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Abstract

Molecular dynamics (MD) simulations using machine learn-
ing force fields (MLFFs) have enabled high-accuracy model-
ing of complex materials systems. However, the significant
computational cost of MLFF-based MD remains a challenge,
especially for large-scale simulations required in materials
discovery. We propose an efficient MD simulation method
that adaptively reduces the MLFF inference frequency for
atom types with smaller displacements, thereby accelerating
simulations without compromising accuracy. We implement
the proposed approach in DeePMD and evaluate it on crys-
talline TiO, anatase with 6,144 atoms. Our experiments
demonstrate that the proposed method achieves approxi-
mately 1.16x speedup compared to conventional DeePMD,
while preserving the accuracy of key physical properties such
as the radial distribution function, temperature, and density.
This atom-type specific inference scheduling provides a prac-
tical pathway to scalable, resource-efficient MD simulations
for materials design. The proposed method is also expected
to be effective for future applications in large-scale, non-pe-
riodic systems such as amorphous membranes.

Introduction

Molecular dynamics (MD) simulations are essential in ma-
terials science, but large-scale and long- timescale simula-
tions remain challenging due to the limitations of classical
force fields and the computational expense of quantum cal-
culations (Behler 2015). Recent progress in machine learn-
ing force fields (MLFFs), such as DeePMD (Zhang et al.
2018a) and graph neural network approaches, has enabled
near-first-principles accuracy for a wide range of systems
(Zhang et al. 2018b; Schiitt et al. 2017). These advances in-
clude general-purpose potential energy surfaces (Bartdk et
al. 2010), neural message passing frameworks for quantum
chemistry (Gilmer et al. 2017), improved accuracy for mo-
lecular dynamics simulations with machine-learned force
fields (Chmiela et al. 2018), automatic selection of atomic
fingerprints and reference configurations for ML potentials
(Imbalzano et al. 2018), and scalable parallel GNN algo-
rithms for interatomic potentials (Park et al. 2024). However,
their high inference cost, especially for large systems, is a

significant bottleneck (Zeng et al. 2023). Although parallel-
ization and multiple-time-step methods have improved effi-
ciency (Fu et al. 2023; Ferrarotti et al. 2015), existing ap-
proaches treat all atoms equivalently, regardless of their mo-
bility or physical relevance.

Here, we propose an efficient strategy that adaptively re-
duces inference frequency for atom types with smaller dis-
placements while maintaining accuracy for key physical ob-
servables. We implement and validate this approach in
DeePMD for TiO, systems (Calegari Andrade and Selloni
2020), chosen for their distinct Ti and O displacement char-
acteristics and importance in solid-state and catalytic appli-
cations requiring large- scale, long-timescale simulations,
demonstrating its utility for scalable, resource-efficient MD
in material discovery.

Methods

Atom-Type Specific Inference Scheduling

As illustrated in Figure 1, we propose a scheduling scheme
to reduce the frequency of MLFF inferences for atom types
with small displacements. Specifically, at every N-th time
step, the forces for all atoms are calculated using MLFF in-
ference. For the other steps, only the forces of the mobile
atoms (e.g., O in TiO,, which exhibit larger displacements)
are updated via MLFF inference, while immobile atoms re-
tain their last force corrections computed at the most recent
full inference step to maintain accuracy. Let A,,,p:. be the
set of atom types for which high-frequency inference is per-
formed. Let N be the scheduling period, and let AF; denote
the last stored force correction for atom i (computed during
the final full inference step). Subsequently, the force on
atom i at time step t is calculated as follows:
o {Fi (i € Agy) if tmod N =0
t F: (iEAmobile)+AFi lftmOdN;tO
AF; = F; (i € Agy) — F; (i € Apobite)
iftmod N =0 (2)
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Figure 1: Workflow of atom-type specific inference scheduling. At every N-th time step, full model inference is performed for
all atoms. At the other steps, inference is performed only for the mobile atoms, with stored force corrections added for the

immobile atoms.

Suppose that the fraction of timesteps with full inference is
fau = 1/N and the fraction of atoms requiring high-fre-
quency inference is pyepie- Thus, the total computational
cost over N steps is:

C = fau X1+ (1 = fau) X Pmobvite (3)
The theoretical speedup is denoted as 1/C. For example, for
TiO; (Prignfreq = 2/3 for oxygen atoms and N = 10), the ex-
pected speedup is approximately 1.30x.

Experimental Setup

We evaluated the proposed atom-type specific inference
scheduling using molecular-dynamics (MD) simulations of
anatase TiO,. DeePMD models were trained using a public
dataset containing 12 TiO, crystal structures and 46,692 con-
figurations (Zeng et al. 2023). For the MD simulations, ana-
tase TiO, structures (6,144 atoms) were used under the NPT
ensemble at 300 K with a time step of 0.1 fs for 10,000 steps;
furthermore, the simulations were performed using the
LAMMPS package (Thompson et al. 2022) in conjunction
with the DeePMD-kit plugin. To assess the effect of atom

type specific scheduling, we performed simulations with N =
1, 2, 4, 8, and 10, where N is the update interval for non-
target atom types (e.g., Ti atoms in TiO,).

For the baseline, MLFF inference was performed for all
atoms at every step. In the proposed method, only oxygen
atoms were inferred at every step, whereas titanium atoms
were updated at every N steps using stored force corrections.
All simulations used the Nose-Hoover thermostat for tem-
perature control. We compared the accuracy (radial distribu-
tion function and atomic forces) and computational effi-
ciency (timesteps per second) of the two methods.

The proposed method was integrated into the DeePMD-kit
MD engine using the TensorFlow framework (Pang et al.
2020). At each MD integration step, the scheduling mecha-
nism determines whether to perform full or partial inference
while maintaining a registry of mobile atoms (A4,,,pie) and
storing force corrections (AF;) for immobile atoms. This ap-
proach is compatible with GPU-accelerated calculations and
can be easily incorporated into standard simulation work-
flows.



Results and Discussion

Accuracy of Physical Properties

Figure 2 shows a comparison of the radial distribution func-
tions (RDFs) for Ti-Ti, Ti-O, and O-O pairs obtained from
the baseline DeePMD and the proposed method for anatase
TiO, at 300 K. We compared the RDF profiles obtained for
N = 1(baseline), 2, 4, 8, 10 in our scheduling scheme, as well
as with reference structural data (Calegari Andrade and Sel-
loni 2020). The RDF profiles for the proposed method at
each N closely match those of the baseline, with peak posi-
tions and heights preserved, indicating that the crystal struc-
ture is maintained. Temperature and density remained stable
after the first 2,000 steps, fluctuating around 300 K and 3.82—
3.84 g/cm3, confirming thermodynamic stability.

Table 1 further quantifies this agreement by reporting the
Pearson correlation coefficients between the RDF profiles
produced at various inference intervals and the baseline.
Even when the inference interval for all atoms is extended up
to 10 steps, the correlation remains exceptionally high
(all>0.99), demonstrating that the proposed scheduling
strategy maintains structural accuracy across a range of step
intervals.

Ti-Ti RDF at 300K

Ti-O RDF at 300K

Table 1: Pearson Correlation with Baseline RDF
Across Inference Steps

Inference interval Pearson
for all atoms correlation coefficient

2 steps 0.9968

4 steps 0.9951

8 steps 0.9924

10 steps 0.9923

Force Accuracy

Figure 3 shows the time evolution of force components
(Fy, Fy, F;) for representative Ti and O atoms, respectively, as
obtained from both the baseline and the proposed method un-
der intervals N = 10. For all force components, the results
from the proposed method closely matched those from the
baseline, especially during the initial 2,000 timesteps. At
later timesteps, small deviations appear for components with
large force fluctuations (e.g., F, for O atom), primarily due
to error accumulation from stored force corrections in non-
target atom types. Overall, the force accuracy for Ti and O
atoms remained high for N=10, and these deviations were not
found to significantly affect the crystal structure or thermo-
dynamic stability.

0-O RDF at 300K

14 A

g | — Reference —— Reference 3.5 1 — Reference
—— Baseline 1 ——— Baseline ——— Baseline
—— Step 2 i —— Step2 3091 — step2
—— Step 4 —— Step 4 —— Step 4
6 4 10 A 2.5
—— Step 8 —— Step 8 —— Step 8
—— Step 10 —— Step 10 —— Step 10
B 87 E 2.0 4 P
o = o
B 4 k=) B
61 15
4 1.0 1
24
21 0.5
0 - 01 0.0
: T T T . T T : : v . T
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 B 6

Distance (A)

Figure 2:

Baseline method |
Proposed method i |l

_ 1 _ f \ _ H‘ il HI A
=4 AR A ANl I
= | ~1 ! | \ | il |
2 of /| \ .w\l U\\ \.."uﬂ\.“.}‘u A
= WRLA ATV TV
= W Y \_l-. |y
w | \/ iyl ¥
“L [l V H v
5]
0 2000 4000 6000 8000 10000

Timestep

(a) F, for Ti atom

Distance (A)

Fy(t) (eV/A)

Distance (A)

Comparison of RDFs for Ti-Ti, Ti-O, and O-O pairs from baseline and proposed method for anatase TiO, at 300 K.
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Figure 3: Time evolution of force components for representative Ti and O atoms. The proposed method (which incorporates
the stored force corrections AF) is compared with the baseline method for each component.

Computational Efficiency

Computational efficiency was assessed over three independ-
ent trials (Table 2). The baseline method achieved 31.3
timesteps per second, whereas the proposed method reached
36.2 timesteps per second, yielding a speedup of 1.16x. This
performance agrees well with the theoretical estimate of
1.30%, which was derived from the reduction in inference
calls; a slight performance loss was observed, which is at-
tributed to the additional overhead required for force-correc-
tion computations. The reported computational efficiency re-
flects the case for N=10 in our scheme.

Table 2: Average MD performance over three trials.

Method Timesteps/s  Speedup
Baseline (naive DeePMD) 31.3 1.00
Proposed 36.2 1.16
Theory(est.) — 1.30
Discussion

In this study, we evaluated the effect of varying the MLFF
inference frequency for all atoms in the TiO. anatase system
using intervals of 1, 2, 4, 8, and 10 steps. For this system with
small atomic displacements and limited mobility, performing
inference every 10 steps maintained accuracy for key physi-
cal properties (structure, force, density, temperature) while
improving computational efficiency by about 16% over the

baseline model performing inference for all atoms at every
step. The approach was validated only for TiO, systems with

low atomic mobility. Its applicability to other systems—par-
ticularly those with higher mobility or longer simulation
timescales—remains to be verified. The optimal inference
interval likely depends on system and simulation conditions;
thus, the favorable result at a 10-step interval should be re-
garded as case-specific.

Future studies should test this method across diverse ma-
terials and timescales, particularly in simulating relaxation
processes, to examine error accumulation and optimize infer-
ence scheduling. At this stage, this approach can be viewed
as an efficient but system-dependent method demonstrated
to work effectively for solid-state systems.

Conclusion

In this study, we proposed an efficient MD simulation
method using MLFFs by reducing the inference frequency
for atom types with small displacements. The proposed
method, implemented in DeePMD, maintained high accu-
racy for key physical properties (such as the radial distribu-
tion function, temperature, and density) while improving the
computational efficiency by approximately 16% compared
with the baseline model that performed MLFF inference for
all atoms at every step. These results confirm that atom-type-
specific inference scheduling can accelerate simulations
without accuracy loss for systems with limited atomic mo-
bility, such as crystalline TiO,. Further validation on other
materials and simulation conditions will be required to assess
the general applicability and scalability of this approach.



References

Bartok, A. P., M. C. Payne, R. Kondor, and G. Csanyi, "Machine
Learning a General-Purpose Potential Energy Surface for High-Di-
mensional Materials Simulations,” Physical Review Letters, Vol.
104, No. 13, p. 136403, Apr. 2010.

Behler, J., "First Principles Neural Network Potentials for Reactive
Simulations of Large Molecular and Condensed Systems," Interna-
tional Journal of Quantum Chemistry, Vol. 115, No. 16, pp. 1032—
1042, Aug. 2015.

Calegari Andrade, M. F., and A. Selloni, "Structure of disordered
TiO2 phases from ab initio based deep neural network simulations,"
Physical Review Materials, VVol. 4, No. 11, 2020.

Chmiela, S., H. E. Sauceda, K. R. Miiller, and A. Tkatchenko, "To-
wards exact molecular dynamics simulations with machine-learned
force fields," Nature Communications, Vol. 9, No. 1, p. 3887, 2018.

Ferrarotti, M. J., S. Bottaro, A. Pérez-Villa, and G. Bussi, "Accurate
Multiple Time Step in Biased Molecular Simulations," Journal of
Chemical Theory and Computation, Vol. 11, No. 1, pp. 139-146,
Jan. 2015.

Fu, X., A. Musaelian, A. Johansson, T. Jaakkola, and B. Kozinsky,
"Learning Interatomic  Potentials at Multiple  Scales,"
arXiv:2310.13756, 2023.

Gilmer, J., S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
"Neural Message Passing for Quantum Chemistry,” Proceedings of
the 34th International Conference on Machine Learning (ICML),
Vol. 70, pp. 1263-1272, Aug. 2017.

Imbalzano, G., A. Anelli, D. Giofré, S. Klees, J. Behler, and M.
Ceriotti, "Automatic selection of atomic fingerprints and reference
configurations for machine-learning potentials,” The Journal of
Chemical Physics, Vol. 148, No. 24, p. 241730, 2018.

Pang, B., E. Nijkamp, and Y. N. Wu, "Deep Learning With Tensor-
Flow: A Review," Journal of Educational and Behavioral Statistics,
Vol. 45, No. 2, pp. 227-248, 2020.

Park, Y., J. Kim, S. Hwang, and S. Han, "Scalable Parallel Algo-
rithm for Graph Neural Network Interatomic Potentials in Molecu-
lar Dynamics Simulations," Journal of Chemical Theory and Com-
putation, 2024.

Schitt, K. T., F. Arbabzadah, S. Chmiela, K. R. Miller, and A.
Tkatchenko, "SchNet: A Continuous-Filter Convolutional Neural
Network for Modeling Quantum Interactions," Advances in Neural
Information Processing Systems, Vol. 30, pp. 992-1002, Dec. 2017.

Thompson, A. P., H. M. Aktulga, R. Berger, D. S. Bolintineanu, W.
M. Brown, P. S. Crozier, P. J. in "t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S.
J. Plimpton, "LAMMPS - a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum
scales," Computer Physics Communications, Vol. 271, 2022.

Zeng, J., D. Zhang, D. Lu, P. Mo, Z. Li, Y. Chen, M. Rynik, L.
Huang, Z. Li, S. Shi, Y. Wang, H. Ye, P. Tuo, J. Yang, Y. Ding, Y.
Li, D. Tisi, Q. Zeng, H. Bao, and H. Wang, "DeePMD-kit v2: A
software package for deep potential models,” Journal of Chemical
Physics, Vol. 159, No. 5, 2023.

Zhang, L., J. Han, H. Wang, R. Car, and W. E, "Deep Potential Mo-
lecular Dynamics: A Scalable Model with the Accuracy of Quan-
tum Mechanics," Physical Review Letters, VVol. 120, No. 14, p.
143001, Apr. 2018.

Zhang, L., J. Han, H. Wang, W. A. Saidi, R. Car, and W. E., "End-
to-end Symmetry Preserving Inter-atomic Potential Energy Model
for Finite and Extended Systems," arXiv:1805.09003, 2018



