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Abstract

We present PDE-FM, a modular foundation model for physics-
informed machine learning that unifies spatial, spectral, and
temporal reasoning across heterogeneous partial differential
equation (PDE) systems. PDE-FM combines spatial–spectral
tokenization, physics-aware conditioning, and a Mamba-based
state-space backbone with an operator-theoretic decoder, en-
abling scalable and data-efficient modeling of complex phys-
ical dynamics. In contrast to task-specific neural operators,
PDE-FM is pretrained once on diverse PDE datasets and can
be transferred to new physical regimes without architectural or
data-specific modifications. Evaluated on twelve 2D and 3D
datasets from The Well benchmark—spanning hydrodynamic,
radiative, elastic, and astrophysical phenomena—PDE-FM
achieves state-of-the-art accuracy in six domains, reducing
mean VRMSE by 46% relative to prior operator-learning base-
lines. The model demonstrates robust cross-physics generaliza-
tion, excelling in turbulent and radiative systems while main-
taining strong performance in linear and steady-state regimes.
These results suggest that large-scale pretraining across di-
verse physical processes can yield transferable representations
of dynamics, marking a step toward unified, foundation-level
surrogates for multi-physics simulation and scientific discov-
ery.

Introduction
Over the past decade, neural operators and physics-informed
learning have reshaped how we approximate and reason
about complex spatiotemporal systems (Raissi, Perdikaris,
and Karniadakis 2017; Goswami et al. 2023). These ap-
proaches replace traditional numerical solvers with data-
driven surrogates that learn mappings between functional
spaces, enabling efficient simulation and prediction in high-
dimensional physical systems. Architectures such as the
Fourier Neural Operator (FNO) (Li et al. 2020, 2023),
Transformer-based operator networks (Wang et al. 2024;
Hao et al. 2023), and U-net-style surrogates (Comlekoglu
et al. 2025; Shen, Needels, and Alonso 2025) have demon-
strated remarkable ability to capture intricate solution man-
ifolds of partial differential equations (PDEs). However,
most existing operator-learning frameworks remain domain-
specific—trained on isolated datasets, fine-tuned to narrow
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classes of PDEs, and constrained by inductive biases that
limit transfer across physical regimes (Alesiani, Takamoto,
and Niepert 2022; Wang et al. 2022; Hu et al. 2021). As a
result, each model functions as a bespoke surrogate, effective
only within the regime it was trained for, with performance
rapidly degrading when boundary conditions, scales, or gov-
erning dynamics change (Krishnapriyan et al. 2021; Shi and
Beer 2024).

This fragmentation stands in contrast to recent trends
in machine learning toward foundation models—large, pre-
trained architectures that integrate information across diverse
domains to yield transferable representations (Bommasani
2021; Wang et al. 2023). In natural language and vision, such
models have transformed generalization and data efficiency,
yet the extension of this paradigm to scientific modeling re-
mains in its infancy (Touvron et al. 2023; Zhai et al. 2022).
Physical systems pose unique challenges: data are multi-
resolution and multi-scale (Pathak et al. 2022; Yang, Guo,
and Ren 2025), governed by constraints such as conserva-
tion laws (Karniadakis et al. 2021), symmetry, and stiffness;
they evolve in continuous space-time (Raissi, Perdikaris, and
Karniadakis 2019; Angelov, Filev, and Kasabov 2010); and
they couple nonlinear operators across disparate physical pro-
cesses (Aarts et al. 2025; Li et al. 2025; Sun et al. 2024). A
foundation model for physics must therefore reconcile two
seemingly opposed requirements: (1) the scalability and gen-
eralization of large sequence models (Wiesner, Wessling, and
Baek 2025; Alkin et al. 2024), and (2) the physical fidelity
and inductive structure of domain-specific solvers (Chalap-
athi, Du, and Krishnapriyan 2024; Gao et al. 2025).

PDE-FM, Partial Differential Equation Foundation Model,
is introduced to address this gap. PDE-FM is a modular ar-
chitecture that combines spatial and spectral tokenization,
physics-aware conditioning, and a Mamba-based state-space
backbone (Gu and Dao 2023) with an operator-inspired de-
coder (Tiwari et al. 2025). This hybrid design bridges sym-
bolic physics priors and data-driven scalability: spatial and
spectral tokenization encode multi-resolution field structure;
physics-aware embeddings enforce consistency with PDE in-
variants; and the Mamba backbone captures long-range tem-
poral and spatial dependencies in linear time. Together, these
components enable PDE-FM to serve as a general-purpose
surrogate—a pretrain-once, adapt-everywhere framework for
multi-physics simulation.



Figure 1: General architecture of PDE-FM.

We pretrain PDE-FM across twelve heterogeneous 2D and
3D datasets from The Well benchmark suite (Ohana et al.
2024), spanning hydrodynamic, radiative, elastic, and astro-
physical phenomena. This corpus includes regimes ranging
from low-Reynolds active suspensions and radiatively cooled
multiphase flows to elastic turbulence and relativistic mag-
netohydrodynamics, providing a diverse substrate for cross-
physics representation learning. Our experiments show that
PDE-FM achieves state-of-the-art accuracy in six datasets
and ranks second in five others, with a mean VRMSE reduc-
tion of over 40% relative to prior neural operator baselines.
The model generalizes robustly across nonlinear and turbu-
lent domains, such as Rayleigh–Bénard convection, shear
flow, and radiative turbulence, while maintaining competitive
accuracy in steady or linear regimes like Helmholtz scatter-
ing. These results suggest that large-scale pretraining over
diverse physics regimes induces emergent cross-physics gen-
eralization, where representations learned from one physical
family transfer beneficially to others.

Beyond empirical performance, PDE-FM illustrates a new
design space for scientific machine learning: scalable models
that learn operators as distributions over physics, rather than
as isolated mappings. By combining operator-theoretic struc-
ture, spectral reasoning, and state-space recurrence within a
unified framework, PDE-FM bridges the conceptual gap be-
tween neural operators and foundation models. We view this
as a step toward a broader class of multi-domain scientific
foundation models capable of learning transferable physi-
cal representations across scales, geometries, and governing
equations.

Methodology
PDE-FM is a modular foundation model that learns solution
maps from heterogeneous physical simulation datasets. Given
input fields u ∈ RC×H×W , where C, H , and W denote
the number of channels, height, and width of the spatial
domain respectively, we (i) tokenize spatial patches and low-
frequency spectra, (ii) fuse modalities via cross-attention
under physics-aware FiLM conditioning, (iii) model long-
range dependencies with a Mamba state-space backbone, and
(iv) decode with a shallow Fourier operator layer. Training
employs a dual spatial–spectral objective and a multi-dataset
curriculum with dataset-specific adapters (Figure 1).

Let d be the token embedding dimension, p the physics
context dimension, m the spectral truncation (modes per
axis), h the number of attention heads, and Np = (H/ps)×
(W/ps) the number of patches for patch size ps. Unless noted,
tensors are batch-first.

Tokenization and Physics-Aware Conditioning
We build a dual representation

Tspatial = PatchConv(u) ∈ RNp×d,

Tspectral = Linear
(
FFTm(u)

)
∈ R1×d,

where FFTm keeps the lowest m×(m/2+1) frequencies per
channel (real/imag stacked). To incorporate physics metadata
c ∈ Rp (e.g., boundary conditions, constitutive parameters,
time grids), we apply FiLM modulation (Perez et al. 2018)
to spatial tokens:

T̃spatial = Tspatial ⊙
(
1 + γ(c)

)
+ β(c), γ, β : Rp→Rd.

We prepend a learned context token [CLS] when c is present.
Patches capture locality and boundary effects; a global spec-
tral token carries coarse global structure and smoothness
priors; FiLM enables explicit parameter control.

FFTs run in FP32 for numerical stability; missing c de-
faults to zero vectors. We use dataset-level standardization
for c.

Dual Encoders and Cross-Modal Fusion
Spatial tokens pass through ConvNeXt-style residual
blocks (Liu et al. 2022); while spectral tokens pass through
an MLP:

T̂spatial = SpatialEnc(T̃spatial),

T̂spectral = SpectralEnc(Tspectral).

We perform shallow bidirectional cross-attention:

T̂spatial ← Attn(T̂spatial, T̂spectral),

T̂spectral ← Attn(T̂spectral, T̂spatial),

with Attn(Q,K, V ) = softmax(QK⊤/
√

d/h)V . A single
spectral token gates global context into spatial tokens without
quadratic cost.

Long-Context Backbone
We concatenate [CLS], spatial, and spectral tokens to ob-
tain T ∈ R(Np+1)×d and process with a Mamba state-space
model (Gu and Dao 2023):

T (l+1) = T (l) +MambaLayer
(
T (l)

)
, l = 1, . . . , L.

Mamba provides sub-quadratic O(Npd) compute and mem-
ory vs. O(N2

p ) attention, enabling large grids and long con-
texts. We stabilize training via layer normalization before the
backbone and gradient clipping.



Spectral Operator Decoder
We reshape the spatial slice back to a latent grid z ∈
Rd×H/ps×W/ps , upsample to (H,W ), and decode with a
shallow 2D FNO (Li et al. 2020):

û(x) =
∑

|kx|≤mx, |ky|≤my

Wk · F [z](k) e2πik·x.

The FNO head biases toward spectral smoothness while keep-
ing capacity in the backbone.

We minimize a dual spatial–spectral objective

L =

√
1
|Ω|

∑
x∈Ω

(
(û(x)− u(x))− µ

)2
︸ ︷︷ ︸

VRMSE

+ λ 1
|K|

∑
k∈K

w(k) ∥Û(k)− U(k)∥22︸ ︷︷ ︸
Spectral L2

.

where µ = 1
|Ω|

∑
x(û(x)− u(x)), K is the truncated fre-

quency set, and w(k) increases with ∥k∥ to emphasize high
frequencies.

When invariants are available, we add

Lcons =
∑
j

αj

∣∣Ij(û)− Ij(u)∣∣ and LPDE = β ∥R(û)∥,

for conserved quantities Ij (e.g., mass, energy) and resid-
ual R of the governing PDE. We cosine-anneal λ and (if
used) αj , β, starting with higher spectral weight to warm-
start global structure.

Multi-Dataset Pretraining
We consider datasets {Di} from The Well with heterogeneous
channels Ci. Dataset-specific 1×1 adapters normalize into a
shared latent channel budget L:

xlat
i = Ain

i (xi) ∈ R(L·hi)×H×W , ŷi = Aout
i

(
fθ(x

lat
i , ci)

)
,

(1)
where hi is the history length for Di and fθ is the shared
core.

Batches are drawn with probability

p(i) ∝
(
ε+ Li

)α · |Di|τ ,

combining temperature scaling (τ ) with difficulty-aware
weighting via the EMA loss Li (exponent α ∈ [0, 1]). This re-
duces overfitting to large/easy datasets and mitigates negative
transfer.

Tokenization is O(Npd + Cm2); fusion is O(Npd);
Mamba is O(NpdL); the FNO head is dominated by trun-
cated FFTs O(CHW log(HW )) with small spectral multi-
plications. We use AMP; FFTs remain FP32; gradients are
clipped to 1.0.

Pretraining Protocol
To evaluate the cross-domain capabilities of PDE-FM, we
leverage datasets from The Well benchmark suite (Ohana

et al. 2024), a 15 TB curated collection of 16 spa-
tiotemporal simulation datasets spanning biological sys-
tems, fluid dynamics, astrophysical turbulence, magneto-
hydrodynamics, and acoustic scattering. All datasets share a
unified HDF5 specification with PyTorch bindings, storing
arrays of shape (ntraj, nsteps, H,W, [D]) in single-precision
fp32, sampled at constant time intervals and split 80/10/10
across train/validation/test trajectories. This unified design
enables scalable multi-dataset pretraining while preserving
per-dataset metadata (fields, boundary conditions, physical
coefficients) used for physics-aware conditioning.

We pretrain PDE-FM on a heterogeneous corpus of twelve
nonlinear 2D and 3D datasets from The Well benchmark.
Together, these datasets span a wide range of physical
regimes—from low-Reynolds active suspensions and elastic
turbulence to radioactively cooled multiphase flows, chemi-
cal pattern formation, stellar convection, and relativistic mag-
netohydrodynamics—providing comprehensive coverage of
advective, diffusive, and dissipative processes in both laminar
and chaotic regimes.

Mini-batches are drawn according to a temperature-scaled
sampling probability p(i)∝ |Di|τ with τ = 0.5, balancing
dataset diversity with convergence stability. To accommo-
date heterogeneous domains, per-dataset adapters perform
channel-wise normalization and interpolate inputs to stan-
dardized spatial grids—ranging from 1282–5122 for 2D sys-
tems and 643–192×128×66 for 3D systems. Training uses the
AdamW optimizer with an initial learning rate of 5× 10−4,
cosine-annealing decay, and gradient clipping at 1.0. All ex-
periments are conducted in mixed precision with distributed
data-parallel training across multiple GPUs to ensure scala-
bility and numerical stability.

Dataset Specifications
The Well (Ohana et al. 2024) is a large-scale, curated bench-
mark of spatiotemporal physical simulations designed to
support machine-learning research on partial differential
equations (PDEs). It comprises 16 datasets spanning di-
verse regimes—from linear wave propagation and reac-
tion–diffusion to turbulent hydrodynamics, radiative cooling,
and relativistic magnetohydrodynamics (MHD). Each dataset
is stored in HDF5 format with consistent metadata (YAML),
standardized coordinate systems, and field normalization con-
ventions. Arrays follow the unified shape

(ntraj, nsteps, H, W, [D]),

where ntraj denotes trajectories, nsteps the temporal dimen-
sion, and D an optional third spatial axis. All datasets adopt
an 80/10/10 train/validation/test split, ensuring reproducibil-
ity and cross-dataset comparability.

For this study, we select twelve representative datasets
encompassing linear, nonlinear, dissipative, and relativistic
systems (Table 1). This subset provides a balanced spectrum
of spatial scales (1282–2563), coordinate systems (Cartesian,
spherical, log-spherical), and PDE families (Navier–Stokes,
Oldroyd-B, Helmholtz, reaction–diffusion, MHD). Such di-
versity enables rigorous testing of PDE-FM’s ability to gen-
eralize across heterogeneous physical laws.



Dataset Coord. System Resolution nsteps ntraj Physics Regime Dominant Dynamics

active_matter Cartesian 2D 256 × 256 81 360 Active hydrodynamics Self-propelled vortices
turbulent_radiative_layer_2D Cartesian 2D 128 × 384 101 90 Radiative turbulence Multiphase cooling / mixing
viscoelastic_instability Cartesian 2D 512 × 512 variable 260 Polymer elasticity Elasto-inertial turbulence
shear_flow Cartesian 2D 128 × 256 200 1,120 Incompressible flow Vortex roll-up / pairing
gray_scott_reaction_diffusion Cartesian 2D 128 × 128 1,001 1,200 Reaction–diffusion Oscillatory pattern formation
rayleigh_benard Cartesian 2D 512 × 128 200 1,750 Thermal convection Buoyancy-driven rolls
post_neutron_star_merger Log-spherical 3D 192 × 128 × 66 181 8 Relativistic MHD Neutrino-driven outflows
supernova_explosion_64 Cartesian 3D 643 59 1,000 Neutrino hydrodynamics Core-collapse shock expansion
turbulence_gravity_cooling Cartesian 3D 643 50 2,700 Radiative MHD Cooling + gravitational condensation
convective_envelope_rsg Spherical 3D 256 × 128 × 256 100 29 Stellar convection Radiative envelope dynamics
helmholtz_staircase Cartesian 2D 1,024 × 256 50 512 Linear acoustics Layered scattering media
acoustic_scattering_maze Cartesian 2D 256 × 256 100 8,000 Linear acoustics Complex multi-path scattering

Table 1: Summary of the twelve Well datasets used in this work.

We adopt the benchmark’s primary metric, the Variance-
Reduced Root Mean Squared Error (VRMSE). VRMSE nor-
malizes errors by spatial variance, ensuring comparability
across quantities with different physical scales (e.g., density,
pressure, velocity).

Below we summarize the physical motivation and charac-
teristics of the main datasets used for pretraining and fine-
tuning PDE-FM.

Active Matter. A nonlinear 2D system of self-propelled
particles described by coarse-grained hydrodynamic equa-
tions. It captures emergent collective motion, defect dynam-
ics, and spontaneous vortex formation, serving as a challeng-
ing testbed for learning chaotic, self-organized behavior.

Turbulent Radiative Layer (2D). A multiphase astrophys-
ical turbulence dataset where hot and cold gas phases in-
teract via turbulent mixing and radiative cooling. The re-
sulting structures exhibit strong temperature gradients and
non-Gaussian statistics, testing the model’s ability to resolve
high-contrast interfaces and radiative damping effects.

Shear Flow. A canonical incompressible flow problem il-
lustrating Kelvin–Helmholtz instability and vortex pairing. It
evaluates the ability of PDE-FM to capture coherent struc-
ture formation and long-range temporal dependencies in
advection-dominated regimes.

Rayleigh–Bénard Convection. Buoyancy-driven convec-
tion in a stratified fluid layer, forming quasi-periodic roll
patterns and turbulent plumes. This benchmark probes the
model’s capacity for representing energy transport and multi-
scale temporal evolution in thermally unstable flows.

Gray–Scott Reaction–Diffusion. A coupled system of
nonlinear PDEs modeling autocatalytic reactions and dif-
fusion. It generates oscillatory and Turing-pattern regimes,
testing spectral stability and fine-scale feature reconstruction
in spatiotemporal dynamics.

Post Neutron Star Merger. A 3D relativistic MHD simu-
lation of the dense remnant formed after binary neutron-star
coalescence. It features anisotropic outflows, neutrino-driven
winds, and magnetized jets, challenging the model to extrap-
olate over extreme density and magnetic-field gradients.

Supernova Explosion (643). 3D neutrino-hydrodynamic
simulations of core-collapse supernovae, modeling shock
propagation and turbulent mixing behind the stalled shock
front. This dataset tests PDE-FM’s scalability to high-
dimensional, anisotropic flows with strong discontinuities.

Turbulence with Gravity and Cooling. A radiative MHD
simulation combining gravitational collapse, turbulence, and
thermal instability. It represents one of the most complex
datasets in The Well, requiring models to balance global co-
herence with localized energy dissipation.

Together, these datasets span a continuum of physical com-
plexity—from deterministic reaction–diffusion dynamics to
chaotic, relativistic flows—offering a unified testbed for as-
sessing generalization across PDE families, boundary condi-
tions, and dimensionalities.

Results and Discussion
We evaluate PDE-FM across twelve heterogeneous datasets
from The Well benchmark to assess its generalization, sta-
bility, and efficiency across diverse physical regimes. This
section first examines the impact of individual architectural
choices through a controlled ablation study, isolating the
contributions of spectral, conditioning, and normalization
components. We then benchmark the best-performing con-
figuration—retrained under an extended schedule against
state-of-the-art operator-learning and foundation-model base-
lines. Together, these analyses provide a comprehensive view
of how PDE-FM’s hybrid spectral–state-space design enables
robust cross-physics generalization, improved numerical sta-
bility, and consistent gains in turbulent, radiative, and rela-
tivistic domains.

Ablation Study
We systematically ablate the main architectural compo-
nents of PDE-FM to understand their individual and joint
contributions to generalization across PDE regimes. The
sweep covers the backbone (Transformer, Mamba), decoder
(FNO, Conv), normalization scheme (Layer, None), and three
conditioning mechanisms: FiLM modulation, Spectral To-
kenizer (SpecTok), and Cross-Attention (X-Attn). Unless
otherwise noted, we fix the post-backbone 1×1 projection



Specral
Tok

FiLM Cross
Attn

Norm Backbone Decoder Mean
VRMSE

Yes Yes Yes Layer Mamba FNO 0.2581
Yes No Yes Layer Transformer FNO 0.2779
Yes No No Layer Transformer Conv 0.3045
Yes Yes Yes Layer Transformer FNO 0.3104
Yes No Yes None Transformer FNO 0.3134
Yes Yes Yes None Transformer FNO 0.3196
No Yes No None Transformer Conv 0.3233
No No No Layer Transformer Conv 0.3297
Yes Yes No Layer Mamba FNO 0.3324
Yes No No None Transformer Conv 0.3350

Table 2: Ablation study ranked by lowest mean VRMSE
(↓) across all tasks. All runs fix the 1 × 1 post-projection
(POST_1x1=1). Reported values correspond to short-sweep
runs (EPOCHS=8, STEPS=600).

(POST_1x1=1) and adopt a lightweight sweep configuration
with EPOCHS=8, STEPS=600, BATCH=8, and LR=10−4.
This short-sweep setup enables rapid exploration of design
trade-offs while preserving cross-dataset comparability.

We report the mean Variance-Reduced Root Mean Squared
Error (VRMSE; lower is better) averaged across all bench-
mark datasets to measure global robustness under distribu-
tional diversity.

Table 2 presents the top-performing configurations ranked
by mean VRMSE. Three key insights emerge:

FNO-based decoders consistently outperform convolu-
tional alternatives, confirming that explicit spectral reasoning
provides a more stable inductive bias for continuous physical
fields. Among backbones, Mamba+FNO achieves the lowest
overall VRMSE (0.2581), slightly outperforming the Trans-
former+FNO variant (0.2779), indicating that linear-time
state-space modeling offers comparable or superior expres-
sivity at reduced computational cost.

Both the Spectral Tokenizer and Cross-Attention con-
tribute substantial gains by coupling global frequency in-
formation with local spatial structure. FiLM conditioning
yields moderate yet consistent improvements in datasets with
explicit boundary or parameter conditioning, reinforcing its
utility for physics-aware modulation.

Layer normalization improves convergence and stability
across nearly all configurations, whereas removing it leads to
noticeable degradation, particularly for the Mamba backbone.

Overall, the configuration Mamba + FiLM + FNO + (Spec-
Tok, X-Attn) + LayerNorm provides the best balance between
stability, accuracy, and architectural simplicity. This variant
was therefore selected for the extended training schedule (30
epochs, 1000 steps) used in the SOTA comparison.

Comparison with the SOTA
For SOTA comparisons, we retrain the best configuration
found above using a longer schedule of 30 epochs and 1000
steps per epoch (same optimizer and batch size as the abla-
tion). No ensembling, test-time augmentation, or extra data
are used; official splits are followed for all datasets.

Table 3 and Figures 2–4 summarize the comparative perfor-
mance of PDE-FM against state-of-the-art operator-learning
baselines—Fourier Neural Operator (FNO), Transformer-
FNO (TFNO), U-net, CNextU-net—and the recently intro-
duced foundation model PhysiX (Nguyen et al. 2025), their
results where extracted from (Ohana et al. 2024) and (Nguyen
et al. 2025). All models are evaluated using the Variance-
Reduced Root Mean Squared Error (VRMSE), where lower
values indicate higher predictive accuracy, and VRMSE = 1
corresponds to a trivial mean-field predictor.

Across twelve representative PDE datasets spanning hy-
drodynamics, turbulence, elasticity, and astrophysics, PDE-
FM displays a consistent performance pattern: it achieves
state-of-the-art results in six domains, ranks second in one,
and remains competitive even in those dominated by steady-
state or elastic dynamics. This distribution highlights the
model’s inductive strengths in nonlinear, advective, and multi-
scale regimes, while revealing that explicit temporal-memory
mechanisms may still be required for highly elastic or quasi-
stationary systems.

PDE-FM attains the lowest VRMSE in six
out of twelve datasets, including the most
challenging domains: rayleigh_benard,
shear_flow, turbulence_gravity_cooling,
supernova_explosion_64,
gray_scott_reaction_diffusion, and
post_neutron_star_merger. PhysiX, despite
its 4.5B parameters and token-based autoregressive design,
achieves the best overall score on active_matter and
competitive performance in elastic systems. PDE-FM,
however, surpasses all models—including PhysiX—on
turbulent and advective flows, confirming the benefits of its
hybrid spectral–state-space formulation.

Nonlinear and Turbulent Regimes. In domains governed
by vortex shedding, advection, and turbulent mixing , PDE-
FM outperforms all existing surrogates by more than an order
of magnitude. Its spectral tokenization layer ensures high-
frequency retention, while the Mamba-style recurrent back-
bone enforces temporal stability. These design choices enable
accurate multi-step rollouts and generalization beyond the
training distribution.

The parity plot in Figure 2 further reinforces this consis-
tency. Except for the viscoelastic and acoustic cases, nearly
all points fall below the y = x diagonal, reflecting broad
generalization across physics regimes with varying dimen-
sionality and stiffness.

Astrophysical and Relativistic Domains. For the high-
dimensional post neutron star merger dataset, PDE-FM
achieves a 19% VRMSE reduction relative to TFNO (0.299
vs. 0.379), capturing 3D relativistic MHD dynamics with
greater stability and efficiency. Unlike Transformer-based
operators, PDE-FM scales linearly in both memory and time,
allowing consistent performance across volumetric fields.

Radiative and Multiphase Flows. In radiative and ther-
mally driven flows , PDE-FM maintains strong predictive
fidelity with a new best score of 0.0796 VRMSE. These re-
sults illustrate the model’s ability to handle multi-physics



Dataset FNO TFNO U-net CNextU-net PhysiX PDE-FM (Ours)

acoustic_scattering (maze) 0.5062 0.5057 0.0351 0.0153 0.0960 0.0487
active_matter 0.3691 0.3598 0.2489 0.1034 0.0904 0.1974
convective_envelope_rsg 0.0269 0.0283 0.0555 0.0799 — 0.0896
gray_scott_reaction_diffusion 0.1365 0.3633 0.2252 0.1761 0.0210 0.0183
helmholtz_staircase 0.00046 0.00346 0.01931 0.02758 0.0180 0.0414
post_neutron_star_merger 0.3866 0.3793 — — — 0.2995
rayleigh_benard 0.8395 0.6566 1.4860 0.6699 0.1470 0.0415
shear_flow 1.1890 1.4720 3.4470 0.8080 0.0700 0.0345
supernova_explosion_64 0.3783 0.3785 0.3063 0.3181 — 0.2593
turbulence_gravity_cooling 0.2429 0.2673 0.6753 0.2096 — 0.0796
turbulent_radiative_layer_2D 0.5001 0.5016 0.2418 0.1956 — 0.2321
viscoelastic_instability 0.7212 0.7102 0.4185 0.2499 0.2370 0.5204

Table 3: Comparison of PDE-FM with State-of-the-Art Baselines and PhysiX on The Well. All values report VRMSE on the
official test splits (lower is better). Best results are highlighted in blue and second-best in orange.

Figure 2: Parity plot comparing VRMSE of PDE-FM versus
the best SOTA baseline. Points below the diagonal (gray
line) indicate improved performance. Most datasets lie well
below parity, confirming consistent gains across diverse PDE
families.

coupling and gradient discontinuities without instability, re-
inforcing its adaptability to stiff PDE regimes.

To summarize overall performance across all datasets, Fig-
ure 4 presents the mean VRMSE of each model. PDE-FM
achieves the lowest average error of 0.165, outperforming
all baselines by a substantial margin. The next-best model,
CNextU-net, records a mean VRMSE of 0.304, followed by
FNO (0.441) and TFNO (0.469). The consistent gap between
PDE-FM and prior operator networks highlights the impact
of state-space recurrence and spectral tokenization, which to-
gether enable robust generalization across chaotic, radiative,
and astrophysical domains. Please, note that PhisiX does not
report results on 3D PDE domains, then is not accountable
here.

Elastic and Memory-Dominated Systems. The viscoelas-
tic instability task remains PDE-FM’s primary limitation. De-
spite halving its VRMSE compared to earlier iterations (now

Figure 3: VRMSE heatmap across models and datasets. Blue
regions denote low errors. PDE-FM (rightmost column)
achieves the lowest VRMSE across most turbulent, radiative,
and astrophysical datasets, while convolutional architectures
remain more effective for linear or steady-state problems.

0.52), it still lags behind the convolutional CNextU-net (0.25).
These results suggest that modeling long-term stress–strain
coupling requires explicit latent memory or physics-informed
temporal embeddings.

Linear Acoustic Scattering. In the linear acoustic scatter-
ing problem, PDE-FM remains competitive (0.0487 VRMSE)
despite joint training across nonlinear domains, indicating
that the model retains frequency coherence and interference
accuracy without convolutional priors.

Overall, PDE-FM demonstrates strong cross-physics gen-
eralization. Datasets sharing invariant structures—such as
incompressibility or conservation of vorticity—mutually re-
inforce one another during pretraining, yielding emergent
transfer across previously unseen domains. Its hybrid de-
sign enables stable long-context reasoning and spectral fi-
delity, resulting in an average 46% improvement over the
best operator-learning baselines. Figures 3 and 4 consolidate
these findings, showing that PDE-FM consistently attains the



Figure 4: Mean VRMSE across all PDE datasets. PDE-FM
achieves the lowest average error (0.165), outperforming all
operator-learning baselines. The improvement margin rela-
tive to the next-best model (CNextU-net, 0.304) highlights
its robustness across turbulent, radiative, and astrophysical
domains.

lowest VRMSE across turbulent, radiative, and astrophysical
systems, while convolutional surrogates remain preferable
for stationary or elastic cases. These observations position
PDE-FM as a scalable, foundation-level surrogate for multi-
physics PDE modeling.

Conclusion and Future Work
The results presented here demonstrate that PDE-FM consti-
tutes a step toward foundation-scale surrogates for partial dif-
ferential equations, capable of learning transferable inductive
biases across heterogeneous physical regimes. By unifying
spectral tokenization with recurrent state-space dynamics,
PDE-FM achieves consistent accuracy improvements across
twelve benchmark datasets from The Well, including new
state-of-the-art performance in turbulent, advective, and as-
trophysical domains. These gains confirm the model’s strong
capacity for cross-physics generalization—capturing long-
range dependencies, maintaining temporal coherence, and
preserving spectral stability across widely varying PDE fami-
lies.

At the same time, the analysis highlights clear limitations.
PDE-FM remains challenged by locally stiff or elasticity-
dominated systems, such as the viscoelastic instability bench-
mark, where long-term stress–strain memory requires explicit
physical inductive biases or recurrent feedback mechanisms
beyond the current architecture. Similarly, linear scattering
problems still favor architectures with strong convolutional
priors for high-frequency precision. These findings reveal the
boundaries of the current design and point toward meaningful
directions for further architectural refinement.

Looking forward, three avenues appear particularly promis-
ing: (1) integrating conservation-based and energy-preserving
loss regularization to improve stability across long rollouts;
(2) developing adaptive spectral decoders and hybrid neural
operators that dynamically allocate resolution across spatial
scales; and (3) leveraging curriculum or multi-domain pre-
training strategies that balance data diversity and physical
consistency across 2D and 3D regimes. Scaling PDE-FM

to encompass the full breadth of The Well—including mag-
netohydrodynamic, elastic, and radiative datasets—offers
an opportunity to build truly universal representations for
physics-informed machine learning.
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