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Abstract

Applying Al to scientific problems requires addressing
domain-specific challenges including physical constraint in-
tegration, interpretability requirements, and theoretical val-
idation. We present Prometheus, a physics-informed varia-
tional autoencoder that demonstrates successful Al-science
collaboration through unsupervised discovery of phase tran-
sitions in the 2D Ising model. Our approach achieves 0.85
correlation with theoretical order parameters and 99.7% crit-
ical temperature accuracy by incorporating symmetry con-
straints, progressive training, and physics-informed loss func-
tions. This work provides a template for interdisciplinary re-
search, offering concrete strategies for integrating domain
knowledge with Al techniques and establishing validation
protocols for scientific discovery.

Code — https://github.com/Y CRG-Labs/prometheus

1 Al-Science Collaboration: Challenges and
Solutions

Applying Al to scientific problems faces unique challenges
that differ from typical machine learning applications (Car-
rasquilla and Melko 2017). In condensed matter physics,
phase transition discovery traditionally requires prior knowl-
edge of order parameters (Landau and Lifshitz 1980), pre-
senting specific Al challenges:

Physical Constraints: Physics problems require adher-
ence to symmetries and conservation laws that standard neu-
ral networks may violate through spurious correlations.

Interpretability: Scientific applications demand inter-
pretable results validated against theoretical predictions, not
just predictive accuracy.

Limited Supervision: Many phenomena lack labeled
datasets, requiring unsupervised approaches for meaningful
pattern extraction.

This work addresses the workshop’s objectives by: (1)
identifying specific challenges in applying deep learning
to phase transitions, (2) developing physics-informed VAE
adaptations, and (3) demonstrating successful Al-physics
collaboration methodologies.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2 Physics-Informed Methodology
Problem Formulation and Domain Analysis

The 2D Ising model provides an ideal testbed with known
theoretical properties (Onsager 1944). The system exhibits a
continuous phase transition at 7, = 2/ In(1 + /2) ~ 2.269

with Hamiltonian:
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Our Al-science collaboration challenge is to discover
these relationships automatically while respecting physical
principles.

Architecture Design Principles

Our physics-informed VAE integrates domain knowledge
through systematic design choices:

Symmetry-Preserving Architecture: We implement
convolutional layers that respect the Z, spin-flip symmetry
and lattice translation invariance. The encoder uses symmet-
ric 3x3 kernels with periodic padding, while data augmenta-
tion includes rotations (90°, 180°, 270°) and reflections that
preserve Ising physics.

Latent Space Design: The 8-dimensional latent space
captures both local spin correlations and global order pa-
rameters through hierarchical representation learning.

Progressive Training Strategy: Our curriculum learning
approach mirrors the physical phase diagram:

1. High-Temperature Phase (T" > T): Initial training on
disordered configurations (T" € [2.5, 3.5]) establishes ba-
sic representational capacity for random spin arrange-
ments.

2. Critical Region (7' ~ T): Gradual introduction of near-
critical configurations (" € [2.1, 2.4]) enhances sensitiv-
ity to correlation length divergence and critical fluctua-
tions.

3. Low-Temperature Phase (I" < T;): Final training on
ordered states (' € [1.5,2.1]) captures domain forma-
tion and spontaneous symmetry breaking.

Physics-Informed Loss Function Design

The total loss function incorporates multiple physics-based
terms addressing specific domain challenges:



Liotal = Lrecon +BLKL + M1 Lsymmetry +A2Lenergy +A3Lcorrelation
2)

where: - Lsymmetry = |u(z) — p(—=)||3 enforces
Zy symmetry in latent representations - Lecpergy penal-
izes reconstructions with unphysical energy distributions -
Lecorrelation €NCOUrages proper spatial correlation structure -
Hyperparameters 8 = 1.0, A\; = 0.1, Ao = 0.05, A3 = 0.02
balance objectives

Automated Order Parameter Discovery Protocol

We develop a systematic protocol for identifying physical
order parameters from learned representations:

1. Correlation Analysis: Compute Pearson correlations
between each latent dimension and known physical quanti-
ties (magnetization, energy, specific heat).

2. Temperature Dependence: Analyze how latent di-
mensions vary with temperature, identifying those exhibit-
ing critical behavior near 7.

3. Symmetry Analysis: Verify that discovered order pa-
rameters transform correctly under physical symmetries.

4. Finite-Size Scaling: Validate that discovered quantities
exhibit proper scaling behavior across different lattice sizes.

3 Comprehensive Results and Validation
Experimental Setup and Dataset

We generate 50,000 Monte Carlo configurations using the
Metropolis-Hastings algorithm with careful equilibration
protocols. Temperature sampling covers T' € [1.5, 3.5] with
50 temperature points, ensuring dense coverage around the
critical region. Lattice sizes L € {16, 32,64} enable finite-
size scaling analysis.

Performance Comparison and Statistical Analysis

Our physics-informed VAE significantly outperforms stan-
dard unsupervised methods:

Table 1: Method comparison results

Method Order Parameter  Critical Temp
Correlation Error (%)
PCA 0.45+0.08 12.3
Standard VAE 0.62 £ 0.06 8.1
B-VAE 0.68 = 0.07 6.8
Physics-Informed VAE 0.85 = 0.04 0.27

Table 2: Ablation study results

Configuration

Order Parameter  Critical Temp

Correlation Error (%)
Full Framework 0.85 £0.04 0.27
w/o Physics Constraints 0.72 £0.08 32
w/o Progressive Training 0.78 £ 0.06 1.8
w/o Symmetry Augmentation 0.81 £ 0.05 0.9

Statistical significance testing using bootstrap resam-
pling (n=1000) confirms substantial improvements: physics-
informed VAE vs. standard VAE (p ; 0.001, Cohen’s d

= 2.8), demonstrating both statistical and practical signifi-
cance.

Detailed Physics Validation

Order Parameter Discovery: Our automated protocol suc-
cessfully identifies latent dimension 3 as correlating most
strongly with magnetization (r = 0.85, p j 0.001). The dis-
covered order parameter exhibits proper temperature depen-
dence: m(T) o (T. — T)P with critical exponent 3 =
0.1240.008, matching theoretical prediction 8 = 1/8.

Critical Temperature Detection: Using susceptibility
peak analysis on the discovered order parameter, we detect
T. = 2.2630.006, representing 0.27% error from the theo-
retical value. The method maintains accuracy across lattice
sizes with proper finite-size corrections.

Finite-Size Scaling Analysis: The discovered order pa-
rameter exhibits correct finite-size scaling: mp(T.) o
L=P/v with B/v = 0.1250.012, consistent with theoretical
prediction 0.125.

Interpretability and Scientific Insight

Latent Space Structure: Analysis reveals hierarchical or-
ganization: dimensions 1-2 capture local spin correlations,
dimensions 3-4 encode global magnetization, and dimen-
sions 5-8 represent higher-order correlations and critical
fluctuations.

Phase Boundary Identification: The learned representa-
tions naturally separate ordered and disordered phases in la-
tent space, with clear geometric structure requiring no man-
ual threshold selection.

4 Lessons for AI-Science Collaboration
Successful Integration Strategies

Our interdisciplinary experience reveals key principles for
effective Al-science collaboration:

Domain Knowledge Integration: Incorporating physical
principles as architectural constraints and loss terms signifi-
cantly improves both accuracy and interpretability. The 89%
improvement over PCA demonstrates that domain-informed
approaches substantially outperform generic methods.

Validation Against Theory: Rigorous comparison with
theoretical predictions builds confidence in Al discoveries.
Our critical exponent validation (8 = 0.1240.008 vs. the-
oretical 0.125) exemplifies how Al results can be scientifi-
cally validated.

Interpretable Representations: Designing latent spaces
aligned with physical concepts enables scientific insight be-
yond predictive accuracy. Our hierarchical latent organiza-
tion provides interpretable structure matching physical un-
derstanding.

Progressive Complexity: Curriculum learning strategies
mirroring scientific understanding accelerate training and
improve generalization.

Challenges and Practical Solutions

Challenge: Balancing Physics Constraints and Model
Flexibility Solution: Adaptive weighting schemes that ad-



just physics constraint strength during training, preventing
over-regularization while maintaining physical validity.

Challenge: Validating Discoveries in Unknown Sys-
tems Solution: Multi-level validation protocols combin-
ing theoretical consistency checks, symmetry analysis, and
cross-validation with known limiting cases.

Challenge: Communicating AI Results to Domain Sci-
entists Solution: Develop visualization tools and inter-
pretability metrics that translate Al discoveries into domain-
familiar concepts and terminology.

Transferable Methodological Framework

This work establishes a general framework applicable across
scientific domains:

Step 1: Domain Analysis - Identify key symmetries, con-
servation laws, and theoretical constraints specific to the sci-
entific problem.

Step 2: Architecture Design - Incorporate domain
knowledge through network architecture, data augmenta-
tion, and loss function design.

Step 3: Progressive Training - Develop curriculum
learning strategies that mirror scientific understanding and
problem complexity.

Step 4: Automated Discovery - Implement systematic
protocols for identifying scientifically meaningful patterns
in learned representations.

Step 5: Rigorous Validation - Establish comprehensive
validation against theoretical predictions, experimental data,
and known limiting cases.

Cross-Domain Applications and Case Studies

Materials Science: Our symmetry-preserving architecture
principles apply to crystal structure analysis, where space
group symmetries constrain atomic arrangements. The pro-
gressive training approach can be adapted to learn structure-
property relationships from simple to complex materials.

Climate Science: The automated discovery protocol
translates to identifying climate patterns and tipping points.
Physical constraints include energy conservation and at-
mospheric dynamics, while validation involves comparison
with climate models and observational data.

Astronomy: Stellar classification benefits from physics-
informed approaches incorporating stellar evolution theory
and spectroscopic constraints. The hierarchical latent orga-
nization can capture multi-scale phenomena from stellar sur-
faces to galactic structures.

Molecular Biology: Protein folding prediction can incor-
porate physical constraints from thermodynamics and struc-
tural biology. Progressive training from simple to complex
fold families mirrors evolutionary complexity.

Community Building Insights

Interdisciplinary Communication: Success requires de-
veloping shared vocabulary and conceptual frameworks
through regular joint seminars and collaborative workshops.

Educational Integration: Training programs should
combine Al methodology with domain science fundamen-
tals through 6-month collaborative projects.

Open Science Practices: Reproducible research prac-
tices, including open-source code and comprehensive doc-
umentation, accelerate community adoption and enable col-
laborative validation of results.

5 Community Building and Future
Directions

Workshop Recommendations for AI-Science
Integration

Based on our interdisciplinary experience and workshop ob-
jectives, we provide actionable recommendations:

1. Establish Domain-Informed AI Development Pro-
tocols Create standardized frameworks for incorporating
scientific knowledge into Al architectures. Our physics-
informed VAE demonstrates 89% performance improve-
ment, suggesting systematic domain integration yields sub-
stantial benefits across scientific applications.

2. Develop Rigorous Validation Standards Implement
multi-level validation protocols combining theoretical con-
sistency, experimental verification, and cross-domain vali-
dation. Our critical exponent validation exemplifies how Al
discoveries can meet scientific rigor standards.

3. Prioritize Scientific Interpretability Design Al sys-
tems that provide scientific insight, not just predictive accu-
racy. Our hierarchical latent organization demonstrates how
interpretable representations enable scientific understanding
beyond correlation analysis.

4. Foster Interdisciplinary Education and Training
Develop structured programs combining Al methodology
with domain science. Recommended curriculum includes:
(a) 3-month AI fundamentals for scientists, (b) 3-month do-
main science immersion for Al researchers, (c) 6-month col-
laborative project implementation.

5. Build Collaborative Infrastructure Create plat-
forms facilitating ongoing Al-science partnerships, includ-
ing shared computational resources, standardized datasets,
and collaborative validation protocols.

Immediate Next Steps for the Community

Short-term (6 months): - Organize monthly Al-science
collaboration seminars - Establish shared repositories for
physics-informed Al architectures - Create validation bench-
mark datasets for scientific Al applications

Medium-term (1-2 years): - Develop interdisciplinary
graduate programs and postdoctoral fellowships - Launch
collaborative funding initiatives supporting Al-science part-
nerships - Establish peer review standards for interdisci-
plinary Al-science publications

Long-term (3-5 years): - Create international consor-
tiums for large-scale Al-science projects - Develop standard-
ized certification programs for scientific Al practitioners -
Establish dedicated journals for Al-driven scientific discov-
ery

Promising Research Frontiers

Quantum Many-Body Systems: Extension of our physics-
informed approach to quantum phase transitions, incorporat-



ing quantum entanglement constraints and many-body local-
ization phenomena.

Multi-Scale Modeling: Integration across length and
time scales, from molecular dynamics to continuum me-
chanics using hierarchical latent organization.

Real-Time Scientific Discovery: Online learning sys-
tems for real-time experimental data analysis and hypoth-
esis generation. Applications include adaptive experimental
design and autonomous scientific discovery.

Causal Scientific Discovery: Moving beyond correlation
to identify causal relationships in complex systems. Integra-
tion of causal inference methods with physics-informed Al
promises breakthrough capabilities in understanding scien-
tific causation.

Automated Theory Generation: Al systems that gen-
erate testable scientific hypotheses and theoretical frame-
works. Our automated order parameter discovery provides a
foundation for more general theory generation capabilities.

Broader Impact on Scientific Practice

Democratization of Scientific Discovery: Physics-
informed Al tools can enable researchers without extensive
theoretical backgrounds to make meaningful scientific con-
tributions, broadening participation in scientific research.

Acceleration of Scientific Progress: Automated discov-
ery protocols can dramatically reduce the time from data
collection to scientific insight, potentially accelerating sci-
entific progress by orders of magnitude.

Enhanced Reproducibility: Standardized Al-science
frameworks improve reproducibility by providing system-
atic methodologies and validation protocols that can be con-
sistently applied across research groups.

Cross-Disciplinary Fertilization: Success in one scien-
tific domain can rapidly transfer to others through shared
methodological frameworks, enabling cross-pollination of
ideas and techniques.

Addressing Potential Challenges

Quality Control: Establish peer review standards that prop-
erly evaluate both Al methodology and scientific validity.
Recommend interdisciplinary review panels with expertise
in both domains.

Ethical Considerations: Develop guidelines for respon-
sible Al use in scientific discovery, including proper attribu-
tion, validation requirements, and transparency standards.

Resource Allocation: Create funding mechanisms that
support long-term interdisciplinary collaborations rather
than short-term projects, recognizing that meaningful Al-
science integration requires sustained effort.

Cultural Integration: Address cultural differences be-
tween Al and scientific communities through structured in-
teraction programs and shared success metrics that value
both technological innovation and scientific insight.

6 Conclusions and Workshop Impact

This work demonstrates that successful Al-science collabo-
ration transcends simple application of existing Al tools to

scientific problems. Instead, it requires systematic integra-
tion of domain knowledge, rigorous theoretical validation,
and unwavering commitment to interpretable results that ad-
vance scientific understanding.

Our physics-informed VAE exemplifies these principles
through unsupervised discovery of phase transitions, achiev-
ing 0.85 correlation with theoretical order parameters while
maintaining full scientific interpretability. The 89% im-
provement over traditional methods (Cohen’s d = 2.8)
demonstrates both statistical significance and practical im-
pact, establishing a new standard for Al-driven scientific dis-
covery.

Workshop Goal Achievement: This work directly ad-
vances the workshop’s three primary objectives: (1) Chal-
lenge Identification through systematic analysis of Al-
science integration difficulties, (2) Tool Development via
physics-informed VAE innovations and automated discov-
ery protocols, and (3) Community Building through trans-
ferable methodologies and actionable recommendations for
interdisciplinary collaboration.

Methodological Contributions: We establish a compre-
hensive framework for Al-science integration comprising
domain analysis, physics-informed architecture design, pro-
gressive training strategies, automated discovery protocols,
and rigorous validation methodologies. This framework pro-
vides a template for future collaborations across diverse sci-
entific domains.

Community Impact: Our interdisciplinary approach of-
fers concrete strategies for bridging Al and scientific com-
munities, including educational recommendations, infras-
tructure development, and collaborative protocols that can
be immediately implemented by workshop participants and
the broader community.

The success of Prometheus validates the workshop’s cen-
tral thesis: Al can meaningfully advance scientific discovery
when developed with careful attention to domain require-
ments, theoretical foundations, and community needs. By
providing both technical innovations and practical guidance
for collaboration, this work establishes a foundation for the
next generation of Al-driven scientific breakthroughs.
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