
Preventing Deforestation: Modeling and Prediction of Vulnerabilities in Forest
Conservation

Saptarashmi Bandyopadhyay * 1, Deepthi Raghunandan * 1, Dhruva Sahrawat 1, John Dickerson 1

1 Department of Computer Science
University of Maryland, College Park

Maryland, MD 20742
saptab1@umd.edu, draghun1@umd.edu, dhruva7@umd.edu, johnd@umd.edu

Abstract

We predict attacks on tree cover, a green security asset, in sub-
national regions of Indonesia using a boosted Decision Tree
Classifier, the BoostIT algorithm. Our models are based on a
thorough literature survey which found that deforestation oc-
curs in hotspots, and proximity to other anthropomorphic ac-
tivity is the strongest predictor of deforestation in other sub-
national regions. Coarse-grained prediction of targets vulner-
able to attacks is a significant challenge in Green Security
Games for strategizing by defenders. We find that a boosted
Decision Tree Classifier takes minimal resources to build, is
accurate in its predictions, and is scalable for the sake of ex-
panding on the assumptions made regarding the drivers of
deforestation. We show that such an algorithm can empower
communities to manage forest resources effectively.

1 Introduction
Accurately detecting and predicting hotspots of vulnera-
ble forest assets is a necessary but challenging task in the
domain of green security problems, protection of natural
assets subject to strategic adversaries (see, e.g., Fang and
Nguyen 2016). Solutions in this space are applied towards
the management of limited forest resources and, ultimately,
the health of our planet. Literature suggests that government
bodies, who are tasked with managing resource-rich forests,
rarely have comprehensive data regarding deforestation in
their region (Austin et al. 2019). This is due, in part, to
the difficulty of accurate data collection for those protect-
ing green assets, and the quantity of data—both in terms of
its temporal and spatial depth—can be overwhelming for the
many stakeholders involved.

We believe such predictive models can empower stake-
holders by pointing them to the nexus of human-driven de-
forestation. We focus on applying predictive models specifi-
cally to the Global Forest Watch 1 data from Indonesia. The
reason why we considered Indonesia was because deforesta-
tion is occurring on a massive scale there—ripe for model-
ing. As we see in Figure 1, deforestation in Indonesia has ac-
celerated in severity in the last 20 years. This data is readily
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1https://www.globalforestwatch.org/

available. Previous works have been able to detect upwards
of 5 different drivers of forest loss using satellite imagery
alone (Austin et al. 2019).

We view deforestation as adversarial behavior against
forest assets by attackers in a green security game frame-
work (Fang, Stone, and Tambe 2015). This lens enabled
us to model deforestation as it occurs—much like criminal
activity—at hotspots which shift over time. We view “at-
tackers” as individuals who extensively consume forest as-
sets and “defenders” as those individuals who work to pre-
serve those same assets.

We see that models need to predict the extent of demand
for available resources and the growth rate of renewable as-
sets. These types of predictors could encourage stakehold-
ers to implement forest-farming practices; in that they reap
only the assets which meet current needs and reduce waste.
In generating fast, efficient, and detailed prediction models
for the short term and long term, we may support the de-
velopment of better mechanisms to empower all people to
consider the actual cost of exploiting their resources.

In this work, we focus on specifically predicting the vul-
nerable areas pertaining to green assets. These predicted
vulnerabilities can be used as input data to enhance the
decision-making in green security problems. To provide in-
sight into curbing forest loss, we propose a predictive model.
We use tree-loss-cover data collected over a 20-year period
to define attacks on forest assets. We categorize an area
as being attacked when there is a net-positive percent of
tree-cover-loss. Based on a map of attacks within different
sub-national regions in Indonesia, we built a spatially-aware
boosted decision tree model, with iterable learning (Boos-
tIT), to predict hotspots vulnerable to deforestation by at-
tackers. We boosted our classification using data regarding
geographic parameters (elevation in particular) to determine
the accessibility of particular regions. We evaluated the per-
formance of the pure decision tree model (with and without
iterable learning), and the performance of the decision tree
model with geographic parameters (with and without iter-
able learning). We found that all four of our classifiers per-
formed well and gave us some idea of which areas are most
vulnerable to deforestation.
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Figure 1: We are focusing on tree cover loss, specifically in Indonesia, due to the severely vulnerable status of forest assets in
Indonesia over the past 20 years. It can be seen in the image corresponding to the year 2000 that there was a minor tree cover
loss just 20 years ago. The image corresponding to 2010 shows a moderate loss in the Western islands of Sumatra with not
much change in the remaining islands of Indonesia. However, the tree cover loss started to increase from 2010- 2020 rapidly.

2 Related Work
We observed that environmental science and mechanism de-
sign literature addressed our problem-space most directly. In
the following sections, we combine the findings from both
fields to make a case for the type of solution we prototype.

Three leading studies (Austin et al. 2019; Wade et al.
2020; Irvin et al. 2020) conducted a large-scale analysis
of geographic images to identify trends in deforestation.
All three projects conduct retrospective land-cover analy-
sis to correlate in-situ data with satellite imagery to identify
drivers.

Wade et al. (2020) performed a study in 2018 which
specifically identified the drivers in the protected areas of
Indonesia. They found a high correlation between the tree
cover loss in protected areas and agricultural expansion. In
Indonesia, fires started by farmers near protected lands often
unintentionally destroyed peat forests. The growth of scrub-
land, detected on satellite images, followed by forest loss,
helped confirm this theory—more than 38% - 57% of all
protected areas which were deforested were left to become
scrubland or grassland.

Austin et al. (2019) used similar techniques to under-
stand the drivers of deforestation in all of Indonesia. They
found that between 2001 and 2016, oil palm plantations
were the single largest contributor, accounting for 23% of
all deforestation across the country. Though this is still one
of the primary drivers of forest loss, deforestation from the
oil palm industry hit a peak between 2008 and 2009 and
has been steadily declining. Austin et al. (2019) also iden-
tified other drivers, ordered from highest to lowest impact:
timber industry, unintentional conversion of forests to grass-
land, small-scale agriculture, small-scale clearing, mining,
and fish ponds.

The latest study, conducted by Irvin et al. (2020), intro-
duced a unique deep-learning technique to automatically
identify when deforestation is taking place and its causes. As
with previous studies, ForestNet learned to identify drivers
by using expertly labeled satellite images. The main thrust of
this work is not in identifying unique drivers but in demon-
strating that an automatic approach can be employed to iden-

tify when these drivers are affecting changes in Indonesian
forests. However, since the images being labeled are static
and a proper analysis of human drivers requires observation
of trends, it is unlikely that this approach has real-world ap-
plications. Nevertheless, it is a start for those who want to
build models which provide more granular predictions like
our own!

Two of the papers we surveyed sought to predict the land
areas which were susceptible to deforestation (Kayet et al.
2021; Gaveau et al. 2021). Kayet et al. (2021) developed a
spatial-temporal analysis technique to identify the primary
drivers of deforestation in the Saranda forest of India. They
used data within a GIS framework to make predictions about
the land segments which were the most susceptible to defor-
estation into the year 2050. Using a combination of anal-
ysis techniques, including frequency ratio, logistic regres-
sions, and an analytic hierarchy process, they showed that
the susceptible areas were the most likely to be in proxim-
ity with settlements or current anthropomorphic activities.
This finding is consistent with the literature, which models
poaching or illegal logging behavior using crime hotspots
(Xu et al. 2020; Mc Carthy et al. 2016; Johnson, Fang, and
Tambe 2012).

Gaveau et al. (2021) observe and predict trends specifi-
cally in Indonesian New Guinea. They study the relationship
between the proximity of forests to new or existing roads and
accessibility based on land properties (slope, elevation, and
cost distance to public roads). Weights on existing evidence
and logistic regression are used to generate a map that de-
marcates the areas susceptible to deforestation. Both these
papers ultimately model hotspots of forest activity, finding
that proximity to previous anthropomorphic activity drives
current trends.

Green Security Games can be conceptualized as a game
between attackers and defenders on particular targets hold-
ing high significance in green security with coverage vec-
tors indicating if the targets have been covered (Nair 2018).
There can be complex versions of this game played over sev-
eral rounds in order to achieve equilibrium.

We found a few different projects which were built on



this premise and applied towards predicting illegal logging
(Mc Carthy et al. 2016; Johnson, Fang, and Tambe 2012),
and poaching (Xu et al. 2020). These works primarily focus
on finding the optimum patrol/defender strategy to prevent
illegal extraction of forest resources either by using multi-
arm bandits (Xu et al. 2020), neural networks, or by model-
ing it as a Stackelberg game (Mc Carthy et al. 2016) (John-
son, Fang, and Tambe 2012). Instead of focusing on opti-
mum defender strategy, we focus on a smaller part of this
problem by finding and predicting the most vulnerable for-
est assets based on previous forest cover loss data and other
domain features.

However, for our purpose, the Kar (2017) thesis intro-
duces a spatially-aware BoostIT (boosted decision tree with
an iterative learning algorithm), which we plan to use in our
deforestation problem. Their thesis uses crime hotspots with
soft boundaries in the decision space for less fine-grained
segmentation and, therefore, more capable of representing
hotspots to protect wildlife. We plan to compute distance
among hotspots with reduced forest cover like their distance
function does. They use a parameter vector λ to get the im-
portance of all features, a parameter ω to measure the im-
pact of domain features on observation probability and a β
parameter to estimate detector efficiency. These could be in-
teresting for our model. We further motivate our work with
a detailed literature review in Appendix A.

3 Dataset
We acquired our dataset through the Global Forest Watch
Initiative. The data between 2000–2013 was collected and
verified, in blocks, by Hansen et al. (2013). Since 2013, the
global multi-spectral observations were collected by The-
matic Mapper Plus (ETM+) onboard Landsat 7, and the Op-
erational Land Imager (OLI) onboard Landsat 8 at a 30m
spatial resolution.2 These images were used to produce the
tree cover dataset—a product of the University of Mary-
land’s GLAD lab and Google. They enriched image recog-
nition with in-situ data—collected, on the ground, by envi-
ronmental scientists. Additionally, we have computed terrain
features like slope using the Google Earth Engine Python
API.3 Elevation data from the Shuttle Radar Topography
Mission (SRTM) (Farr et al. 2007) was processed and made
accessible by NASA JPL at a resolution of 30m.

Our primary dataset contained five major aspects of de-
forestation and climate change, namely: (1) forest loss, (2)
biomass loss, (3) CO2 emissions, (4) different densities of
canopy cover, and (5) sub-national regions in Indonesia
(henceforth ’subnational1’ and ’subnational2’ are referred to
as a state and a district respectively). We computed the forest
loss data from available Forest Change Data over ten years
and the percentage of land deforested compared to the total
land area for districts in a state. The percentage of defor-
ested land determined whether forests are being attacked or
not. Please refer to Appendix B for a detailed description of
our parameters, our labeling methods, and the generation of
the train-test data-splits as inputs for model construction.

2https://glad.umd.edu/dataset/glad-forest-alerts
3https://github.com/google/earthengine-api

4 Methods
We implemented our version of the spatially aware BoostIT
algorithm, introduced by Kar (2017) to identify areas that
are vulnerable to forest loss. We view loggers as attackers of
forests. The goal for this green security domain is to protect
the green assets from attackers. Unlike wildlife, which can
be targeted in protected areas like national parks, trees can
be anywhere. Thus, the notion of defenders in this green se-
curity game can and should be broad. We will recommend
probable defenders who can effectively act on information
on vulnerable areas prone to deforestation, subject to incen-
tives.

Initially, we trained a Decision Tree Classifier to pre-
dict areas vulnerable to tree-cover loss using features from
the original dataset. We improved it via the BoostIT deci-
sion tree algorithm as outlined in Algorithm 1. We predicted
hotspot labels on training data and test data.

Next, to calculate hotspot proximity, we first devised Al-
gorithm 2 to compute our notion of proximity in the dataset.
The simple idea of proximity is that all districts in a state are
proximate, but districts in different states are not. This algo-
rithm considers predicted hotspot class labels from training
data (Θh) or test data (Ψh) as inputs. Then it finds their state
ids denoting whether they are close to one another. Then for
each district, the number of districts close to it is computed.
If this number is above a certain threshold α, a new spa-
tial feature (h) is added to the dataset updating the training
data (Θh) or test data (Ψh) accordingly—thereby learning
the boosted decision tree. α is set to 5 in our experiments.
This was repeated for a fixed number of iterations (10 times
in our experiment). We used the original decision tree and
the ten boosted decision trees for accuracy calculation and
further analysis.

Please refer to Appendix C for details regarding hotspot
proximity calculation and to see the visualization of our
boosted decision tree model (Figure 3).

5 Results
The results on the comparison between different models are
presented in Table 1.4 We can see that all four models have
decent performance (accuracy > 62%) and can give some
idea of which areas are most vulnerable to deforestation.
The mismatch in the precision and recall between the two
labels can be explained by the fact that even if two locations
have the same features, they could be labeled differently.
Boosting the decision tree with proximity lead to signifi-
cant improvement in prediction results—both for the base
model and the base model with the addition of terrain fea-
tures (see Figure 3). This approach aligns with the intuition
that identifying areas vulnerable to deforestation is more
akin to detecting hotspots than segmentation. The addition
of terrain features also leads to a significant jump in perfor-
mance. Biomass features seem to be the most important for
our base model. However, the slope and biomass standard

4We have defined each model and included the confusion ma-
trix of the boosted base model with terrain features in Figure 2, in
Appendix D.



Model Accuracy Vulnerable Not Vulnerable
Precision Recall Precision Recall

Base model 62% 72% 76% 27% 23%
Base model with BoostIT 67% 79% 77% 35% 32%

Base model with terrain features 69% 77% 79% 51% 48%
Base model with terrain features

and BoostIT 73% 80% 83% 59% 55%

Table 1: Performance of different versions of our model on the test data.

Algorithm 1: BoostIT algorithm to detect targets vulnerable
to deforestation
Input: train data, test data, proximity vector,
iterations
Parameter: alpha = 5
Output: trees, gtrlist, gtelist

1: Θ0 ← train data
2: Ψ0 ← test data
3: D0 ← learn decision tree(Θ0)
4: gtr0 ← predict labels(D0,Θ0)
5: ▷ Predict labels on training data
6: gte0 ← predict labels(D0,Ψ0)
7: ▷ Predict labels on test data
8: i← 0
9: trees← initialized as list with 1st element as D0

10: gtrlist← initialized as list with 1st element as gtr0
11: gtelist← initialized as list with 1st element as gte0
12: Θh

0 ← Θ0

13: Ψh
0 ← Ψ0

14: while i < iterations do
15: htrain name← ”h train iteration” + str(i)
16: Θh

i ← calc hotspot prox(gtri,Θ
h
i , htrain name)

17: ▷ Spatial feature is added to training features
18: htest name← ”h test iteration” + str(i)
19: Ψh

i ← calc hotspot prox(gtei,Ψ
h
i , htest name)

20: ▷ Spatial feature is added to test features
21: Di ← learn decision tree(Θi)
22: gtri ← predict labels(Di,Θi)
23: ▷ Predict labels on training data
24: gtei ← predict labels(Di,Ψi)
25: ▷ Predict labels on test data
26: trees.append(Di)
27: gtrlist.append(gtri)
28: gtelist.append(gtei)
29: i← i+ 1
30: return trees, gtrlist, gtelist

deviations for the base model, with terrain features, were
equally essential features.

6 Conclusion
We have noticed an improvement in accuracy, precision, and
recall metrics from the base decision tree model to the Boos-
tIT algorithm adapted to predict vulnerable regions suscepti-
ble to deforestation. The precision of predicting regions vul-
nerable to deforestation with the basic decision tree classifier

is 72%, improving to 79% once the BoostIT algorithm is im-
plemented. The results improve further with terrain features
like slope, reaching even 80% precision in detecting vulner-
able hotspots, which indicate its importance where elevation
can be used to transfer logged trees by pushing them down
from a hill. Our BoostIT decision tree algorithm can be ex-
tended to a spatial version of XGBoost (Extreme Gradient
Boosting) (Chen et al. 2015) with the aim of improving pre-
diction accuracy.

Our results indicate that we can sustain and improve good
model performance in detecting regions vulnerable to for-
est loss with the addition of features. We believe that this
implies that generating reliable data using automatic tech-
niques as input for green security games is very achievable.
Our current approach aimed to show that even simple mod-
els can efficiently and accurately predict vulnerable regions.
Our algorithm can be easily applied to any region around the
world so long as forest-cover loss data is available.

Game-theoretic models, including the green security
game paradigm (Fang, Stone, and Tambe 2015), are only
as good as their input data. We address that first stage of
the pipeline. We anticipate that generating uncertainty met-
rics of our predictions will help to enhance decision-making
within the green security game (Chipman, George, and Mc-
Culloch 2010).

Future work could extend our approach by considering
additional fine-grained features like the proximity of vul-
nerable hotspots to rivers, roads, human settlements, and
farmland obtained from Google Geo-location services us-
ing satellite images. One potential drawback is that as soon
as we consider these features, the variance of the data will
likely increase drastically. Forest cover will depend upon
features which may be hard to obtain like the ownership of
land and the distribution of trees in those areas.

Also, the features can change over time. For example, new
roads can be built, and topography can change due to natural
disasters. We consider forest loss at a granular district level
because that helps in the precise identification of hotspots
and consequently better enables the implementation of con-
crete strategies towards protecting vulnerable green assets.

Our project on the necessity of detecting vulnerable
hotspots susceptible to deforestation can be the stepping
stone for green security games and policy work to create a
foundation for the protection and management of forest re-
sources. Unlike defenders protecting wildlife assets in spe-
cific conservation areas, defending against illegal logging
and managing forest assets is challenging as deforestation
is a widespread, pervasive and global problem.
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Appendix A Literature Survey
Preventing Deforestation
Other Potential Mechanisms We think that future work
in this area would empower local stakeholders to manage
forest resources and make it the responsibility of the in-
ternational community– as they also reap the benefits of
these resources. We found quite a few papers in environmen-
tal science and economics that proposed solutions towards
this end. One solution would be to cap and enforce carbon
emissions of international countries tasked with managing
resource-rich tropical forests (Zarin et al. 2016). This ap-
proach would limit the amount of deforestation those coun-
tries could leverage towards economic gain. However, this
can also cause countries to refuse to play in that market—
particularly if they think they can leverage their resources
for monetary benefits elsewhere.

It seems that the real issue is that communities tasked with
caring for rich forest resources are often at an economic dis-
advantage in international markets. They find that it is ad-
vantageous to sell their resources to powerful multinationals
to elevate the status of their country and its people. Thus,
mechanisms applied towards reflecting the actual cost of us-
ing these resources, be it at the local or global scale, must
elevate the voices and power of these local communities
(Friedman 2020). This means providing detailed informa-
tion to local communities regarding the resources available
on their land and the best way to harvest those resources
without creating permanent damage to the forest itself. We
found lots of literature that confirmed these ideas and pro-
posed mechanisms to that end. For example, a few proposed
enabling a community forestry scheme to allow local com-
munities to directly manage forest resources (Santika et al.
2017; Abram et al. 2017). Monzon et al. proposed, in a na-
ture article, a scheme towards bettering the management of
existing plantations in order to reduce deforestation (Mon-
zon et al. 2021).

To this end, algorithms which reflect these values must
be: (1) transparent, (2) readily accessible to local communi-
ties, and (3) include information on all the facets which in-
fluence deforestation. Details could include: availability of
specific resources in a region, the accessibility of those re-
sources across all regions, how these resources are actually
valued in the international market, and the risks involved (to
bio-diversity or the health of the forests) in harvested those
resources.

The ease with which we can train a decision tree classi-
fier and the extensibility of this approach warrant an explo-
ration into using decision tree classifiers towards empower-
ing community-driven forest-management initiatives.

Appendix B Dataset
Parameters and Features
We considered some basic attributes as parameters for our
model. Some of these attributes were unique to Indonesia,
and some are general to measuring hotspots of deforesta-
tion in any Green Security domain. Our primary dataset
contained five major aspects of deforestation and climate
change, namely:

• tree loss cover measured in hectares over 20 years
• biomass loss measured in metric tonnes over 20 years
• CO2 emissions measured in metric tonnes over 20 years
• different densities of canopy cover measured by the per-

centage of the tree cover over the land
• and sub-national regions in Indonesia which are analo-

gous to states and districts.
Tree cover loss data has been critical to label sub-national

regions vulnerable to deforestation. Tree cover is defined as
all vegetation greater than 5 meters in height. It can take
the form of natural forests or plantations across a range of
canopy densities. Biomass and CO 2 emissions informa-
tion were calculated by Hansen et al. They correlated in-
situ data with image detection techniques to get these at-
tributes. Thresholds of canopy cover (≥ 10%, 15%, 20%,
30%, 50%, and 75%) measure the density of trees in a sub-
national region. Given a particular area, represented as a cir-
cle, the percent canopy cover statistic relates to the percent-
age of the canopy’s ground area. We looked at data produced
between 2000 and 2020 across all canopy densities and all
sub-national regions.

Based on existing literature and the data available to us,
we considered and used the set of features to build our
spatially aware boosted decision tree model, with iterable
learning (BoostIT), to predict hotspots vulnerable to defor-
estation by adversaries. We boosted our classification using
data regarding geographic parameters (elevation in particu-
lar) to determine the accessibility of particular regions. We
acknowledge that this is a rough estimate of accessibility. In
addition, we considered metric tonnes of CO2 emissions and
metric tonnes of loss in biomass to reinforce that an attack
had taken place. Our prediction model specifically aims to
predict vulnerable regions susceptible to palm tree-related
land clearing ((Austin et al. 2019)).

Labeling Tree Cover Loss as Attacks We computed the
forest loss data from available Forest Change Data over ten
years and computed the percentage of land deforested com-
pared to the total land area in ’subnational2’ (henceforth re-
ferred to as district) in a ’subnational1’ region (henceforth
referred to as state). The percentage of deforested land de-
termines whether forests are being attacked or not. This will
be our dependent variable.

If the percentage of deforested land is negative, it indi-
cates that afforestation has happened in that district. There-
fore, it is assigned a class label of 0, indicating that the
forests in that district for the particular canopy threshold are
not vulnerable to deforestation. If the percentage of defor-
ested land is positive, it indicates that deforestation has hap-
pened in that district; therefore, it is assigned a class label of
1 indicating that the forests in that district for the particular
canopy threshold are vulnerable to deforestation. For reli-
ability, the annotation of data for targets vulnerable to de-
forestation must be professionally done by climate change
forest experts. Here, they have been automatically labeled
for analysis on a low scale with limited resources.

Creation of Training and Test Data In the original
dataset, there were 3514 data elements, comprising of 502



districts with seven canopy thresholds. Overall there are 33
distinct states in the datasets. We refer to each data element
based on (’subnational1’, ’subnational2’) keys equivalent to
(state, district) as two states can have the same district name.

We split the available Indonesian forest loss data from
Global Forest Change in an 80/20 split to training datasets
and test datasets by ensuring that the distribution of the class
labels (24% negative labels and 76% positive labels) in the
original dataset is maintained in both the train and test split.
Suppose we are taking data for a (state, district) with a par-
ticular canopy threshold in the training file. In that case, data
for that same (state, district) for the remaining six canopy
thresholds are also placed in the training dataset. The same
step is repeated for test data. This is done to have a proper
separation between test data and training data.

Appendix C Methods
Hotspot Proximity Calculation To calculate hotspot
proximity, we have first devised an algorithm to compute our
notion of proximity in the dataset as outlined in algorithm
2. The simple idea of proximity is that all districts in every
state are proximate to one another, but districts in different
states are not. This oversimplification may be pertinent in
Indonesia, with thousands of islands formed states based on
proximity. Further research can be done to calculate the ex-
act distance between districts to make bordering districts in
adjoining states proximate to one another.

The proximity vector is computed, which is an array of
3514 elements as there are 3514 data points. Each element is
the state id for the particular district. The notion of proxim-
ity as outlined in algorithm 2 is essential to calculate hotspot
proximity in algorithm 3 which is used in the BoostIT algo-
rithm.

This algorithm considers predicted hotspot class labels
from training data (Θh) or test data (Ψh) as inputs. Then
it finds their state ids denoting whether they are close to one
another. Then for one district, the number of districts close
to it is computed. If this number is above a certain thresh-
old α, a new spatial feature (h) with value one is added to
the dataset updating the training data (Θh) or test data (Ψh)
accordingly. α is set to 5 in our experiments.

Appendix D Results
We evaluate the following four versions of our model on the
test split of our dataset in order to understand how do our
assumptions affect the performance of the model :
• Base model: This model is composed of a decision tree

used as a classifier.
• Base model with BoostIT: This model is composed of

a decision tree along with the BoostIT algorithm applied
to it as shown in Algorithm 3.

• Base model with terrain features: This model is com-
posed of a decision tree with the inclusion of terrain fea-
tures (e.g. slope).

• Base model with terrain features and BoostIT: This
model is composed of a decision tree with the inclusion
of terrain features (e.g. slope) and also with the BoostIT
algorithm applied to it as shown in Algorithm 3.

Algorithm 2: Proximity Calculation
Input: orig data
Output: proximity vector

l← length(orig data)
2: ▷ orig data has features for every canopy threshold in

every district of every Indonesian state
proximity vector ← initialized to an array with 0s
having length l

4: unique states← orig data[′subnational1′].unique()
▷ Gets a list of Indonesian states

6: state id← 0
for each state in unique states do

8: index all districts in a state ← list of all in-
dices of each state in orig data

for index in index all districts in a state do
10: proximity vector[index] = state id

state id← state id+ 1
12: return proximity vector

Algorithm 3: Calculate Hotspot Proximity
Input: predictions, featurename, data
Parameter: alpha = 5
Output: data

1: hotspot indices ← gets a list of indices in data for
hotspots (class label = 1) in pred

2: hotspots ← state ids from proximity vector at
hotspot indices

3: hotspot state counts← a 2D array with unique states
and their counts in hotspots

4: data[feat name]← 0
5: ▷ A new column initialized to 0 is added to the data
6: for state count in hotspot state counts do
7: state = state count[0]
8: count = state count[1]
9: if count ≤ alpha then

10: dist indices cutoff ← indices from prox vec
for state ids with value state

11: data[dist indices cutoff, feat name] = 1
12: ▷ Sets the new feature in data as 1 for elements in data

at dist indices cutoff

13: return data
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Figure 2: Confusion matrix for the base model with terrain features and BoostIT

abg_biomass_loss_Mg_2010 ≤ 94107.0

gini = 0.374

samples = 1904

value = [475, 1429]

class = At risk

slope_std-dev ≤ 8.73

gini = 0.462

samples = 971

value = [351, 620]

class = At risk

True slope_median ≤ 2.782

gini = 0.23

samples = 933

value = [124, 809]

class = At risk

False

gain_2000-2012_ha ≤ 8378.5

gini = 0.327

samples = 611

value = [126, 485]

class = At risk

abg_biomass_loss_Mg_2011 ≤ 63414.0

gini = 0.469

samples = 360

value = [225, 135]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2001 ≤ 723438.0

gini = 0.315

samples = 603

value = [118, 485]

class = At risk

gini = 0.0

samples = 8

value = [8, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2014 ≤ 22392.5

gini = 0.303

samples = 596

value = [111, 485]

class = At risk

gini = 0.0

samples = 7

value = [7, 0]

class = Not at risk

abg_biomass_loss_Mg_2001 ≤ 6608.0

gini = 0.392

samples = 307

value = [82, 225]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 44178.5

gini = 0.181

samples = 289

value = [29, 260]

class = At risk

slope_mean ≤ 1.966

gini = 0.27

samples = 236

value = [38, 198]

class = At risk

whrc_aboveground_co2_emissions_Mg_2007 ≤ 6027.5

gini = 0.471

samples = 71

value = [44, 27]

class = Not at risk

abg_co2_stock_2000__Mg ≤ 26892.5

gini = 0.5

samples = 35

value = [17, 18]

class = At risk

abg_biomass_loss_Mg_2003 ≤ 3694.5

gini = 0.187

samples = 201

value = [21, 180]

class = At risk

gini = 0.0

samples = 7

value = [0, 7]

class = At risk

whrc_aboveground_co2_emissions_Mg_2007 ≤ 3403.0

gini = 0.477

samples = 28

value = [17, 11]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2018 ≤ 172.5

gini = 0.413

samples = 24

value = [17, 7]

class = Not at risk

gini = 0.0

samples = 4

value = [0, 4]

class = At risk

abg_co2_stock_2000__Mg ≤ 57945.0

gini = 0.5

samples = 14

value = [7, 7]

class = Not at risk

gini = 0.0

samples = 10

value = [10, 0]

class = Not at risk

avg_biomass_per_ha_Mg ≤ 84.0

gini = 0.278

samples = 6

value = [5, 1]

class = Not at risk

abg_biomass_loss_Mg_2017 ≤ 200.5

gini = 0.375

samples = 8

value = [2, 6]

class = At risk

abg_biomass_stock_2000_Mg ≤ 22581.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 4

value = [4, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 5

value = [0, 5]

class = At risk

whrc_aboveground_co2_emissions_Mg_2013 ≤ 375.0

gini = 0.444

samples = 3

value = [2, 1]

class = Not at risk

gini = 0.0

samples = 2

value = [2, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

abg_biomass_loss_Mg_2012 ≤ 37.0

gini = 0.151

samples = 195

value = [16, 179]

class = At risk

whrc_aboveground_co2_emissions_Mg_2004 ≤ 16801.5

gini = 0.278

samples = 6

value = [5, 1]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2016 ≤ 50.0

gini = 0.469

samples = 16

value = [6, 10]

class = At risk

avg_biomass_per_ha_Mg ≤ 111.5

gini = 0.105

samples = 179

value = [10, 169]

class = At risk

gini = 0.0

samples = 10

value = [0, 10]

class = At risk

gini = 0.0

samples = 6

value = [6, 0]

class = Not at risk

abg_biomass_loss_Mg_2009 ≤ 605.5

gini = 0.42

samples = 20

value = [6, 14]

class = At risk

abg_biomass_loss_Mg_2012 ≤ 16363.5

gini = 0.049

samples = 159

value = [4, 155]

class = At risk

gini = 0.0

samples = 5

value = [5, 0]

class = Not at risk

abg_co2_stock_2000__Mg ≤ 5927050.5

gini = 0.124

samples = 15

value = [1, 14]

class = At risk

gini = 0.0

samples = 14

value = [0, 14]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gain_2000-2012_ha ≤ 105.5

gini = 0.037

samples = 158

value = [3, 155]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

avg_biomass_per_ha_Mg ≤ 181.0

gini = 0.015

samples = 134

value = [1, 133]

class = At risk

whrc_aboveground_co2_emissions_Mg_2004 ≤ 2040.5

gini = 0.153

samples = 24

value = [2, 22]

class = At risk

gini = 0.0

samples = 106

value = [0, 106]

class = At risk

avg_biomass_per_ha_Mg ≤ 182.5

gini = 0.069

samples = 28

value = [1, 27]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 27

value = [0, 27]

class = At risk

abg_biomass_loss_Mg_2015 ≤ 114.5

gini = 0.444

samples = 3

value = [2, 1]

class = Not at risk

gini = 0.0

samples = 21

value = [0, 21]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2016 ≤ 2311.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 4

value = [4, 0]

class = Not at risk

abg_biomass_loss_Mg_2009 ≤ 18332.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2011 ≤ 56129.0

gini = 0.124

samples = 15

value = [1, 14]

class = At risk

abg_biomass_loss_Mg_2009 ≤ 16688.5

gini = 0.357

samples = 56

value = [43, 13]

class = Not at risk

gini = 0.0

samples = 14

value = [0, 14]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

avg_biomass_per_ha_Mg ≤ 223.5

gini = 0.19

samples = 47

value = [42, 5]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2020 ≤ 41761.5

gini = 0.198

samples = 9

value = [1, 8]

class = At risk

avg_biomass_per_ha_Mg ≤ 157.0

gini = 0.051

samples = 38

value = [37, 1]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2004 ≤ 15893.5

gini = 0.494

samples = 9

value = [5, 4]

class = Not at risk

abg_biomass_loss_Mg_2015 ≤ 3629.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 36

value = [36, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 3

value = [3, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2019 ≤ 32934.5

gini = 0.444

samples = 6

value = [2, 4]

class = At risk

gini = 0.0

samples = 4

value = [0, 4]

class = At risk

gini = 0.0

samples = 2

value = [2, 0]

class = Not at risk

gini = 0.0

samples = 6

value = [0, 6]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 31601.5

gini = 0.444

samples = 3

value = [1, 2]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

whrc_aboveground_co2_emissions_Mg_2010 ≤ 1026.5

gini = 0.085

samples = 180

value = [8, 172]

class = At risk

whrc_aboveground_co2_emissions_Mg_2020 ≤ 115081.0

gini = 0.311

samples = 109

value = [21, 88]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

abg_biomass_loss_Mg_2006 ≤ 10437.0

gini = 0.075

samples = 179

value = [7, 172]

class = At risk

abg_biomass_loss_Mg_2007 ≤ 24089.5

gini = 0.308

samples = 21

value = [4, 17]

class = At risk

threshold ≤ 62.5

gini = 0.037

samples = 158

value = [3, 155]

class = At risk

gini = 0.0

samples = 16

value = [0, 16]

class = At risk

abg_biomass_loss_Mg_2006 ≤ 10256.5

gini = 0.32

samples = 5

value = [4, 1]

class = Not at risk

gini = 0.0

samples = 3

value = [3, 0]

class = Not at risk

abg_biomass_loss_Mg_2007 ≤ 24639.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

abg_biomass_loss_Mg_2012 ≤ 9396.5

gini = 0.014

samples = 139

value = [1, 138]

class = At risk

gain_2000-2012_ha ≤ 6178.5

gini = 0.188

samples = 19

value = [2, 17]

class = At risk

abg_biomass_loss_Mg_2007 ≤ 4928.5

gini = 0.219

samples = 8

value = [1, 7]

class = At risk

gini = 0.0

samples = 131

value = [0, 131]

class = At risk

gini = 0.0

samples = 7

value = [0, 7]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2012 ≤ 185093.0

gini = 0.105

samples = 18

value = [1, 17]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 15

value = [0, 15]

class = At risk

whrc_aboveground_co2_emissions_Mg_2012 ≤ 209461.0

gini = 0.444

samples = 3

value = [1, 2]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 66345.0

gini = 0.451

samples = 61

value = [21, 40]

class = At risk

gini = 0.0

samples = 48

value = [0, 48]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 44866.5

gini = 0.245

samples = 42

value = [6, 36]

class = At risk

abg_biomass_loss_Mg_2018 ≤ 67088.5

gini = 0.332

samples = 19

value = [15, 4]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2014 ≤ 55127.5

gini = 0.32

samples = 5

value = [4, 1]

class = Not at risk

avg_biomass_per_ha_Mg ≤ 271.5

gini = 0.102

samples = 37

value = [2, 35]

class = At risk

gini = 0.0

samples = 3

value = [3, 0]

class = Not at risk

abg_biomass_loss_Mg_2019 ≤ 57792.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2001 ≤ 233405.5

gini = 0.054

samples = 36

value = [1, 35]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 34

value = [0, 34]

class = At risk

abg_biomass_loss_Mg_2011 ≤ 50048.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 3

value = [0, 3]

class = At risk

whrc_aboveground_co2_emissions_Mg_2010 ≤ 59951.5

gini = 0.117

samples = 16

value = [15, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 15

value = [15, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2012 ≤ 20566.5

gini = 0.344

samples = 199

value = [155, 44]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2018 ≤ 668481.0

gini = 0.491

samples = 161

value = [70, 91]

class = At risk

whrc_aboveground_co2_emissions_Mg_2018 ≤ 4705.0

gini = 0.494

samples = 47

value = [21, 26]

class = At risk

whrc_aboveground_co2_emissions_Mg_2008 ≤ 165170.0

gini = 0.209

samples = 152

value = [134, 18]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2004 ≤ 13947.0

gini = 0.227

samples = 23

value = [20, 3]

class = Not at risk

avg_biomass_per_ha_Mg ≤ 177.5

gini = 0.08

samples = 24

value = [1, 23]

class = At risk

avg_biomass_per_ha_Mg ≤ 262.5

gini = 0.091

samples = 21

value = [20, 1]

class = Not at risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

gini = 0.0

samples = 20

value = [20, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 23

value = [0, 23]

class = At risk

threshold ≤ 62.5

gini = 0.152

samples = 145

value = [133, 12]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2013 ≤ 22562.5

gini = 0.245

samples = 7

value = [1, 6]

class = At risk

slope_mean ≤ 15.259

gini = 0.062

samples = 124

value = [120, 4]

class = Not at risk

slope_mean ≤ 12.73

gini = 0.472

samples = 21

value = [13, 8]

class = Not at risk

gini = 0.0

samples = 101

value = [101, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2020 ≤ 22871.5

gini = 0.287

samples = 23

value = [19, 4]

class = Not at risk

abg_biomass_loss_Mg_2016 ≤ 26119.5

gini = 0.32

samples = 5

value = [1, 4]

class = At risk

gini = 0.0

samples = 18

value = [18, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2008 ≤ 24744.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 3

value = [0, 3]

class = At risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

abg_biomass_loss_Mg_2001 ≤ 33880.0

gini = 0.42

samples = 10

value = [3, 7]

class = At risk

abg_biomass_loss_Mg_2013 ≤ 3416.5

gini = 0.165

samples = 11

value = [10, 1]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2014 ≤ 5279.5

gini = 0.375

samples = 4

value = [3, 1]

class = Not at risk

gini = 0.0

samples = 6

value = [0, 6]

class = At risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 3

value = [3, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 10

value = [10, 0]

class = Not at risk

gini = 0.0

samples = 6

value = [0, 6]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

avg_biomass_per_ha_Mg ≤ 243.5

gini = 0.443

samples = 136

value = [45, 91]

class = At risk

gini = 0.0

samples = 25

value = [25, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2006 ≤ 310538.0

gini = 0.5

samples = 86

value = [42, 44]

class = At risk

abg_biomass_loss_Mg_2009 ≤ 32990.0

gini = 0.113

samples = 50

value = [3, 47]

class = At risk

whrc_aboveground_co2_emissions_Mg_2001 ≤ 64181.0

gini = 0.401

samples = 54

value = [15, 39]

class = At risk

whrc_aboveground_co2_emissions_Mg_2003 ≤ 48715.5

gini = 0.264

samples = 32

value = [27, 5]

class = Not at risk

threshold ≤ 62.5

gini = 0.219

samples = 16

value = [14, 2]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2006 ≤ 310096.0

gini = 0.051

samples = 38

value = [1, 37]

class = At risk

gini = 0.0

samples = 14

value = [14, 0]

class = Not at risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

gini = 0.0

samples = 36

value = [0, 36]

class = At risk

abg_biomass_loss_Mg_2017 ≤ 106555.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 204034.5

gini = 0.444

samples = 6

value = [2, 4]

class = At risk

whrc_aboveground_co2_emissions_Mg_2008 ≤ 697585.0

gini = 0.074

samples = 26

value = [25, 1]

class = Not at risk

gini = 0.0

samples = 3

value = [0, 3]

class = At risk

abg_biomass_loss_Mg_2010 ≤ 40979.5

gini = 0.444

samples = 3

value = [2, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

abg_biomass_loss_Mg_2018 ≤ 176354.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 24

value = [24, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2020 ≤ 128903.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 2

value = [2, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2008 ≤ 62195.0

gini = 0.041

samples = 48

value = [1, 47]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 47

value = [0, 47]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 523770.0

gini = 0.488

samples = 118

value = [50, 68]

class = At risk

abg_biomass_loss_Mg_2015 ≤ 2099628.0

gini = 0.165

samples = 815

value = [74, 741]

class = At risk

abg_biomass_loss_Mg_2002 ≤ 278995.0

gini = 0.462

samples = 69

value = [44, 25]

class = Not at risk

abg_biomass_loss_Mg_2001 ≤ 3420776.5

gini = 0.215

samples = 49

value = [6, 43]

class = At risk

avg_biomass_per_ha_Mg ≤ 86.5

gini = 0.476

samples = 41

value = [16, 25]

class = At risk

gini = 0.0

samples = 28

value = [28, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2006 ≤ 72910.5

gini = 0.153

samples = 12

value = [11, 1]

class = Not at risk

abg_biomass_loss_Mg_2003 ≤ 135356.5

gini = 0.285

samples = 29

value = [5, 24]

class = At risk

whrc_aboveground_co2_emissions_Mg_2012 ≤ 120009.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 10

value = [10, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 21

value = [0, 21]

class = At risk

abg_biomass_loss_Mg_2012 ≤ 966979.0

gini = 0.469

samples = 8

value = [5, 3]

class = Not at risk

gini = 0.0

samples = 4

value = [4, 0]

class = Not at risk

abg_biomass_loss_Mg_2019 ≤ 692024.5

gini = 0.375

samples = 4

value = [1, 3]

class = At risk

abg_biomass_loss_Mg_2020 ≤ 493269.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

abg_biomass_loss_Mg_2006 ≤ 236560.5

gini = 0.044

samples = 44

value = [1, 43]

class = At risk

gini = 0.0

samples = 5

value = [5, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 43

value = [0, 43]

class = At risk

whrc_aboveground_co2_emissions_Mg_2017 ≤ 2372169.5

gini = 0.222

samples = 559

value = [71, 488]

class = At risk

threshold ≤ 62.5

gini = 0.023

samples = 256

value = [3, 253]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 2168271.0

gini = 0.122

samples = 459

value = [30, 429]

class = At risk

abg_biomass_loss_Mg_2014 ≤ 2551909.0

gini = 0.484

samples = 100

value = [41, 59]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 35360.5

gini = 0.108

samples = 452

value = [26, 426]

class = At risk

abg_biomass_stock_2000_Mg ≤ 82476208.0

gini = 0.49

samples = 7

value = [4, 3]

class = Not at risk

abg_biomass_loss_Mg_2009 ≤ 395673.5

gini = 0.459

samples = 14

value = [5, 9]

class = At risk

gain_2000-2012_ha ≤ 13325.0

gini = 0.091

samples = 438

value = [21, 417]

class = At risk

gini = 0.0

samples = 7

value = [0, 7]

class = At risk

whrc_aboveground_co2_emissions_Mg_2004 ≤ 445314.0

gini = 0.408

samples = 7

value = [5, 2]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2001 ≤ 220639.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

abg_biomass_loss_Mg_2002 ≤ 646643.0

gini = 0.32

samples = 5

value = [4, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 3

value = [3, 0]

class = Not at risk

abg_biomass_loss_Mg_2004 ≤ 243014.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

slope_variance ≤ 162.594

gini = 0.035

samples = 339

value = [6, 333]

class = At risk

gain_2000-2012_ha ≤ 14445.0

gini = 0.257

samples = 99

value = [15, 84]

class = At risk

threshold ≤ 62.5

gini = 0.012

samples = 318

value = [2, 316]

class = At risk

threshold ≤ 22.5

gini = 0.308

samples = 21

value = [4, 17]

class = At risk

gini = 0.0

samples = 276

value = [0, 276]

class = At risk

abg_biomass_loss_Mg_2020 ≤ 98028.5

gini = 0.091

samples = 42

value = [2, 40]

class = At risk

whrc_aboveground_co2_emissions_Mg_2004 ≤ 379118.0

gini = 0.444

samples = 3

value = [1, 2]

class = At risk

whrc_aboveground_co2_emissions_Mg_2012 ≤ 2180012.5

gini = 0.05

samples = 39

value = [1, 38]

class = At risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 35

value = [0, 35]

class = At risk

gain_2000-2012_ha ≤ 6643.0

gini = 0.375

samples = 4

value = [1, 3]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 3

value = [0, 3]

class = At risk

avg_biomass_per_ha_Mg ≤ 340.5

gini = 0.494

samples = 9

value = [4, 5]

class = At risk

gini = 0.0

samples = 12

value = [0, 12]

class = At risk

gini = 0.0

samples = 4

value = [0, 4]

class = At risk

abg_biomass_loss_Mg_2010 ≤ 571881.0

gini = 0.32

samples = 5

value = [4, 1]

class = Not at risk

gini = 0.0

samples = 4

value = [4, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 178706.0

gini = 0.245

samples = 14

value = [12, 2]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2020 ≤ 2384740.0

gini = 0.068

samples = 85

value = [3, 82]

class = At risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

gini = 0.0

samples = 12

value = [12, 0]

class = Not at risk

threshold ≤ 62.5

gini = 0.046

samples = 84

value = [2, 82]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 71

value = [0, 71]

class = At risk

slope_variance ≤ 138.593

gini = 0.26

samples = 13

value = [2, 11]

class = At risk

abg_biomass_loss_Mg_2016 ≤ 2278232.5

gini = 0.153

samples = 12

value = [1, 11]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 10

value = [0, 10]

class = At risk

avg_biomass_per_ha_Mg ≤ 204.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 3

value = [3, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2011 ≤ 2051109.5

gini = 0.375

samples = 4

value = [1, 3]

class = At risk

avg_biomass_per_ha_Mg ≤ 218.5

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

gini = 0.0

samples = 2

value = [0, 2]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

abg_biomass_loss_Mg_2008 ≤ 1393459.0

gini = 0.428

samples = 58

value = [40, 18]

class = Not at risk

abg_biomass_loss_Mg_2012 ≤ 15364639.5

gini = 0.046

samples = 42

value = [1, 41]

class = At risk

whrc_aboveground_co2_emissions_Mg_2018 ≤ 1949847.5

gini = 0.157

samples = 35

value = [32, 3]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2001 ≤ 1733952.5

gini = 0.454

samples = 23

value = [8, 15]

class = At risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

abg_biomass_loss_Mg_2010 ≤ 149698.5

gini = 0.111

samples = 34

value = [32, 2]

class = Not at risk

abg_biomass_loss_Mg_2002 ≤ 57568.0

gini = 0.5

samples = 2

value = [1, 1]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2011 ≤ 4278489.5

gini = 0.061

samples = 32

value = [31, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 26

value = [26, 0]

class = Not at risk

abg_biomass_loss_Mg_2010 ≤ 1262022.5

gini = 0.278

samples = 6

value = [5, 1]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 5

value = [5, 0]

class = Not at risk

gini = 0.0

samples = 14

value = [0, 14]

class = At risk

whrc_aboveground_co2_emissions_Mg_2016 ≤ 5305797.0

gini = 0.198

samples = 9

value = [8, 1]

class = Not at risk

gini = 0.0

samples = 8

value = [8, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

gini = 0.0

samples = 41

value = [0, 41]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

gini = 0.0

samples = 221

value = [0, 221]

class = At risk

abg_biomass_loss_Mg_2002 ≤ 3678943.5

gini = 0.157

samples = 35

value = [3, 32]

class = At risk

whrc_aboveground_co2_emissions_Mg_2015 ≤ 5465462.5

gini = 0.111

samples = 34

value = [2, 32]

class = At risk

gini = 0.0

samples = 1

value = [1, 0]

class = Not at risk

whrc_aboveground_co2_emissions_Mg_2007 ≤ 2592252.5

gini = 0.32

samples = 10

value = [2, 8]

class = At risk

gini = 0.0

samples = 24

value = [0, 24]

class = At risk

slope_variance ≤ 104.457

gini = 0.444

samples = 3

value = [2, 1]

class = Not at risk

gini = 0.0

samples = 7

value = [0, 7]

class = At risk

gini = 0.0

samples = 2

value = [2, 0]

class = Not at risk

gini = 0.0

samples = 1

value = [0, 1]

class = At risk

Figure 3: Visualization of the decision tree learned for the base model with terrain features and BoostIT (Please zoom in to see
the individual nodes of the decision tree more clearly)


