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Abstract
Fatigue strength estimation is a costly manual material char-
acterization process in which state-of-the-art approaches fol-
low a standardized experiment and analysis procedure. In this
paper, we examine a modular, Machine Learning-based ap-
proach for fatigue strength estimation that is likely to reduce
the number of experiments and, thus, the overall experimen-
tal costs. Despite its high potential, deployment of a new ap-
proach in a real-life lab requires more than the theoretical
definition and simulation. Therefore, we study the robustness
of the approach against misspecification of the prior and dis-
cretization of the specified loads. We identify its applicability
and its advantageous behavior over the state-of-the-art meth-
ods, potentially reducing the number of costly experiments.

Fatigue Strength Estimation: Setting
Fatigue strength is a material property that describes the
maximum load that can be applied to a defined specimen for
a number of cycles that is thought of as an infinite lifetime.

More precisely, we distinguish between the fatigue
strength of the material and the fatigue strength of specimens
from the material: the fatigue strength of the material is the
distribution of the fatigue strengths of the specimens from
this material. Following DIN 50100:2016-12 (2016), we as-
sume that the fatigue strength of the material is log-normally
distributed. We denote its mean by µL and its standard devi-
ation by σL. The specimen’s fatigue strength is not a directly
observable variable. If a load is applied, we can only mea-
sure if the specimen breaks as its fatigue strength is smaller
than the load (a so-called failure); or if it survives as its fa-
tigue strength is larger than the load (a so-called runout).

To determine the parameters of the material’s fatigue
strength distribution, fatigue testing aims to generate a valid
statistic of runouts and failures. As each experiment is costly
(approximately 10,000 $ and two months), it is imperative to
have a very efficient testing procedure that does not generate
experiments that cannot be used at analysis time.

State-of-the-art approaches for fatigue testing, such as the
current standard (DIN 50100:2016-12 2016), are restricting
test protocols with difficult to define hyperparameters. These
hyperparameters have a massive impact on the experimen-
tal efficiency: their misspecification results either in experi-
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ments that cannot be used for the analysis or in a large num-
ber of experiments required to estimate the fatigue strength
parameters. In practice, these hyperparameters are defined
by the process engineers using their expert knowledge, thus
strongly depending on their individual experience.

This paper describes an alternative approach that com-
bines historical experimental data and the process engineers’
expert knowledge. This approach is two-stage (see figure 1):
in the first module, a Gaussian Process Regression Model
(GP) merges historical data with expert knowledge to cre-
ate a prior distribution over the mean fatigue strength µL of
a new material. In the second module, traditional Bayesian
Inference generates a posterior estimate of the mean fatigue
strength given an actual experimental series.

The most advantageous characteristic of this modular ap-
proach is that it is hyperparameter-free for the operating pro-
cess engineer, thus avoiding potentially costly misspecifica-
tions. Additionally, the Bayesian Inference module provides
three opportunities:

• to generate a maximum a posteriori (MAP) estimate of
the materials’ fatigue strength parameters (µL, σL) after
each experiment,

• to generate an estimate of the uncertainty of the MAP
estimate by calculation of the posterior variance, and

• to derive acquisition functions for generating new data,
thus defining a testing protocol.

To be useful in practice, the testing protocol has to ful-
fill additional robustness requirements apart from an advan-
tageous convergence behavior. In this paper, we study two
of them: Firstly, the Bayesian Inference module’s robust-
ness against its prior misspecification. This case can espe-
cially occur in the out-of-sample use of the GP, e.g., creat-
ing predictions for an aluminum alloy or a cast iron instead
of stainless steel, which was used as training data. Secondly,
we study the robustness of the approach against rounding of
the loads recommended by the acquisition function. In prac-
tical use in the lab, the experimental setup is limited to loads
from the discrete space - therefore, we experiment with loads
rounded to powers of ten.

In a nutshell, our contributions are as follows: we define a
new mathematically sound testing and analysis protocol for
fatigue strength that incorporates historical data and expert
knowledge. Then, we show its practical use by examining
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Figure 1: Modular fatigue strength estimation approach.

its robustness against prior misspecification or discretization
issues in a convergence study, benchmarking against a state-
of-the-art testing protocol.

The Staircase Method for Fatigue Strength
Estimation
The current standard (DIN 50100:2016-12 2016) describes
multiple data analysis methods but only one test protocol
for fatigue strength estimation. This protocol is an iterative
experimental procedure, called the staircase method. This
method assumes the independence of the fatigue strength
of different materials, e.g., expecting no correlation of the
fatigue strength for steels with similar characteristics.

As we use the staircase method for benchmarking our
approach, we quickly revisit its working principle: Before
applying the staircase method, the process engineer defines
load levels for experimentation. These load levels are de-
fined by Li = Lini · di, where Lini is a user-defined initial
load, d is the user-defined step size, and i ∈ Z.

Given the load levels, experimentation follows a strict
protocol: if a specimen at a specific load is a failure, the load
level for the next experiment is reduced by one step; if it is
a runout, the load level is raised by one step.

For later analysis, the generated experimental series has to
fulfill multiple requirements: in a valid series, the initial load
level is reached at least once again during experimentation.
Additionally, the series must contain at least three load levels
and at least two turning points where a runout is followed by
a failure or the other way around.

To match these conditions, the parameters Lini and d have
to be chosen carefully: if Lini is far away from the ground
truth value, a large set of experiments is wasted reaching
loads of interest; if d is too large, it is possible to have only
two load levels, not three; if d is too small, many experi-
ments are necessary to gain two turning points.

Given a full series of multiple experiments, the mean fa-
tigue strength is estimated using two parameters: the lowest
valid load level L0 and the number lk each load level was
reached, where k ∈ N0 and k = 0 refers to the lowest valid

load level. Please note that only in seldom cases L0 = Lini:
the initial load can be higher than L0, or so small that it
was cut from the experimental series to match the analysis
requirements. We then find:

µL = L0 ·
∑

k k · lk∑
k lk

. (1)

The standard deviation σL is calculated using a more com-
plex heuristic (DIN 50100:2016-12 2016). In practice, the
reliable estimation of this value requires many experiments
and is rarely performed. Even though our testing protocol
can estimate it, we will not study its convergence behavior
as it is of limited practical use.

Related Work
Apart from the standardized approaches for fatigue testing,
several authors have put substantial effort into generating
machine learning models predicting fatigue strength from
material parameters (Agrawal et al. 2014; Chen and Liu
2022; He, Ouyang, and Qian 2021; He et al. 2021; Schneller
et al. 2022; Shiraiwa et al. 2017; Wei et al. 2022; Xiong,
Zhang, and Shi 2020). Our approach differs from those as
we make use of a machine learning model inside of a new
experimental protocol, instead of solely making a prediction.
Apart from that, our model is of Bayesian type, taking into
account available expert knowledge of the process engineers
when defining the prior.

Ling et al. (2017) define a framework named FUELS for
material discovery that builds on Bayesian Optimization and
demonstrates its use for finding new materials with defined
fatigue strength. In contrast, our work concentrates on char-
acterizing, not designing, a new material and support the
process engineers in carrying out their experiments more ef-
ficiently.

Similar to our approach is the recent work of Maga-
zzeni et al. (2021) published as a preprint. Here, the au-
thors define a similar posterior over the fatigue strength pa-
rameters (µL, σL). Our work differs in two main aspects:
firstly, their prior is built on simulations of perturbing a well-



known heuristic, thus not considering the correlation of fa-
tigue strength of different materials. Secondly, their acquisi-
tion function is limited in the staircase manner to predefined
load levels, thus reproducing the problems of the staircase
approach: it potentially generates superfluous experiments
in case of misspecified hyperparameters.

Bayesian Inference for Fatigue Strength
Estimation

Arising from practical considerations, a new fatigue strength
testing, and analysis protocol has to fulfill several require-
ments. First, it should be free from hyperparameters that po-
tentially degrade the test efficiency in the case of misspeci-
fication. Second, the approach should consider the correla-
tion of different materials’ fatigue strength based on histor-
ical data and expert knowledge. The very conservative in-
dependence assumption of the staircase method is justified
for entirely new and unknown materials. However, in the ap-
plication area of stainless steels, the correlation has already
been exploited in machine learning models (Agrawal et al.
2014; Chen and Liu 2022; He, Ouyang, and Qian 2021; He
et al. 2021; Schneller et al. 2022; Shiraiwa et al. 2017; Wei
et al. 2022; Xiong, Zhang, and Shi 2020). Third, all available
expert knowledge, i.e., about the experimental setup and be-
havior, should be taken into account when defining the ex-
perimental procedure.

We formulate a modular approach for efficient fatigue
strength estimation to meet all these requirements; see fig-
ure 1.

Gaussian Process Regression Model
The first module consists of a GP trained on historical
data that expresses the correlation of the mean fatigue
strength µL for different materials. This predictive model
differs from recent machine learning approaches as we use
a Bayesian, not a heuristic model, so the prediction is a nor-
mal distribution over µL. The used training data was offered
from a partner company and is based on the fatigue data
from 114 stainless steels. Unfortunately, we are not allowed
to publish the data and thus the final trained model, as the GP
offers direct access to the train data. Our model uses four rel-
evant dimensions of an experiment as input: the loaded vol-
ume V90 of the specimen, the specimen’s edge hardness, the
load type (e.g., bending, stress and strain), and the load ra-
tio R, which describes the ratio between the maximum and
the minimum load amplitude. The output for training was
the related mean fatigue strength µL estimated via historical
experiments.

Before training the model, we make a train-test split of
size 80/20. To cope with the data’s log-normality, we loga-
rithmize the mean fatigue strength data before applying stan-
dardization.

Afterward, we use a constant zero mean function and a
tailored covariance function kL that was defined with the
help of process engineers. This covariance function merges
the assumption of a linear trend with an expected very
smooth local behavior by summing a linear covariance func-
tion klin with automatic relevance determination with a ra-

tional quadratic covariance function kRQ. Thus, our covari-
ance function is defined as follows:

kL(x, x
′) = klin + kRQ

=

D∑
d=1

σ2
dxdx

′
d +

(
1 +

(x− x′)2

2ασ2
l

)−α

.

Here, x are our input parameters, while σd, σL and α are
hyperparameters of the covariance function that can be es-
timated by maximizing the marginal log-likelihood. To val-
idate the approach, we perform a 10-fold cross-validation,
also comparing alternative covariance functions (a radial ba-
sis function covariance function and a Matérn class covari-
ance function; in sum and product combination with a lin-
ear covariance function), each time estimating the covari-
ance function’s hyperparameters using maximum marginal
log-likelihood. For testing purposes, we condition the model
with the best performance (selecting the covariance function
and its hyperparameters from the best fold) on all train data
and find a model performance of R2 = 0.91, which is com-
parable to the state-of-the-art heuristic model (Agrawal et al.
2014). For use in the Bayesian Inference module, we condi-
tion the model on all available data afterward keeping the
hyperparameters fixed.

Bayesian Inference Module
In the (second) Bayesian Inference module, the GP’s predic-
tion is used as a prior for estimating a posterior distribution
over the fatigue strength parameters (µL, σL) using experi-
mental data.

The likelihood in the Bayesian Inference module is de-
fined based on the experimental setup. We know that the
failure probability of an experiment at load l follows the un-
known cumulative log-normal distribution, leading to:

p(outcome(l) = failure|l) = ΦµL,σL
(l) .

As the experiment is either a failure or a runout, we find:

p(outcome(l) = runout|l)
= 1− p(outcome(l) = failure|l) =
= 1− ΦµL,σL

(l) .

To gain the likelihood e of the outcome of an experimental
series, we take the product of the individual probabilities, so

e(outcome|µL, σL)

=
∏
i

ΦµL,σL
(li) ·

∏
j

(1− ΦµL,σL
(lj)) ,

where i indexes the failures and j the runouts. Given priors
p(·) for the fatigue strength parameters (µL, σL), we are able
to define a joint (unnormalized) posterior distribution:

g(µL, σL|outcome) =

p(µL) · p(σL) ·

∏
i

ΦµL,σL
(li) ·

∏
j

(1− ΦµL,σL
(lj))


(2)



By p(·), we indicate a prior: for the mean fatigue strength
µL, this is the GP’s prediction; for the standard deviation,
we use a fixed value, defined by the process engineers, as
there is no practical interest in its estimation. Using a uni-
form positive or a gamma distribution is also possible.

This posterior joins the knowledge about the experimen-
tal setup with the knowledge already incorporated in the GP:
the correlation of the fatigue strength for different materi-
als. It offers three options: the MAP estimation of the fa-
tigue strength parameters (µL, σL), the definition of Active
Learning-style acquisition functions, and the calculation of
the standard deviation of the posterior measuring the confi-
dence of the MAP estimates.

Maximum a Posteriori Estimation of the Fatigue
Strength Parameters Given the expression g(µL, σL) for
the posterior distribution over the fatigue strength parame-
ters, a straightforward approach is to estimate the most prob-
able parameters by maximization. Thus, we find:

µ̂L, σ̂L = argmax
µL,σL

g(µL, σL) .

Confidence of the Maximum a Posteriori Estimates As-
suming that the prior over the distribution parameters is
valid, we define a measure of the confidence of the found
estimates using the standard deviation of the posterior:
Std(g(µL, σL)) .

We implement its approximation via numerical integra-
tion. Therefore, we sample a grid of 100,000 equidistant
points at a support of plus/minus two predictive standard de-
viations from the GP’s predictive mean. Given these evalua-
tions of the posterior, we approximate the standard deviation
numerically.

This rather small support has shown to work well in prac-
tice, as usually the GP’s prediction is a lot broader than the
posterior g(µL, σL).

Acquisition Functions In this work, we examine two po-
tentially useful acquisition functions, identifying their ro-
bustness. In practice, their recommendations can be directly
used in the lab to guide the process engineers when compos-
ing an experimental series.

Probability-weighted Entropy The probability-weighted
entropy acquisition function joins two properties of an ex-
perimental outcome at a new load l. On the one hand, there
is the probability of the expected outcome; on the other
hand, there is the experiment’s impact on the posterior dis-
tribution. Intuitively, we want to find the experiment that
most probably carries the most information on the distribu-
tion parameters. To express this mathematically, we make
use of the current MAP estimate of the distribution param-
eters (µ̂L, σ̂L). With it, we calculate the failure probability
Φµ̂L,σ̂L

(l) of an experiment at load l arising from the cur-
rent state of data. Furthermore, we calculate the impact of
the experimental outcome on the current posterior by its en-
tropy H (g(µL, σL|outcome(l), l)). As a main goal, we want
to minimize the entropy of the expected posterior distribu-
tion, when adding an experiment at load l.

Combining both metrics, we find the next load l⋆ by max-
imizing the following acquisition function:

l⋆ = argmax
l

(−H(g(µL, σL|outcome(l) = failure, l))) · Φµ̂L,σ̂L
(l)

+ (−H(g(µL, σL|outcome(l) = runout, l)))
· (1− Φµ̂L,σ̂L

(l)) .
(3)

The calculation of information-based acquisitions often
leads to a fast convergence but, as in standard Bayesian
optimization, is numerically complex (Hennig and Schuler
2012; Hernández-Lobato, Hoffman, and Ghahramani 2014;
Wang and Jegelka 2017). In our case, we approximate the
entropy via a discrete set of data points, as the posterior fol-
lows a non-standard distribution. Therefore, we randomly
sample 10,000 points from the points used for estimating the
standard deviation of the posterior, using the current poste-
rior distribution as a weight function.

Current MAP Estimate To minimize the computing
time, we define a simpler approximation of the loads found
by the probability-weighted entropy acquisition function:
the current MAP estimate of the mean fatigue strength µ̂L.
We expect this approximation to gain correctness in the
course of experimentation, as the most informative load will
become the one with the least unclear outcome, which is the
mean fatigue strength.

Therefore, we create the following acquisition function:

l⋆ = argmax
µL

g(µL, σL) . (4)

Robustness in Fatigue Strength Estimation
In preparation for a feasibility study, we found several ro-
bustness challenges that our approach has to face. This paper
describes two of them: prior misspecification and discretiza-
tion of the specified loads.

Prior Misspecification
The prediction of the GP, used as a prior in the Bayesian
Inference-module, is questionable for out-of-distribution
samples, e.g., using cast iron instead of stainless steel. The
model extrapolates by the constant mean and variance of the
GP prior, but a detailed study of the correctness of this ex-
trapolation behavior is speculative.

Instead, we study the convergence behavior of the differ-
ent acquisition functions for a misspecified prior. For apply-
ing the Bayesian Inference approach, knowing how fast the
experimental data can correct a wrong prior is imperative.

Discretization of the Specified Loads
Both the staircase method and our approach work on con-
tinuous load space and thus recommend experiments from a
continuous load space. The real-life application requires at
least the discretization of the loads to integer values or even
broader fixed load levels. Therefore, we study the conver-
gence behavior for differently discretized load values.
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Figure 2: Residuals |µL − µ̂L| of the estimated mean fatigue strength for different values of prior misspecification. -: entropy
acquisition; - -: MAP acquisition; -·-: staircase method. The shaded areas indicate one standard deviation of the residual.

Experiments
The basis for our experimental setup is a simulator for
fatigue experiments that returns the outcome (failure or
runout) for a specified load and given ground truth param-
eters (µL, σL). For µL we use a value of 400 N, σL is fixed
for all experiments to a value of 100.03 N. With these pa-
rameters given, simulating an experiment at load l means
sampling its outcome according to the failure probability of
an experiment ΦµL,σL

(l).
For each acquisition function and the staircase bench-

mark, we perform 100 runs to observe the convergence be-
havior at the different robustness requirements. For studying
prior misspecification, we use 30 iterations; for the effect of
discretization, we use 25. In the case of our acquisition func-
tions and for MAP estimation, we use a multi-start approach
of scipy’s implementation of the Nelder-Mead simplex algo-
rithms for optimization (Gao and Han 2012)1.

For the prior misspecification, we distinguish between
misspecification of the mean of the prior by {−75, 0, 75} %
of the ground truth value and the width of the prior that

1https://github.com/scipy/scipy/blob/main/scipy/optimize/
optimize.py

varies standard deviations of {100.1, 101, 1010} N. For the
staircase method, it is only possible to study a misspeci-
fied prior mean, as it corresponds to this experimental pro-
cedure’s initial load Lini. There is no directly comparable
hyperparameter to the prior width, but we choose the step
size parameter d = σL, according to the standard (DIN
50100:2016-12 2016). This results in load steps from the set
{325, 348, 373, 400, 429, 460, 493} N.

Regarding the discretization requirement, we consider
discretization factors from the set {None,−1}, where None
indicates no discretization, and -1 a discretization to multi-
ples of ten (this one is common in the lab).

Convergence Behavior at Prior Misspecification
Figure 2 shows the convergence behavior of the different
approaches for a misspecified prior.

It is evident that the staircase method is susceptible to a
misspecified prior mean of µL. At the same time, it is insen-
sitive to the width of the prior (as it is not a parameter of the
method). Additionally, the sensitivity is not symmetric: in
the case of underestimation, the staircase method converges
slower than if the mean fatigue strength is overestimated
- this is due to the load steps in the staircase method de-
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(c) Staircase method.

Figure 3: Convergence behavior for different discretizations, measured by residuals of the mean fatigue strength |µL − µ̂L|.
-: No discretization. - -: Discretization to multiples of ten.

pending on the initial estimate of the mean fatigue strength
µ̂L ≈ Lini. The small residuals in the first iterations are due
to the fact that in these cases, the experimental series does
not fulfill the analysis requirements. Therefore, we estimate
µ̂L = Lini. Interesting is the fact that the staircase method
does not converge to a residual of zero, but a slightly higher
value around 10 N. A possible reason for this behavior is
the applied stepsize: the width of the steps does not allow
for a more precise estimation of the mean fatigue strength
µ̂L. This convergence issue also applies to the experiments
examining the discretization of loads.

In the case of no mean misspecification, the Bayesian
Inference-based acquisition functions show their superior-
ity over the staircase method: they fastly converge to a small
residual, while the residual of the staircase method grows
to a fixed offset because some of its runs did not converge
at all. Additionally, we observe that the effect of the prior
width is small: after ten iterations, the results become nearly
identical.

Also, for a wide prior (i.e., prior width = 1010 N), the
staircase method converges later than the other acquisition
functions, especially if the initial estimate of the mean fa-
tigue strength is misspecified.

In case of a very tight prior (i.e., prior width = 100.1 N),
the Bayesian Inference-based acquisition functions are sen-
sitive to misspecification of the mean: in the case of an over-
estimated mean, both methods fail, while in the case of un-
derestimation, only the MAP acquisition diverges. The di-
vergence is because the prior has no probability mass in the
area of the ground truth value, so the algorithms estimate
some wrong posterior due to numerical reasons and diverge.

Apart from this case of a very tight misspecified prior,
the entropy search and the MAP acquisition function behave
similarly, thus confirming our assumptions on the approxi-
mation quality when using the MAP acquisition function.

Convergence Behavior when Discretizing Loads
In figure 3 we show the results for different load discretiza-
tions in case of a wide (i.e., standard deviation of 1010 N),
non-misspecified prior. For all acquisitions, we do not ob-
serve any significant differences, indicating that all meth-
ods are robust against a discretization of the recommended
loads. Mainly this is due to the steepness of the (realistic)
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Figure 4: Applied failure probability ΦµL,σL(l) in the exper-
iments.

failure probability curve (see figure 4) being too flat to im-
pact the convergence. As this discretization is the worst case
at deployment time, we conclude that all methods are robust
enough to face errors due to discretization.

Consequences for Deployment
For deployment, this study leads to a simple conclusion:
as long as the prior width is not extremely underestimated,
the Bayesian Inference-based methods converge faster and
are more robust against misspecifications than the staircase
method.

Limitations
This approach was designed for the fatigue strength estima-
tion of stainless steels. Two factors limit its application: The
quality of the GP’s prediction and the quality of the poste-
rior.

The robustness study shows that the Bayesian Inference
module can correct a wrong prior as long as it is wide
enough. The quality of the prior impacts the convergence
behavior - the better the prior, the fewer experiments must
be taken out. A first step to improve the GP model (and thus
the quality of the prior) is to expand the training data set,
e.g., by using the open-source NIMS dataset (Furuya et al.
2019). If the GP’s prediction is questionable, e.g., when in-
ferring the mean fatigue strength for a stainless steel with
heat treatment (a currently constant factor), it is advisable



to replace the prior in the Bayesian Inference module with a
broad one. Consequently, more experiments have to be taken
out, but a good convergence to the ground truth value is still
given.

The definition of the likelihood mainly influences the
quality of the posterior in the Bayesian Inference module.
Here, we follow the current standard and assume that the
failure probability follows a log-normal distribution (DIN
50100:2016-12 2016). To the authors’ knowledge, this as-
sumption is correct for all materials that undergo fatigue
testing. Therefore, we expect that the approach generalizes
well in its application area.

Conclusion
This paper describes a two-stage material characterization
approach consisting of a GP and a Bayesian Inference mod-
ule. This approach has several advantages over the state-of-
the-art standardized method, especially being free of hyper-
parameters at application time. As the practical use of the
approach demands its robustness against real-life require-
ments, we examined the following two issues: a misspeci-
fied prior and a discretization of the specified loads during
the experimental procedure. Our results prove the robustness
of our approach and its applicability in the lab, potentially
reducing the number of costly experiments.
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