a principle mathematically grounded in the Ham-
ming bound of Lemma 2. Figure 5 visualizes the distinct
contributions of these factors, together explaining the ob-
served performance improvement.

Parameter Sensitivity Analysis Figure 6 shows how RBF
parameters influence performance on a 6-ary 5-cube net-
work. Fault tolerance scales positively with both kmax and
smax, shows positive correlation with dsep, and decreases
with higher spatial correlation factor ρ.

Theoretical Bounds Tightness and Robustness
Our algorithm demonstrates striking robustness, often suc-
ceeding even when the sufficient condition of Theorem 1 is
not met. This resilience stems from three factors: the Ham-
ming bound used in Kbound is highly conservative (our ex-
periments show the measured fault load is only 21.2% of this
bound on average); the proof’s worst-case fault placements
are rare in practice; and most importantly, our adaptive di-
mension selection strategy actively finds a decomposition
that avoids the worst case. This combined effect is quantified
in Figure 7, which shows the algorithm handles on average
46% more faults than the formal guarantee, corresponding
to a tightness ratio of 1.459.

Geometric Analysis and Boundary Behavior
The RBF model’s ability to differentiate between fault clus-
ter shapes provides significant advantages. Figure 9(a) com-
pares properties of Complete Graph and Star Graph clusters,
showing that Complete clusters exhibit higher density (0.751
vs 0.429) and smaller diameter, enabling more effective iso-
lation and routing strategies.

Figure 9(b) explores the algorithm’s behavior around the
theoretical boundary. The performance ratio remains stable
and even increases as we approach and slightly exceed the



Figure 5: Analysis of structural, spatial, and total correction factors showing distinct contributions of network topology and
fault distribution.

Figure 6: Parameter sensitivity analysis showing impact on
fault tolerance.

Figure 7: Tightness analysis demonstrating model accuracy
and conservative guarantees.

boundary. This indicates that the condition in Theorem 1
is not a ”hard cliff” where performance abruptly collapses,
but rather a ”soft boundary” marking the transition from
guaranteed success to high-probability success. This grace-
ful degradation is a highly desirable property for real-world
systems.

Figure 8: Success rate analysis showing graceful degrada-
tion beyond theoretical limits.

(a) Geometric properties of fault
clusters.

(b) Boundary and connectivity
analysis.

Figure 9: Analysis of fault cluster geometry and perfor-
mance near the theoretical boundary.

Experimental Validation of Theoretical Lemmas
To bridge the gap between our theoretical framework and
its practical implications, we conducted a direct experimen-
tal validation of our core result, Lemma 2. We generated
340 distinct RBF fault configurations across a wide range
of network sizes (from Q3

3 to Q4
7), varying parameters such

as the separation distance dsep. For each configuration, we
calculated the theoretical upper bound on faulty cross-layer
edges, Fupper, and measured the actual maximum number
of such edges, Fmeasured max, across all possible dimensional
decompositions.

The results, plotted in Figure 10, decisively validate our



Figure 10: Validation of Lemma 2, showing the measured
maximum faulty edges (Y-axis) are always bounded by the
theoretical limit (X-axis). The gap below the identity line
highlights the bound’s conservative nature, explaining the
algorithm’s practical robustness.

Figure 11: Analysis of Lemma 2 validation. (a) The tight-
ness ratio averages only 0.212, confirming the bound’s con-
servative nature. (b) The Kbound (log scale) demonstrates its
effectiveness by decreasing as network size and fault sepa-
ration increase.

theory. As predicted, all 340 data points fall on or below
the y = x line, empirically confirming that |Fmeasured max| ≤
Fupper in every tested case. This provides powerful empir-
ical evidence for the correctness of our combinatorial argu-
ment. Furthermore, the analysis reveals that the Hamming
bound, while rigorously proven, provides a conservative es-
timate. The average tightness ratio (the ratio of measured
faults to the theoretical bound) was only 0.212, as detailed
in Figure 11. This built-in safety margin is a key reason for
the algorithm’s strong robustness.

Discussion
Spatial Arrangement as a Factor in System
Resilience
Our work suggests that in resilient system design, the spatial
arrangement of faults can be a more critical factor than their
aggregate number. We translate this concept into a quantita-
tive method. The K bound formula (from Lemma 2) offers
a way for system architects to perform trade-off analysis dur-
ing the design phase. This can help in justifying investments
in physical fault isolation (Narayanan, Shibley, and Pundir
2020; Microsoft 2024; Gill, Jain, and Nagappan 2011) and
allows architects to answer questions such as, “To maintain
network connectivity against the failure of any three adja-

cent racks, what is the minimum required physical separa-
tion dsep?”

Connecting Spatial Awareness to Deployment
Resilience
Our RBF framework addresses a key challenge in large-
scale AI deployments: the fragility of the underlying phys-
ical infrastructure. It provides a method to mitigate training
failures caused by localized physical events, such as a full
rack failure, by working to preserve network properties like
Hamiltonian connectivity. This suggests that strategic phys-
ical design, for example, increasing the separation distance
dsep between failure domains, may offer a cost-effective
path to resilience compared to solely investing in more ex-
pensive hardware. Furthermore, RBF could be integrated
into topology-aware schedulers to enforce anti-affinity rules,
improving an application’s fault tolerance by preventing re-
dundant services from being co-located in the same physical
fault region.

Limitations and Future Work
Our analysis presents several avenues for future research.
The current RBF model is based on a predefined set of
fault cluster shapes, S. Its theoretical bound, K bound,
is derived from the Hamming bound (Hamming 1950),
which can be conservative. Future work could use graph-
based machine learning to dynamically identify fault regions
from system telemetry, removing the dependency on prede-
fined shapes. Additionally, investigating tighter combinato-
rial bounds (e.g., Plotkin, Johnson, or Gilbert-Varshamov)
could refine our sufficient condition. This would potentially
widen the range of provably fault-tolerant configurations
and strengthen the engineering guarantees our framework
provides.

Conclusion
This paper addressed the fragility of large-scale computing
infrastructure, particularly in the context of physically clus-
tered failures that are common in AI deployments. We intro-
duced the Region-Based Fault (RBF) framework, a model
that treats physical layout as a key design constraint, mov-
ing beyond traditional fault models that often neglect spa-
tial information. Within this framework, we formalized the
principle that the geometric dispersion of faults is a more
significant determinant of network resilience than their ag-
gregate count. Our constructive algorithm and experimental
results validate this principle, demonstrating robust perfor-
mance against realistic failure scenarios. The connectivity
guarantees provided by our method can support more re-
liable deadlock-free routing and load balancing (Dally and
Seitz 1987; Dally and Towles 2004; Gaughan et al. 2002),
helping to maintain high performance for AI workloads dur-
ing hardware failures. A potential direction for future work
is to use graph neural networks for automated RBF param-
eterization from system telemetry (Huoh et al. 2022; Pang
et al. 2023; Le et al. 2021). In summary, our work provides
a formal basis and practical guidance for designing the next
generation of resilient AI infrastructure.
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Appendix

A Detailed Review of Fault Tolerance Models
This appendix provides a more comprehensive review of the fault tolerance models discussed in the main text, offering greater
technical detail on their assumptions, theoretical bounds, and limitations. This detailed analysis serves to further motivate the
development of the Region-Based Fault (RBF) model.

The Traditional Fault-Tolerant (FT) Model
The most established approach to fault tolerance is the Traditional Fault-Tolerant (FT) model, which operates under a stringent
worst-case assumption: faults are independent and can be arbitrarily distributed throughout the network. Research within this
paradigm focuses on determining the maximum number of faults, denoted by cardinality |F |, that a network can withstand
while preserving a desired property (e.g., Hamiltonian connectivity), irrespective of the faults’ locations.

A landmark study for the Qk
n topology by Yang, Tan, and Hsu (2007) demonstrated that for odd k ≥ 3, the network remains

Hamiltonian-connected as long as the number of faulty edges does not exceed 2n − 3. While this result is mathematically
optimal under the model’s assumptions, its practical utility is limited. The FT model’s primary drawback is its lack of realism, as
it permits pathological fault distributions—such as all 2n−3 faults being incident to a single node—that are highly improbable
in practice. This leads to overly pessimistic and often impractical assessments of a network’s true resilience. This limitation has
been a consistent theme in analyses of hypercubes, star graphs, and various other topologies under the FT model (Abd-El-Barr
and Gebali 2014; Chang and Bhuyan 2002; Ashir and Stewart 2002; Lv et al. 2018; Sun et al. 2023; Shinde and Borse 2021;
Lv et al. 2025).

The Partitioned Edge Fault (PEF) Model
To overcome the pessimism of the FT model, researchers developed Conditional Fault Models. These models impose more
realistic constraints on fault distributions, typically based on the principle that a large number of faults are unlikely to conspire
to isolate a single node or a small region. A significant evolution in this area is the Partitioned Edge Fault (PEF) model, which
acknowledges that faults may not be uniformly distributed across a network’s logical structure (Zhuang et al. 2023b, 2024,
2023a).

Motivated by high-performance architectures like 3D Networks-on-Chip (NoCs) (Feero and Pande 2008), where links in
different dimensions (e.g., horizontal wires vs. vertical Through-Silicon Vias or TSVs) can have distinct failure probabilities,
the PEF model partitions the total fault set F by logical dimension: F = F0 ∪ F1 ∪ · · · ∪ Fn−1. It then applies a separate
upper bound, |Fi|, to the number of faults in each dimension. This more nuanced approach led to a substantial breakthrough,
with Zhuang et al. (2023b) using it to elevate the proven fault tolerance of Qk

n from a linear function of its dimension n to
an exponential one. Despite this advance, the PEF model’s core limitation is that it partitions faults by logical dimension, not
physical locality, failing to capture the underlying physical cause of spatially correlated failures.

The Gap and Other Advanced Models
The progression from the FT model to the PEF model highlights a persistent gap in fault tolerance research: the need to
accurately model spatially correlated failures. Real-world failure data from large-scale systems consistently shows that failures
are not independent but are clustered due to shared physical dependencies like power, cooling, or physical proximity (Hacker,
Romero, and Carothers 2009; Vishwanath and Nagappan 2010; Pinheiro, Weber, and Barroso 2007; Xia et al. 2020).

In parallel to the PEF model, researchers have explored other advanced conditional and structure-based fault models, where
failures are assumed to affect entire subgraphs rather than just independent components. For instance, recent studies have
investigated the Hamiltonian properties of k-ary n-cubes when faults manifest as vertex-disjoint stars (K1,s) (Sabir et al.
2023), and have proposed generalized metrics for structure connectivity in related cubic networks (Sabir and Lin 2025). Other
advanced conditional measures, such as g-extra connectivity (Zhang and Meng 2021), component connectivity (Liu, Meng, and
Sabir 2023), ℓ-connectivity (Gu et al. 2022), and mixed connectivity (Gu, Shi, and Fan 2017), also aim to avoid the pathological
scenarios of the FT model by imposing constraints on the size or number of components in the surviving graph.

While these approaches represent a significant step forward, they are often constrained to specific, uniform subgraph shapes
or focus on properties of the remaining graph rather than the topology of the fault region itself. This leaves a critical gap for
a model, like RBF, that can directly represent the spatial correlation and physical clustering of faults as its primary modeling
primitive.

Comparative Analysis Summary
To crystallize the distinctions between these models, Table 2 provides a direct comparison of their core assumptions, limitations,
and key features. This table underscores the progressive increase in model realism and highlights the unique contributions of
the RBF model.



Table 2: Comparative analysis of fault tolerance models.

Feature Traditional Fault (FT) Model
(Yang, Tan, and Hsu 2007)

Partitioned Edge Fault (PEF)
Model (Zhuang et al. 2023b)

Region-Based Fault (RBF)
Model (This Work)

Core Assumption Faults are independent and ran-
domly distributed.

Faults are partitioned by logical
dimensions.

Faults are spatially correlated
and form connected clusters.

Fault Distribution Uniform; worst-case analysis
(all faults can be adjacent).

Constrained per dimension
(|Fi|).

Constrained by cluster size,
shape, and separation distance
(dsep).

Model Realism Low; unrealistic for power out-
ages or thermal events.

Medium; captures dimensional
variance, not physical proxim-
ity.

High; directly models real-
world clustered failures (e.g.,
rack failures).

Key Limitation Overly pessimistic fault toler-
ance estimates (O(n)).

Ignores physical locality; a sin-
gle physical event can span di-
mensions.

Relies on a predefined set of
cluster shapes (S) in current
version.

Tolerance Metric Total number of faults, |F |. Per-dimension fault counts. Geometric dispersion of clus-
ters, captured by kmax and dsep.

B Formal Graph-Theoretic Definitions
This appendix provides the comprehensive graph-theoretic definitions referenced in the main text. This paper adheres to stan-
dard graph theory terminologies and notations, as found in references such as (Bondy and Murty 1976; Tutte 2001; Zhang and
Chartrand 2006; Gould 2012; Gross, Yellen, and Anderson 2018), unless otherwise specified.

A graph is denoted as a pair G = (V (G), E(G)), where V (G) is the set of vertices (nodes) and E(G) is the set of edges
connecting pairs of vertices. The total number of vertices and edges are given by their set cardinalities, |V (G)| and |E(G)|.

A graph S is a subgraph of G if V (S) ⊆ V (G) and E(S) ⊆ E(G). For any subset of vertices M ⊆ V (G), the induced
subgraph G[M ] consists of the vertex set M and all edges in E(G) with both endpoints in M .

To represent a network with link failures, we define a faulty graph G−F by removing a set of faulty edges F ⊆ E(G) from
the original graph, resulting in the edge set E(G) \ F while keeping the vertex set V (G) intact.

A path, denoted P = (v0, v1, . . . , vp), is a finite sequence of distinct vertices where each adjacent pair (vi, vi+1) for i ∈
{0, 1, . . . , p− 1} corresponds to an edge. The length of such a path is p, the number of edges it contains.

A Hamiltonian path is a path that includes every vertex in the graph exactly once. A graph that contains a Hamiltonian path
between every pair of distinct vertices is known as a Hamiltonian-connected graph.

C Practical Guidelines for RBF Parameterization
The practical utility of the RBF model hinges on the judicious selection of its parameters (kmax, smax, dsep,S), a process
informed by both theoretical requirements and empirical system characteristics. The theoretical underpinnings of our Hamil-
tonicity proof necessitate adherence to the feasibility constraint established in Theorem 1 and non-degeneracy conditions.
Beyond these formal requirements, the parameters serve as a bridge to the physical reality of the target system. An analytical
approach to parameterization involves mapping system architecture to model variables. For instance, kmax can correspond to
the number of independent failure domains (e.g., power distribution units or cooling zones). To determine smax, one must ana-
lyze the impact of a single-point failure on network connectivity. For example, by analyzing a server rack, one would determine
the maximum number of interconnected links—both internal to the rack and connecting to the wider network—that could be
severed simultaneously. This value, representing the worst-case impact of a single failure event, provides a direct, empirical
basis for setting smax. Similarly, dsep should be calibrated to the physical or logical separation between these domains. The
set of allowed shapes, S, provides a topological vocabulary to describe observed fault patterns. In scenarios lacking historical
failure data, an iterative calibration process, such as cross-validation, can be employed, beginning with conservative estimates
that are progressively refined through system monitoring and analysis.


