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Abstract

Cross—platform reuse of legacy microarrays with modern
RNA-Seq is attractive but challenging: the same gene can
follow different measurement distributions, and feature se-
lection can leak label information and inflate performance.
We develop SCOPES, a leak—free, multi—objective fea-
ture—selection framework that balances three goals: predic-
tive accuracy (AUC), selection stability (Kuncheva), and
cross—platform alignment (Maximum Mean Discrepancy,
MMD). On matched TCGA-BRCA Agilent/RNA-Seq data,
an initial label-informed F'—score slab produced an appar-
ently perfect microarray model (AUC = 1.0) but lost ~0.30
AUC after transfer to RNA-Seq, revealing selection leak-
age and platform shift. Replacing the slab with an unsuper-
vised MAD filter and enforcing patient—safe cross—validation
exposed a clear trade—off on the Pareto front: an align-
ment—first solution with a single gene achieved modest source
performance and slight transfer loss (AUCagjienr ~ 0.69,
AUCRrNA-seq = 0.61, AAUC ~ —0.08), whereas a richer
30-gene signature reached near—perfect source AUC but
transferred poorly (AAUC ~ —0.38) with higher MMD.
These results show that more genes often buy source ac-
curacy at the expense of portability. SCOPES makes this
trade—off explicit and suggests selecting near a Pareto “knee”
under explicit size and alignment constraints. Reporting both
AAUC and an alignment metric provides a simple, repro-
ducible framework for building cross—platform gene signa-
tures.

Introduction

Microarray technology fueled early cancer transcriptomic
studies, producing thousands of publicly available expres-
sion profiles (Russo, Zegar, and Giordano 2003). Today,
RNA-Seq dominates owing to a greater dynamic range and
lower noise (Spies and Ciaudo 2015). Integrating histor-
ical microarrays with contemporary RNA-Seq could dra-
matically increase sample sizes and improve external val-
idation, but differences between platforms make it risky
to merge them without careful adjustment. Recent work
shows that cross—platform normalization (e.g., quantile nor-
malization, Training Distribution Matching) enables model
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transfer (Foltz, Greene, and Taroni 2023). However, fea-
ture—selection pipelines remain largely platform—specific,
threatening reproducibility and clinical translation. In an at-
tempt to address this gap, we introduce SCOPES.

Cancer transcriptomics research critically depends on
identifying reliable, reproducible biomarkers across studies
and platforms. Larger training cohorts improve the statis-
tical power of differential expression analysis and enable
machine learning models to capture better the heterogene-
ity of cancer biology, which is crucial for applications such
as prognosis prediction and therapeutic response modeling.
While normalization strategies can reduce technical varia-
tion between microarray and RNA—-Seq, they do not address
the instability of feature selection, where small changes in
data distribution often yield inconsistent gene sets. This
instability reduces model interpretability and downstream
clinical adoption.

Several studies have proposed domain adaptation and har-
monization techniques to facilitate cross-platform integra-
tion, but most focus on adjusting distributions rather than en-
suring robust gene selection. Furthermore, benchmark eval-
uations often emphasize classification accuracy while over-
looking feature reproducibility, essential for identifying clin-
ically actionable biomarkers. Thus, there remains a pressing
need for a framework that jointly considers normalization,
feature selection stability, and predictive performance.

To address these challenges, we propose SCOPES (Sta-
ble Cross—Platform Expression Selection), a framework de-
signed to enable consistent and reproducible gene selection
across microarray and RNA-Seq datasets. SCOPES lever-
ages cross—platform harmonization techniques while incor-
porating stability—enhanced feature selection, yielding fea-
ture sets that are not only predictive but also robust across
platforms.

Related Works

This section reviews feature selection methods and cross-
platform techniques that improve the generalizability of pre-
dictive models in biomedical research.

Feature selection (FS), cross-platform normalization, and
domain adaptation are widely used to enhance cancer ge-
nomics modeling. Several single-platform FS approaches



have shown strong results. Liu et al.(Liu et al. 2023) in-
troduced VEW, a three-stage method using variance filter-
ing, Extremely Randomized Trees, and Whale Optimiza-
tion to identify cancer-related gene subsets. Xu et al.(Xu
et al. 2024) proposed FG-HFS, combining spectral cluster-
ing with group evolution, reaching 92-93% accuracy across
multiple cancer datasets. Qu et al.(Qu et al. 2021) devel-
oped VNL-HHO, which integrates F-score filtering, Vari-
able Neighborhood Learning, and Harris Hawks Optimiza-
tion with mutation, achieving over 96% accuracy and up to
100% in some cases.

For cross-platform analysis, Feature-Specific Quantile
Normalization (FSQN) has effectively aligned microarray
and RNA-Seq data. Franks et al.(Franks et al. 2018), Foltz
et al.(Foltz, Greene, and Taroni 2023), and Skubleny et
al.(Skubleny et al. 2024) showed that FSQN outperforms
global normalization and Training Distribution Matching,
with Skubleny et al. further demonstrating that FSQN with
iterative FS yields cross-platform performance close to
within-platform models.

Domain adaptation methods also improve model transfer-
ability. Yuan et al.(Yuan et al. 2023) proposed LogitDA and
KNNDA, which identify domain-invariant features for drug
response prediction with AUCs ranging from 0.70-1.00.
Mourragui et al.(Mourragui et al. 2019) developed PRE-
CISE to learn invariant predictors between preclinical and
tumor data, though it may suffer from negative transfer un-
der certain assumptions.

Recent works expand these strategies further. Krishna
et al.(Krishna et al. 2024) combined deep learning with
sparsity-based FS to produce compact, predictive gene sig-
natures. Kim and Jang(Kim and Jang 2024) used scRNA-
seq networks refined with XGBoost for pan-cancer tasks,
outperforming bulk RNA-seq gene sets. Chowdhury et
al.(Chowdhury et al. 2025) applied multi-view FS with
ensemble classifiers to classify 33 cancer types with
97.1% accuracy and near-perfect AUC. Thelagathoti et
al.(Thelagathoti et al. 2025) used ensemble FS with nested
validation to identify miRNA biomarkers for Usher Syn-
drome, achieving 97.7% accuracy. Tom et al.(Tom et al.
2025) applied a hybrid sequential FS pipeline for mRNA
biomarkers in Usher Syndrome, reducing over 42,000 fea-
tures to a small validated set. Together, these studies high-
light that combining FS, normalization, and domain adapta-
tion enables high accuracy and robust generalization across
diverse biological contexts, supporting more reliable inte-
grative genomic models.

Methods
Cohort construction and data model

We assembled a matched breast cancer (TCGA-BRCA) co-
hort measured on two platforms: Agilent 244K microarray
and [llumina HiSeq RNA-Seq V2. Let P denote patients and
G denote genes.

Sample types. We restricted to primary tumor (code 01)
and solid tissue normal (code 11) aliquots to pose a clean
binary classification task (tumor vs. normal) while avoiding
heterogeneity from recurrent/metastatic samples.

Patient de-duplication. Some patients have multiple
aliquots of a given type. To avoid correlated replicates leak-
ing across folds during cross-validation, we kept at most one
tumor and one normal per patient, choosing the aliquot with
the lowest (portion, vial) code (“first available™).

Matched patients and genes. Let P, and P, be the
patient sets available on microarray and RNA-Seq, respec-
tively, and Gy, G the corresponding gene sets. We retain
only intersections

P= Parr N Prna, G= garr N gmay

so that every retained patient has both measurements and
every retained gene is measured on both platforms.

Aligned matrices. After reindexing rows/columns to a
common order, we obtain two matrices with identical shape

Xarr’ Xma o Rnxp’ n = |79| = 530) p= |g| = 16,146,

and a label vector y € {0,1}™ with 1 for tumor and 0 for
normal (n; = 505, ng = 25). Row ¢ in both matrices cor-
responds to the same patient; column j corresponds to the
same gene.

Groups for patient integrity. We derive a group identifier
g; from the first 12 characters of the TCGA barcode (patient
ID). These groups are used to prevent any patient’s samples
from being split across training and validation folds.

Class imbalance. The extreme imbalance (505 tumors vs.
25 normals) biases accuracy. Throughout, we therefore op-
timize/evaluate with the area under the ROC curve (AUC),
which is threshold-free and more informative under imbal-
ance.

Light pre-filtering (consistency and leakage
control)

Missingness filter. For gene j, let missgf) be the fraction

of missing entries in X () € {X¥" X™} We drop any gene

with max (miss{", miss*) > 0.5.

Median imputatlon (platform-consistent). Let m; =
median({XZ'f‘jr-r i€ [ln], X&T observed}). For any miss-
ing X\" or X;7* we impute X( ) m;. Using the same

1mputat10n constant per gene across platforms prevents in-
troducing platform-specific shifts.

Supervised slab for search (ANOVA F'-score). To re-
duce the search space while preserving discriminative sig-
nal, we rank genes on the microarray matrix with the two-
sample ANOVA F'-statistic:

> ne(@n -2 /(C - 1)

ce{0,1}

SN @)/ n-0)

ce{0,1} ityi=c

F; =

(1)
where 777, is the class-c mean and 7" the global mean. We
retain the top pop = 1000 genes to form a “gene slab” for



downstream multi-objective selection. Note: computing (1)
on all samples is supervised and can leak label information
into cross-validation. We report and analyze this risk, and
we later replace it with a leak-free, unsupervised MAD fil-
ter in follow-up experiments; here we document the initial
pipeline used for the main optimization.

After filtering/imputation we have X7, X4 € R™*Po
with py = 1000.

Leak-free variability prefilter (MAD)

To eliminate label leakage from the F'-score slab while still
shrinking the search space, we use an unsupervised median
absolute deviation (MAD) filter.

Per-gene variability. For gene j on platform ¢ €
{arr,rna}, define
ci=1,...,n},

,&gq) = median{Xi(J‘-])
(@ _ : (@ _ ~@) ., _
MAD;" = median{ [X;;” — fi;"| : i =1,...,n}.

MAD depends only on unlabeled values and is robust to out-
liers.

(@)

Platform-robust score. We aggregate the two platforms
to favor genes that vary on both:

1 MAD;arr) MAD;rna)

median, MAD{*™)

4
(Using per-platform median scaling prevents one platform
from dominating due to units.)

Leak-free slab. We rank genes by rMAD; and retain the
top po = 1000 genes:

Gsiab = Top-po by TMAD;; .

This step uses no labels and is thus leak-free. Missingness
filtering and platform-consistent median imputation are ap-
plied before computing MAD; imputation constants are Ag-
ilent medians as described in Section Light pre-filtering.

Evaluation protocol

We estimate within-source performance with stratified,
patient-safe cross-validation.

StratifiedGroupKFold. We split indices {1,...,n} into
K folds {Z;;}5_, such that: (i) class proportions are approx-
imately preserved in each fold (stratification on y), and (ii)
no group appears in multiple folds (g; = g = 4,7’ € Iy,
for the same k). For each candidate feature set we train a lo-
gistic regression on | J,., 21 Liy and compute AUC on Zy;; we
report the CV mean:

K
1 ~
AUGC,, = ? ];:1 AUC (f*k()7 yIk)'

Multi-objective feature selection (SCOPES)

Search space and subset size. On the pg=1000-gene slab
we search binary masks s € {0, 1}7° with ||s||o = & selected
genes. We target a practical panel size with £ < 120; the
algorithm may pick fewer genes if optimal.

T (rma)
mediang MAD gma

) |

Objectives. Given s (and the restricted matrices Xé')):

fi(s) :=1—AUCy(s)

(minimize: maximize AUC),

&)

fa(s) :==1 — Kun(s) (minimize: maximize selection stability),
(6)

f3(s) :== MMD,(XE", XZ¥)  (minimize: cross-platform alignment).
(7

Stability (Kuncheva index). Let S(® SO C

{1,...,po} be feature sets of size k obtained from

two resamples (e.g., CV folds). The pairwise Kuncheva
stability is

S ns®)| — K
0

k2 )
Po

Kun(S@, $®)) = e [-1,1],

®)

and we aggregate by averaging over all resample pairs:

2

Kun,,, = 7[(([( )

Z Kun(S(“), S(b)).

1<a<b<K

Distribution alignment (MMD). Before computing
MMD we z-score each selected gene within each platform

X0~ (X0 _ )
ij ij

X,2) = (Xgrf,Xg“a), with nx and nz samples respec-

tively, the squared maximum mean discrepancy with RBF

kernel k-~ (u, v) = exp(—|lu—v||3/7) is

/O’ @) to remove scale units. For

MMD? (X, Z) = n12 Zkﬂ,(xi,xi/)
X

2,
1
n2 +(2j,25) 9)
"'z Jj
2 ko2
nxngz
Evolutionary optimization (NSGA-II). We employ

NSGA-II to minimize f(s) = (f1,fo, f3) subject to
|Is|lo < 120. The algorithm maintains a population of feasi-
ble masks (initialized with varying sizes, e.g., 5 < k < 120),
applies uniform crossover and bit-flip mutation, and selects
the next generation by non-dominated sorting (Pareto
fronts) with crowding-distance diversity.



Algorithm 1: SCOPES multi-objective feature selection

(NSGA-II)

Require: X7, X4 v, g; pop. size M, generations T’

1: Initialize population Py = {s(™}M_, with 5 <
st o <120

2: fort =0toT — 1do

3: for all s € P; do

4 Compute f;(s) via StratifiedGroupKFold AUC
(Section Evaluation protocol)

5: Compute f>(s) via averaged Kuncheva index (8)

Compute f3(s) via MMD (9) with RBF kernel
Rank P, into Pareto fronts; compute crowding dis-

tances

8: Create offspring by tournament selection, crossover,

and mutation
9: Q; + P U offspring
10: Form P41 by non-dominated sorting + crowding
until size M
11: return final Pareto set Pr

Final model selection. From the final Pareto set we select
the subset by a lexicographic rule prioritizing cross-platform
alignment:

s* € arg m7i>n f3(s) with tie-break arg max AUC,y(s).
s€Pr

(10)
This “lowest-MMD wins” policy yields the most platform-
consistent signature; we also later explore alternative
picks (e.g., size/stability-constrained selections) to illustrate
accuracy—alignment trade-offs.

Implementation details

We used logistic regression (liblinear/saga) for AUC evalu-
ation, K =5 stratified group folds, population size M (e.g.,
M € [50,100]), and T generations (e.g., T' € [80,150]).
Kernel bandwidth v in (9) followed the median-pairwise-
distance heuristic. Hyperparameters were fixed across runs.

Leakage considerations

The F'-score slab in Section Light pre-filtering uses la-
bels and, if computed on all samples, can inflate cross-
validated AUC (selection bias). We therefore report results
with this initial pipeline and, in additional experiments, re-
place the slab with an unsupervised median absolute de-
viation (MAD) filter to eliminate leakage; the rest of the
SCOPES optimization is unchanged.

Matched cohort & Alignment

Agilent Microarray

X € P 01 s 11 aliquots; one sampleftype per Leak-free prefilter
patient

—>| missingness <50%; median impute;

rank by rMAD, keep top pg=1000

intersect patients & genes: align
rows/columns

\_l

RNA-Seq
X™e = Roe

Scopes (NSGA-II)
Obiective 1: maximize AUC with Straiified GroupKFold
Labels y ; groups g
Objective 2: maximize stability (Kuncheva)

Obiective 3: minimize MMD (REF)

Output: Pareto-optimal gene subsets spanning the accuracy—
alignment trade-off

Final Selection

Lowest MMD wins; tie-break by AUC | Alternative: enforce size window + stability thresheld, then pick ameng low-MMD

Figure 1: SCOPES pipeline. Matched cohort and align-
ment, leak-free rMAD prefilter, and NSGA-II multi-
objective optimization with objectives: maximize AUC
(patient-safe CV), maximize stability (Kuncheva), and mini-
mize platform MMD (RBF). Final selection prioritizes low-
est MMD with AUC tie-break; an alternative rule applies a
size window and stability threshold before picking among
low-MMD candidates.

AUC head Stability head Alignment head
1 — AUC,, 1 — Kun MMD,,

\ \,

Ilustrative composite
Ly =)+ A2() + As()

Figure 2: Objective-head sketch AUC, stability, and MMD
heads shown in a loss-like diagram for intuition; the actual
solver uses Pareto fronts (NSGA-II).

Results

We evaluate models by within-source AUC on Agilent
(“source”) and cross-platform AUC on RNA-Seq (“target”).
To quantify transfer we report

AAUC = AUCtarget - AUCSOU[‘CC7 (11)

so more negative values imply a larger platform shift. Selec-
tion stability is the mean pairwise Kuncheva index; align-
ment is the RBF-based MMD,, between platforms on the
chosen genes (smaller is better).

Label-informed baseline is over-optimistic. Using the
initial, label-informed F'-score slab (Section Light pre-
filtering), NSGA-II returned a k=105-gene subset with
AUCource =~ 1.00, stability ~ 1.00 and MMD,, = 0. This
is implausibly strong because the F-score was computed
once on the full cohort, so each CV fold trained on features
already tuned using its test fold (selection leakage). When
transferred to RNA-Seq for the same patients, performance
fell to AUCarger =0.701 (AAUC = —0.30), consistent with
known microarray—RNA-seq differences in dynamic range
and quantitation.



Leak-free optimization exposes an accuracy—alignment
trade-off. To remove leakage we replaced the slab with
an unsupervised MAD filter and re-ran NSGA-II with the
same three objectives. We then applied two deterministic
pick rules on the final Pareto set: (i) Run A selects the
lowest-MMD solution (ties — higher AUC); (ii) Run B en-
forces 60 < k£ < 120 and stability > 0.6, then picks among
the low-MMD front by highest AUC. The Pareto landscape
and the first pick is shown in Fig. 3. AUCs on source/target
for the baseline and both picks are summarized in Fig. 4, and
the transfer—alignment relationship is visualized in Fig. 5.

Run A yielded a single gene (k=1) with AUCpyrce ~
0.69, AUCjqrger =~ 0.61 and AAUC ~ —0.08 at very low
MMD,, and near-perfect stability, i.e., minimal transfer loss
at modest absolute AUC. By contrast, Run B selected k=30
genes with AUC gyree € [0.996, 1.000] but AUC yrge < 0.615
(AAUC =~ —0.38) and substantially larger MMD.,. To-
gether, Figs. 4 and 5 make the trade-off explicit: alignment-
first (Run A) vs. accuracy-first (Run B). Gene-level platform
agreement for the 30-gene Run B subset is shown in Figs. 6
and 7; several genes lie near the diagonal while others de-
viate substantially, consistent with the high MMD and large
negative AAUC.

Pareto front (size « k, color = stability)
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Figure 3: Pareto front of SCOPES solutions (MAD slab).
Each point is a candidate gene set from NSGA-II; x-
axis: alignment (MMD, lower is better); y-axis: CV AUC
on Agilent (higher is better). Marker size encodes the
number of genes k; color encodes stability (Kuncheva;
lighter = higher). Starred points denote the deterministic
picks used downstream: Run A (lowest MMD) and Run B
(size/stability-constrained repick).

Source vs Target AUC by Gene Selection Method
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Figure 4: Within-source vs. cross-platform AUC. Bars
show Agilent (source, blue) and RNA-Seq (target, orange)
AUC for the Initial 105-gene baseline (label-informed slab),
Run A (k=1), and Run B (k=30). Numeric labels give ex-
act AUCs. The baseline exhibits a ~ 30-point transfer drop;
Run A keeps transfer loss small (AAUC =~ —0.08) at mod-
erate AUC, while Run B achieves near-perfect source AUC
but transfers poorly.
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Figure 5: Transfer vs. alignment. Bubbles are gene sub-
sets positioned by (MMD.,, AAUC); bubble area  subset
size k. Points for the two final picks highlight the trade-off:
very small MMD with minimal transfer loss at k=1 (Run A)
versus larger & with much higher MMD and large negative
AAUC (Run B).

Optimization diagnostics. For completeness, we report
two standard traces of the evolutionary search. Figure 8a
shows the number of non-dominated solutions per genera-
tion (diversity of the Pareto set), and Fig. 8b shows the addi-
tive e-indicator on a symlog scale (coarse progress signal).
Fluctuations are expected as variation operators explore new
trade-offs; these diagnostics do not directly reflect biological
performance but indicate healthy search dynamics.
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Figure 6: Per-gene platform agreement for the Run B signature (g0—g14). Each panel is a scatter of standardized expression
for the same patients measured on Agilent (x-axis) and RNA-Seq (y-axis). Panels close to the diagonal indicate good cross-
platform agreement; diffuse or curved clouds indicate mismatch. These patterns contribute to the larger alignment discrepancy
(higher MMD) for Run B and help explain its reduced cross-platform AUC (cf. Figs. 4-5).

Discussion

Microarrays enabled the first large cancer transcriptome
studies. RNA-Seq is now standard because it measures a
wider dynamic range with less noise. If we could re-use
old microarrays together with new RNA-Seq, we would gain
power and stronger external validation. The problem is plat-
form shift: the same gene can look different on the two tech-
nologies. Normalization helps, but feature selection itself
can still have platform bias.

What we changed. Our first pipeline used an F-score
slab built once on all samples. That leaks labels into cross-
validation and makes AUC and stability look perfect. We
then switched to a leak-free setup: an unsupervised MAD
slab, patient-safe CV, and the same three SCOPES objec-
tives (AUC, stability, MMD). From the Pareto set we ap-
plied two simple pick rules: Run A (lowest MMD) and Run B
(size/stability constraints, then highest AUC). The optimiza-
tion landscape and the final picks appear in Fig. 3. Source
and target AUCs are in Fig. 4. The transfer—alignment trade-
off is shown in Fig. 5.

What we found. The label-informed baseline scored
AUC = 1.0 on Agilent, yet lost about 0.30 AUC when ap-
plied to RNA-Seq, which is a classic sign of leakage plus
platform shift. With the MAD slab, the trade-off became
clear. Run A picked a single, platform-consistent gene: small
transfer loss (AAUC =~ —0.08) but only moderate AUC
overall. Run B picked 30 genes: near-perfect AUC on Agi-

lent, but poor transfer (AAUC ~ —0.38) and high MMD.
Per-gene scatter plots for Run B (Figs. 6—7) show why: some
genes align well across platforms, others do not.

Practical meaning. If the goal is a portable signature,
chasing maximum source AUC alone is risky. A small, sta-
ble set can travel better across platforms, even if its absolute
AUC is lower. In practice, the best choice is likely a point
near the Pareto “knee”: a few genes, acceptable AUC, and
low MMD.

Limitations. We have very few normal samples—only 25
compared to 505 tumor samples. Gene matching by sym-
bol ignores probe design and transcript isoforms. MMD de-
pends on kernel scale (we used a standard heuristic). We did
not test on an independent cohort. These factors may affect
absolute numbers, but the trade-off pattern is robust.

Future Work. Three straightforward improvements are
worth testing: (i) add stronger alignment constraints (e.g.,
CORAL/whitening or moment matching) alongside MMD;
(ii) calibrate platforms before selection (rank/quantile map-
ping or ComBat); (iii) enforce sparsity and a small size range
to steer toward the Pareto knee. Independent-cohort tests,
and the reverse transfer (RNA-Seq — microarray), would of-
fer a fuller understanding of cross-platform generalization.

Conclusion. A leak-free, multi-objective view makes the
trade-off visible: more genes usually buy source AUC at the
expense of transfer. Reporting both AAUC and an align-
ment measure (like MMD), and selecting near the knee, are
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(a) Non-dominated set size per generation. Larger fronts indicate
richer diversity of trade-offs explored; transient dips/spikes arise
from selection pressure and exploration.
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(b) e-indicator per generation (symlog). Lower values generally
indicate improvement/convergence; isolated spikes correspond to
exploratory moves opening new regions of the objective space.

Figure 8: NSGA-II diagnostics across generations. Left: Pareto front size; Right: e-indicator. Together, they characterize

convergence and diversity dynamics.

effective practices for enhancing cross-platform model ro-
bustness.
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