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Abstract 

Molecular dynamics (MD) simulations using machine learn-
ing force fields (MLFFs) have enabled high-accuracy model-
ing of complex materials systems. However, the significant 
computational cost of MLFF-based MD remains a challenge, 
especially for large-scale simulations required in materials 
discovery. We propose an efficient MD simulation method 
that adaptively reduces the MLFF inference frequency for 
atom types with smaller displacements, thereby accelerating 
simulations without compromising accuracy. We implement 
the proposed approach in DeePMD and evaluate it on crys-
talline TiO2  anatase with 6,144 atoms. Our experiments 
demonstrate that the proposed method achieves approxi-
mately 1.16× speedup compared to conventional DeePMD, 
while preserving the accuracy of key physical properties such 
as the radial distribution function, temperature, and density. 
This atom-type specific inference scheduling provides a prac-
tical pathway to scalable, resource-efficient MD simulations 
for materials design. The proposed method is also expected 
to be effective for future applications in large-scale, non-pe-
riodic systems such as amorphous membranes. 

Introduction 

Molecular dynamics (MD) simulations are essential in ma-

terials science, but large-scale and long- timescale simula-

tions remain challenging due to the limitations of classical 

force fields and the computational expense of quantum cal-

culations (Behler 2015). Recent progress in machine learn-

ing force fields (MLFFs), such as DeePMD (Zhang et al. 

2018a) and graph neural network approaches, has enabled 

near-first-principles accuracy for a wide range of systems 

(Zhang et al. 2018b; Schütt et al. 2017). These advances in-

clude general-purpose potential energy surfaces (Bartók et 

al. 2010), neural message passing frameworks for quantum 

chemistry (Gilmer et al. 2017), improved accuracy for mo-

lecular dynamics simulations with machine-learned force 

fields (Chmiela et al. 2018), automatic selection of atomic 

fingerprints and reference configurations for ML potentials 

(Imbalzano et al. 2018), and scalable parallel GNN algo-

rithms for interatomic potentials (Park et al. 2024). However, 

their high inference cost, especially for large systems, is a  

 

significant bottleneck (Zeng et al. 2023). Although parallel-

ization and multiple-time-step methods have improved effi-

ciency (Fu et al. 2023; Ferrarotti et al. 2015), existing ap-

proaches treat all atoms equivalently, regardless of their mo-

bility or physical relevance. 

 Here, we propose an efficient strategy that adaptively re-

duces inference frequency for atom types with smaller dis-

placements while maintaining accuracy for key physical ob-

servables. We implement and validate this approach in 

DeePMD for TiO2 systems (Calegari Andrade and Selloni 

2020), chosen for their distinct Ti and O displacement char-

acteristics and importance in solid-state and catalytic appli-

cations requiring large- scale, long-timescale simulations, 

demonstrating its utility for scalable, resource-efficient MD 

in material discovery. 

Methods 

Atom-Type Specific Inference Scheduling 

As illustrated in Figure 1, we propose a scheduling scheme 

to reduce the frequency of MLFF inferences for atom types 

with small displacements. Specifically, at every N-th time 

step, the forces for all atoms are calculated using MLFF in-

ference. For the other steps, only the forces of the mobile 

atoms (e.g., O in TiO2, which exhibit larger displacements) 

are updated via MLFF inference, while immobile atoms re-

tain their last force corrections computed at the most recent 

full inference step to maintain accuracy. Let 𝐴𝑚𝑜𝑏𝑖𝑙𝑒 be the 

set of atom types for which high-frequency inference is per-

formed. Let N be the scheduling period, and let ∆𝐹𝑖 denote 

the last stored force correction for atom 𝑖 (computed during 

the final full inference step). Subsequently, the force on 

atom 𝑖 at time step 𝑡 is calculated as follows: 

𝑭𝒊
𝒕 = {

𝑭𝒊 (𝑖 ∈ 𝐴𝑎𝑙𝑙)                              𝑖𝑓 𝑡 𝑚𝑜𝑑 𝑁 = 0

𝑭𝒊
′ (𝑖 ∈ 𝐴𝑚𝑜𝑏𝑖𝑙𝑒) + ∆𝑭𝒊           𝑖𝑓 𝑡 𝑚𝑜𝑑 𝑁 ≠ 0

(1) 

∆𝑭𝒊 = 𝑭𝒊 (𝑖 ∈ 𝐴𝑎𝑙𝑙) − 𝑭𝒊
′ (𝑖 ∈ 𝐴𝑚𝑜𝑏𝑖𝑙𝑒)                             

                                                                  𝑖𝑓 𝑡 𝑚𝑜𝑑 𝑁 = 0 (2)
 



 

(a) traditional method 

 

(b) proposed method 

Figure 1: Workflow of atom-type specific inference scheduling. At every N-th time step, full model inference is performed for 

all atoms. At the other steps, inference is performed only for the mobile atoms, with stored force corrections added for the 

immobile atoms. 
 
 

Suppose that the fraction of timesteps with full inference is 

𝑓𝑎𝑙𝑙 = 1/𝑁  and the fraction of atoms requiring high-fre-

quency inference is 𝑝𝑚𝑜𝑏𝑖𝑙𝑒 . Thus, the total computational 

cost over 𝑁 steps is: 

𝐶 = 𝑓𝑎𝑙𝑙 × 1 + (1 − 𝑓𝑎𝑙𝑙) × 𝑝𝑚𝑜𝑏𝑖𝑙𝑒 (3) 

The theoretical speedup is denoted as 1/𝐶. For example, for 

TiO2 (𝑝ℎ𝑖𝑔ℎ𝑓𝑟𝑒𝑞 = 2/3 for oxygen atoms and N = 10), the ex-

pected speedup is approximately 1.30×. 

Experimental Setup 

We evaluated the proposed atom-type specific inference 

scheduling using molecular-dynamics (MD) simulations of 

anatase TiO2. DeePMD models were trained using a public 

dataset containing 12 TiO2 crystal structures and 46,692 con-

figurations (Zeng et al. 2023). For the MD simulations, ana-

tase TiO2 structures (6,144 atoms) were used under the NPT 

ensemble at 300 K with a time step of 0.1 fs for 10,000 steps; 

furthermore, the simulations were performed using the 

LAMMPS package (Thompson et al. 2022) in conjunction 

with the DeePMD-kit plugin. To assess the effect of atom 

type specific scheduling, we performed simulations with N = 

1, 2, 4, 8, and 10, where N is the update interval for non-

target atom types (e.g., Ti atoms in TiO2). 

 For the baseline, MLFF inference was performed for all 

atoms at every step. In the proposed method, only oxygen 

atoms were inferred at every step, whereas titanium atoms 

were updated at every N steps using stored force corrections. 

All simulations used the Nose-Hoover thermostat for tem-

perature control. We compared the accuracy (radial distribu-

tion function and atomic forces) and computational effi-

ciency (timesteps per second) of the two methods. 

 The proposed method was integrated into the DeePMD-kit 

MD engine using the TensorFlow framework (Pang et al. 

2020). At each MD integration step, the scheduling mecha-

nism determines whether to perform full or partial inference 

while maintaining a registry of mobile atoms (𝐴𝑚𝑜𝑏𝑖𝑙𝑒) and 

storing force corrections (∆𝑭𝒊) for immobile atoms. This ap-

proach is compatible with GPU-accelerated calculations and 

can be easily incorporated into standard simulation work-

flows.  



Results and Discussion 

Accuracy of Physical Properties 

Figure 2 shows a comparison of the radial distribution func-

tions (RDFs) for Ti-Ti, Ti-O, and O-O pairs obtained from 

the baseline DeePMD and the proposed method for anatase 

TiO2 at 300 K. We compared the RDF profiles obtained for 

N = 1(baseline), 2, 4, 8, 10 in our scheduling scheme, as well 

as with reference structural data (Calegari Andrade and Sel-

loni 2020). The RDF profiles for the proposed method at 

each N closely match those of the baseline, with peak posi-

tions and heights preserved, indicating that the crystal struc-

ture is maintained. Temperature and density remained stable 

after the first 2,000 steps, fluctuating around 300 K and 3.82–

3.84 g/𝑐𝑚3, confirming thermodynamic stability. 

 Table 1 further quantifies this agreement by reporting the 

Pearson correlation coefficients between the RDF profiles 

produced at various inference intervals and the baseline. 

Even when the inference interval for all atoms is extended up 

to 10 steps, the correlation remains exceptionally high 

(all > 0.99), demonstrating that the proposed scheduling 

strategy maintains structural accuracy across a range of step 

intervals. 

 

Table 1: Pearson Correlation with Baseline RDF 

Across Inference Steps 

Inference interval  

for all atoms 

Pearson  

correlation coefficient 

2 steps 0.9968 

4 steps 0.9951 

8 steps 0.9924 

10 steps 0.9923 

Force Accuracy 

Figure 3 shows the time evolution of force components 

(𝐹𝑥, 𝐹𝑦, 𝐹𝑧) for representative Ti and O atoms, respectively, as 

obtained from both the baseline and the proposed method un-

der intervals N = 10. For all force components, the results 

from the proposed method closely matched those from the 

baseline, especially during the initial 2,000 timesteps. At 

later timesteps, small deviations appear for components with 

large force fluctuations (e.g., 𝐹𝑦 for O atom), primarily due 

to error accumulation from stored force corrections in non-

target atom types. Overall, the force accuracy for Ti and O 

atoms remained high for N=10, and these deviations were not 

found to significantly affect the crystal structure or thermo-

dynamic stability.  

 

Figure 2: Comparison of RDFs for Ti-Ti, Ti-O, and O-O pairs from baseline and proposed method for anatase TiO2 at 300 K. 

 

 
             (a) 𝐹𝑥 for Ti atom            (b) 𝐹𝑦 for Ti atom 



 
              (c) 𝐹𝑧 for Ti atom           (d) 𝐹𝑥 for O atom 

   
(e) 𝐹𝑦 for O atom            (f) 𝐹𝑧 for O atom 

Figure 3: Time evolution of force components for representative Ti and O atoms. The proposed method (which incorporates 

the stored force corrections 𝛥𝐹) is compared with the baseline method for each component. 

Computational Efficiency 

Computational efficiency was assessed over three independ-

ent trials (Table 2). The baseline method achieved 31.3 

timesteps per second, whereas the proposed method reached 

36.2 timesteps per second, yielding a speedup of 1.16×. This 

performance agrees well with the theoretical estimate of 

1.30×, which was derived from the reduction in inference 

calls; a slight performance loss was observed, which is at-

tributed to the additional overhead required for force-correc-

tion computations. The reported computational efficiency re-

flects the case for N=10 in our scheme. 
 

Table 2: Average MD performance over three trials. 

Method Timesteps/s Speedup 

Baseline (naive DeePMD) 31.3 1.00 

Proposed 36.2 1.16 

Theory(est.) － 1.30 

Discussion 

In this study, we evaluated the effect of varying the MLFF 

inference frequency for all atoms in the TiO₂ anatase system 

using intervals of 1, 2, 4, 8, and 10 steps. For this system with 

small atomic displacements and limited mobility, performing 

inference every 10 steps maintained accuracy for key physi-

cal properties (structure, force, density, temperature) while 

improving computational efficiency by about 16% over the  

baseline model performing inference for all atoms at every 

step. The approach was validated only for TiO2 systems with  

 

low atomic mobility. Its applicability to other systems—par-

ticularly those with higher mobility or longer simulation 

timescales—remains to be verified. The optimal inference 

interval likely depends on system and simulation conditions; 

thus, the favorable result at a 10-step interval should be re-

garded as case-specific. 

 Future studies should test this method across diverse ma-

terials and timescales, particularly in simulating relaxation 

processes, to examine error accumulation and optimize infer-

ence scheduling. At this stage, this approach can be viewed 

as an efficient but system-dependent method demonstrated 

to work effectively for solid-state systems. 

Conclusion 

In this study, we proposed an efficient MD simulation 

method using MLFFs by reducing the inference frequency 

for atom types with small displacements. The proposed 

method, implemented in DeePMD, maintained high accu-

racy for key physical properties (such as the radial distribu-

tion function, temperature, and density) while improving the 

computational efficiency by approximately 16% compared 

with the baseline model that performed MLFF inference for 

all atoms at every step. These results confirm that atom-type-

specific inference scheduling can accelerate simulations 

without accuracy loss for systems with limited atomic mo-

bility, such as crystalline TiO2. Further validation on other 

materials and simulation conditions will be required to assess 

the general applicability and scalability of this approach. 
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