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Abstract

Polymers play a crucial role in the development of engi-
neering materials, with applications ranging from mechan-
ical to biomedical fields. However, the limited polymer-
ization processes constrain the variety of organic building
blocks that can be experimentally tested. We propose an
open-source computational generative pipeline that integrates
neural-network-based discriminators, generators, and query-
based filtration mechanisms to overcome this limitation and
generate hypothetical polymers. The pipeline targets proper-
ties, such as ionization potential (IP), by aligning various rep-
resentational formats to generate hypothetical polymer can-
didates. The discriminators demonstrate improvements over
state-of-the-art models due to optimized architecture, while
the generators produce novel polymers tailored to the desired
property range. We conducted extensive evaluations to assess
the generative performance of the pipeline components, fo-
cusing on the polymers’ ionization potential (IP). The devel-
oped pipeline is integrated into the DeepChem framework,
enhancing its accessibility and compatibility for various poly-
mer generation studies.

Introduction
Polymers are macromolecules composed of repeating or-
ganic units with diverse applications ranging from manu-
facturing to drug delivery. Due to the limitations in avail-
able organic building blocks with polymerization methods,
the range of synthesized polymers is restricted. However,
their low cost and ease of production make these macro-
molecules suitable for various commercial and scientific
purposes (Oladele, Omotosho, and Adediran 2020). Given
the impracticality of experimentally exploring all possible
chemical combinations, it is essential to implement artificial
intelligence workflows to understand the underlying chem-
istry and generate polymers with desired properties. Artifi-
cial intelligence workflows have led to significant advance-
ments in protein structure analysis (Jumper et al. 2021),
drug discovery (IT 2023), and the generation of hypothet-
ical materials (Merchant et al. 2023), providing a founda-
tion for their application in polymer chemistry research.
Polymers have been structurally featurized to ensure com-
patibility with neural networks training while preserving
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maximum chemical detail. Key symbolic representations in-
clude Polymer Simplified Molecular Input Line Entry Sys-
tem (PSMILES), BigSMILES (Lin et al. 2019), fingerprints,
molecular graphs, and weighted directed graphs (Aldeghi
and Coley 2022a).

The recent polymer generative methods prioritize out-
put quantity to enhance fingerprint generation, optimize la-
tent spaces for multitask discrimination, and create bench-
marking datasets (Kuenneth and Ramprasad 2023; Ma and
Luo 2020). We propose an open-source pipeline integrat-
ing discriminators with generators to produce hypotheti-
cal polymers with specified properties. The development of
this pipeline involves the following key challenges and ap-
proaches:

• Discriminators and generators employ various polymer
representations, such as monomer SMILES, PSMILES,
and molecular graphs. We address this by standardizing
these representations and establishing conversion mech-
anisms between them.

• Aligning new target properties with existing generators
poses challenges due to compatibility issues between dis-
criminators and generators. We propose training or load-
ing predefined discriminators with custom properties and
defining generation rules to maintain pipeline integrity
while incorporating new properties.

• Existing generative methods generate polymers in large
quantities, incurring computational costs proportional to
the number of generations. By focusing on polymers with
specific properties, we aim to limit the number of genera-
tions, reducing computational load and ensuring efficient
inference.

Related Works
DeepChem and Generative Molecular Models
DeepChem (Ramsundar et al. 2019) is a versatile open-
source Python library tailored for machine learning on
molecular and quantum datasets (Ramsundar et al. 2021).
Its framework supports applications in drug discovery
and biotech (Ramsundar et al. 2021), breaking down sci-
entific tasks into workflows built from core primitives.
DeepChem has facilitated significant advancements, includ-
ing large-scale molecular machine learning benchmarks via



MoleculeNet (Ramsundar et al. 2021), protein-ligand mod-
eling (Gomes et al. 2017), and generative molecule model-
ing (Frey, Gadepally, and Ramsundar 2023). The generator
models are implemented separately within the DeepChem
framework. Additionally, the polymer featurization mecha-
nism, validation workflows, and generative sampler layers
have been integrated into DeepChem as part of the develop-
ment in this work.

Reaction-Based Polymer Generation
In experimental studies, polymers with similar building
blocks are often assumed to exhibit similar properties, mak-
ing the generation of hypothetical polymers from known
polymers highly valuable. Conditional polymer classifica-
tion and polymerization processes have successfully pro-
duced valid polymer molecules in several studies. For in-
stance, the SMiPoly library (Ohno et al. 2023) segregates
polymerizable functional groups, classifies them, and sub-
jects them to virtual polymerization by specifying starting
monomers and reactions. Functional group transformations
are then defined, resulting in hypothetical polymer sets. This
method follows 19 monomer classes through 22 polymer-
ization rules to form 7 distinct polymer classes. One pri-
mary constraint of following this process is the increased
likelihood of generating high molecular weight products. A
similar approach is employed in the PolyVERSE dataset
(Gurnani et al. 2024), where reaction templates, such as
ring-opening metathesis polymerization (ROMP), are used
to generate high-temperature dielectrics for capacitor mate-
rials. The Breaking of Retrosynthetically Interesting Chem-
ical Substructures (BRICS) method simplifies this process
by adapting techniques from drug design to generate valid
polymer units with minimal manual intervention (Kuenneth
and Ramprasad 2023). While BRICS has been effective for
small organic molecules and produces valid homopolymers,
it falls short in capturing the intricacies of polymerization
processes. Despite its ease of use, BRICS does not fully ad-
dress the complexity required for detailed polymer forma-
tion.

Neural Network-Based Polymer Generation
A benchmark PSMILES dataset, PI1M, was developed us-
ing an RNN trained on over 12,000 experimental datapoints
(Ma and Luo 2020). While the RNN successfully captured
relationships between PSMILES sequences and generated
chemically valid PSMILES, it did not provide insight into
the synthetic pathways of the generated polymers. To ad-
dress this limitation, the open Macromolecular Genome uti-
lized a VAE-based model, Molecule Chef (Bradshaw et al.
2019), to search for PSMILES with required properties
along with the synthetic pathway, and a similar VAE-based
model trained on SELFIES. The Molecule Chef architec-
ture classified polymers and indicated their synthetic path-
ways. The Hierarchical VAE (HierVAE) (Jin, Barzilay, and
Jaakkola 2020) approach also proved effective in generat-
ing polymer motifs and establishing bonds sequentially. Al-
though HierVAE was primarily designed to identify func-
tional motifs of macromolecules, it has also been applied to
polymer generation with SMILES.

Methodology
This section outlines the methodologies employed across
different stages of the pipeline. The pipeline integrates rep-
resentational variations with conversion mechanisms, paired
with discriminator and generator architectures, to generate
hypothetical polymers. A filtration process is then applied
to refine the generated polymers to those most relevant. An
overview of these components is provided in Figure 1. The
key methodologies driving these components are detailed
below.

Representational Variations and Conversions
The sequential representation of polymers can be expressed
using monomer SMILES, PSMILES, and BigSMILES.
PSMILES is used as a core representation in the pipeline
for standardization and dataset compatibility. In homopoly-
mer representations, each repeating unit is analogous to
monomer SMILES, with ”*” indicating open bonds. In the
case of copolymers, the CRU is represented similarly with
the “*” character for open bonds. The weighted graph is
stored as a sequential string with specific notations, simi-
lar to PSMILES. However, instead of “*”, open bonds are
indexed as [∗ : i] or [i∗], where i is an integer, allow-
ing weights to be assigned to relevant bonds. This rep-
resentation aligns with graph-based neural networks and
specifically weighted directed message-passing neural net-
works (DMPNN) (Aldeghi and Coley 2022b). The complete
weighted graph representation consists of three parts: (1) a
string representing the constituent atoms, (2) fractions of
repeating units separated by ”|” (e.g., ”|0.5|0.5|”), and (3)
polymer rules, indicated by ”<”, mapping open bond in-
dices to weights that correspond to polymer stoichiometry
variations. An abstract of the weighted directed graph string
syntax is illustrated in Figure 2. To provide a detailed un-
derstanding, we simulated the formation of Buna-S using
the SMILES representations of the monomers 1,3-butadiene
and styrene. The corresponding representational variations,
including PSMILES and weighted directed graphs (WDG),
are illustrated in figure 3.

A conversion mechanism was necessary to align data with
relevant architectures. We generated the constitutional re-
peating unit (CRU) by converting weighted directed graphs
into PSMILES. This involved converting the molecule
into an editable form (via RDKit), joining relevant bonds
to form the CRU from monomer SMILES, and remov-
ing indexed SMARTS notations to create valid PSMILES.
Monomer fractions and weights were retained as metadata,
which could later regenerate the original Weighted Directed
Graphs. For raw PSMILES, the monomer was repeated
twice to emulate connections between repeating units, open
bonds were indexed, and stoichiometric relationships (ran-
dom, alternating, block) were used to calculate and assign
weights at the tail of the representation, as shown in Figure
2.

Reaction-Based Generative Method
Among the various reaction-based generative methods,
BRICS was chosen for our application due to its ability to



Figure 1: Overview of the polymer generative pipeline to generate polymer representation of PSMILES and weighted directed
graphs utilizing a DeepChem model pool (comprising of Molecule Attention Transformer - MAT (Maziarka et al. 2020), Graph
Convolution Network - GCN (Zhang et al. 2019), Directed Message Passing Neural Network - DMPNN (Han et al. 2022)),
and generator pool (comprising of Reaction Based, Neural Network Based Architecture). Consecutively, it is passed through a
polymer validator and filter to narrow down the generation to targeted candidates.

incorporate the inherent chemistry of monomer molecules,
independent of the polymerization process. Additionally, the
computational load of PSMILES can be adjusted based on
the complexity of the input molecule. BRICS is inherently
incompatible with PSMILES due to the wildcard ”*” no-
tation, which leads to chemically invalid bond breaking and
recomposing. To resolve this, we first convert PSMILES into
valid Molecular SMILES by replacing the ”*” with a vir-
tual atom, represented as ”[At]”. BRICS then processes the
modified SMILES to detect substructures and generate valid
SMILES efficiently. After generating the SMILES, we val-
idate the polymer representation by checking the count and
position of virtual atoms. Upon validation, the virtual atoms
are replaced with the wildcard notation. This approach al-
lows BRICS to be effectively utilized to generate hypotheti-

cal polymers.

Neural Network-Based Generative Method
The input format for both PSMILES and Weighted Directed
Graphs (WDG) is sequential, stored and retrieved as strings.
Based on this, we trained a sequential neural network to
capture representational patterns in PSMILES and WDG,
aiming to generate plausible polymer structures. Variational
Autoencoders (VAE) and Generative Adversarial Networks
(GAN) are commonly employed for generating synthetic
data across domains, including image and molecular gener-
ation. In our approach, we focused on sequential relevance,
evaluating the impact of the same neural architecture on both
representations. We used a BERT tokenizer to convert the
string-based PSMILES and WDG formats into tokens. The



A

[indexedPSMILES1].[indexedPSMILES2]|[MonomerFraction1]|[MonomerFraction2]|

< [BondIndex1]− [BondIndex2] : [W1−2] : [W2−1]... < [BondIndexn]− [BondIndexm] : [Wn−m] : [Wm−n]

B

[indexedPSMILES1].[indexedPSMILES1]|0.5|0.5|

< [BondIndex1]− [BondIndex2] : [W1−2] : [W2−1]... < [BondIndexn]− [BondIndexm] : [Wn−m] : [Wm−n]

Figure 2: A. The syntax of the weighted directed graph representation. B. The syntax WDG converted from PSMILES of
homopolymers

Figure 3: The sample representational variations of the Buna-S (rubber) polymer and its monomers.

model architecture includes an embedding layer, followed
by Long Short-Term Memory (LSTM) blocks, and a fully
connected layer that outputs sequences matching the BERT
tokenizer’s vocabulary. The LSTM mechanisms—input gate
(Equations 1, 2, 3), forget gate (Equation 4), and output gate
(Equation 5)—are governed by the following equations:

Input Gate:

fi = σ(Wi · [ht−1, xt] + bi) (1)

Ĉ = tanh(Wc.[ht−1, xt] + bc) (2)

Ct = ft ⊙ Ct−1 + it ⊙ Ĉt (3)
Forget Gate:

ft = σ(Wf · [ht−1, xt] + bf ) (4)

Output Gate:

ot = σ(Wo · [ht−1, xt] + bo) (5)

Here, W represents the weight matrix for each gate,
where i, f, and o correspond to the input, forget, and output
gates, respectively. ht−1 denotes the hidden state from the

previous time step, and xt is the current input. Ĉ refers to the
cell state vector derived from the tanh activation in the pre-
vious iteration. The symbol ⊙ indicates element-wise multi-
plication, while σ represents the sigmoid activation function
used in the corresponding equations.

The mechanism of LSTM effectively propagates the sig-
nificance of previous tokens in a sequence, making it well-
suited for capturing the importance of wildcards in both
PSMILES and weighted directed graph (WDG) represen-
tations (Graves and Graves 2012). However, in longer se-
quences, the forget gate can reduce the retention of in-
formation from distant tokens, limiting its effectiveness
for extended sequence lengths. Despite this, LSTMs are
computationally more efficient than transformers, especially
when dealing with smaller latent spaces computed using the
CPU. Given the relatively short sequence lengths for both
PSMILES and WDGs, LSTMs were a good starting point.

The model employs BERT case-aware tokenization with
a vocabulary size of 28,996. A 128-dimensional embedding
layer is followed by two stacked unidirectional LSTM lay-
ers, each with a hidden dimension of 256. A fully con-
nected neural network then maps the LSTM output to the to-
kenizer’s vocabulary size. Sigmoid and tanh activation func-



tions are used exclusively within the LSTM layers (as shown
in equation 1, 2, 4, 5). The architecture is trained on approx-
imately 1 million PSMILES and 42,000 WDG string repre-
sentations.

Generation Validation
Several benchmarking protocols have been developed for
validating molecular generation systems, with SMILES
serving as the standard input format for such evaluations
(Polykovskiy et al. 2020; Brown et al. 2019). Due to the
partial misalignment of SMILES with PSMILES and WDG
formats, we implemented a custom benchmarking frame-
work to assess the validity, uniqueness, and novelty of the
generative model. For PSMILES validation, we used RD-
Kit’s molecular structure parser, while for WDG, a string
validator, and a sample featurizer were employed to ensure
the generation of chemically valid graphs. The uniqueness
score, expressed as a percentage, was determined by calcu-
lating the proportion of unique molecules among the valid
generations. The novelty was assessed by comparing the
unique molecules to the training data, ensuring that the gen-
erator produced new molecules distinct from the training set.
Two validation batches, one with 1,000 generations and an-
other with 10,000, were performed. The 1,000-generation
batch tested the validity of the model, while the 10,000-
generation batch examined the system’s ability to main-
tain uniqueness over extended iterations. These three met-
rics—validity, uniqueness, and novelty—were employed to
evaluate the performance of the generative model in this
study.

Property Discriminative Methods
Property prediction tasks based on PSMILES and WDG
representations can leverage discriminative neural networks.
PSMILES provides sufficient information to create a molec-
ular graph, while WDG encodes bond occurrence prob-
abilities. Three state-of-the-art architectures were consid-
ered for polymer discrimination: Molecule Attention Trans-
former (MAT) (Maziarka et al. 2020), Graph Convolution
Network (GCN) (Zhang et al. 2019), and Directed Message
Passing Neural Network (D-MPNN) (Han et al. 2022). MAT
employs transformer attention mechanisms along with inter-
atomic distances and molecular graph structures for property
prediction, though inter-atomic distance conflicts with wild-
cards limit minor PSMILES data use. GCN applies convolu-
tional operations to graph nodes, allowing atom-level (node)
analysis of target properties. Both PSMILES and WDG can
be represented as graphs, aligning well with GCN. D-MPNN
passes auxiliary information as messages through the graph,
capturing additional factors beyond node location. This ar-
chitecture is suited for PSMILES and WDG due to the in-
clusion of wildcard locations and bond weights as message
data. The schema of the representational methods and corre-
sponding data form mapped with the discriminator architec-
ture is shown in Figure 4.

Targeted Polymer Filtration with Discriminator
A filtering mechanism was implemented to generate a spec-
ified number of polymers based on a discriminator fil-

Figure 4: Representational variation and the discriminator
types of Molecule Attention Transformer (MAT), Graph
Convolution Network (GCN), and Directed Message Pass-
ing Neural Network (DMPNN) with their corresponding in-
termediary input forms

Figure 5: The pipeline cycle of generating polymers from in-
put elements to generation loop applied with the filter mech-
anism.

ter through iterative steps. A loop is established over the
generator-discriminator stack, where hypothetical polymers
are generated and evaluated by the discriminator to assess
target properties. The filter is represented as a logical string
containing comparison operators (<, >) and floats to define
conditions. The generated polymer’s properties are checked
against the filter to determine if they meet the desired cri-
teria. The loop terminates once the target polymer count is
reached, with a timeout to prevent indefinite execution in
cases of narrow filter criteria. The mechanism has been vi-
sualized in Figure 5.

Experiments
Datasets
The application required datasets that were both experimen-
tally derived and representationally convertible for the dis-
criminator, as it focuses on predicting experimental target



values. For the generator, datasets comprising chemically
valid polymer representations are essential. Auxiliary de-
tails are added or omitted during the conversion between
PSMILES and WDG. To address this, we selected the WDG
dataset as the base for our experiments, converting it to
PSMILES for implementation. Due to the addition of syn-
thetic data when converting raw PSMILES into WDG, we
prioritized WDG as the base representation and reduced the
data to derive corresponding PSMILES. Given the limited
availability of raw WDG datasets due to their niche usage,
we used a dataset of 42,966 copolymers (42K dataset) col-
lected from the same study that introduced weighted di-
rected graphs for molecular ensembles (Aldeghi and Coley
2022a). For the generator, we employed the BRICS method,
which is primarily suited for PSMILES. As BRICS can frag-
ment smaller molecules into valid components, we used ex-
perimental data from the converted 42K WDG dataset to
train the generator and compare its performance with neu-
ral networks. Like most neural network architectures, the
generative pipeline requires a substantial amount of data
for producing valid outputs. Therefore, we utilized a syn-
thetic dataset of 1 million PSMILES data points generated
via BRICS for PolyBERT model development. PolyBERT’s
source data contains 100 million data points, but we used
a subset to train our model and validate generation using
PSMILES. For training the WDG generative model, we re-
lied on the 42K dataset.

Baseline
The study using the same WDG dataset serves as a ba-
sis for comparison in our work. The original study em-
ployed the Weighted Directed Message Passing Neural Net-
work (w-DMPNN) for WDG representation but utilized the
standard DMPNN with monomer representations for anal-
ysis (Aldeghi and Coley 2022a). Besides DMPNN, Ran-
dom Forest and Neural Networks using molecular finger-
prints were also explored, with DMPNN being the top-
performing model. The base study evaluated performance
using root mean squared error (RMSE) and R-squared (R2)
metrics. The baseline DMPNN with monomer represen-
tation achieved an RMSE of 0.156 and an R2 of 0.89.
However, their analysis provided limited numerical metrics
for polymer generation models. Polymer generation bench-
marking, such as in the case of HierVAE, was conducted
using SMILES input and output, but the metrics are not
directly comparable due to representational conflicts (Jin,
Barzilay, and Jaakkola 2020). Therefore, we designed a cus-
tom benchmarking setup tailored to PSMILES and WDG
to evaluate generation models based on uniqueness, novelty,
and validation metrics across different methods and input
types.

Training and Evaluation
Training was conducted on MAT, GCN, and DMPNN ar-
chitectures for the development of the discriminator, with
an 80:20 train-test split. Molecular featurization for MAT,
GCN, and DMPNN was performed using DeepChem’s
Molecular Featurizers. For WDG, a specialized graph rep-
resentation was required to incorporate atomic details and

auxiliary data. To address this, a custom graph featurizer was
implemented to generate modified graphs compatible with
both GCN and DMPNN. Following featurization, the mod-
els were trained for 50 epochs, using mean squared error
(MSE) as the loss function. Additional metrics were used to
assess performance, including the R-squared (R2) value and
mean absolute percentage error (MAPE).

The BRICS method, as a reaction-based generative ap-
proach, does not require training but instead relies on a suf-
ficient number of input PSMILES. We utilized 6110 unique
PSMILES, derived from the 42K dataset after excluding sto-
ichiometry and chain variations, to apply the BRICS genera-
tion pipeline. BRICS generates chemically valid molecules;
however, only those with exactly two wildcards are eligi-
ble for polymer chain formation, requiring a filter to isolate
potential monomers. After generation, the valid PSMILES
were evaluated for uniqueness and novelty.

For neural network-based generation, BERT tokens were
used for both PSMILES and WDG. The LSTM model was
trained for 5 epochs using 1 million PSMILES and for 50
epochs using 42K WDG data. Generation was performed
in batches of 1000 (run 10 times) and 10000 (run once).
The generated outputs were evaluated separately for valid-
ity, uniqueness, and novelty, with inference carried out using
a filtering mechanism.

Validator and Filter Alignment
The validation process is applied in two stages: during gen-
erator evaluation and in the pre-filtering generation steps.
The process begins with a specified target for polymer candi-
date generation, where each iteration of the generation loop
passes through a validator. After validation, a filtration logic
based on a string query is applied. The validator and filter
stack continuously update the generated candidates’ count,
halting once the desired number is reached. The validator
for polymers was directly implemented from DeepChem uti-
lization classes. The filter layer is modified to assess the sys-
tem’s complexity and time efficiency, particularly when the
filter represents a narrow window for the target property or
when the target value falls slightly outside the discrimina-
tor’s training range.

Pipeline Performance Assessment
The pipeline’s performance was evaluated based on the time
required to generate a specified number of samples relative
to the filter window for the target variable. Initially, the filter
was set narrowly around the mean of the ionization potential
data, with two margin values, 0.1 and 0.01, representing the
range above and below the mean. The experiment was con-
ducted by iteratively expanding the filter window, increasing
the margin from 1x to 5x in five steps. A margin of 0.1 was
used to ensure the pipeline addressed a broad range of dis-
criminator targets, while 0.01 enforced a narrow filter.

Experimental Results
Discriminator Evaluation
By aligning representational variations with discrimina-
tor architectures, five discriminators were developed: three



using PSMILES with GCN (Zhang et al. 2019), MAT
(Maziarka et al. 2020), and DMPNN (Han et al. 2022),
and two using WDG with GCN and DMPNN. The MAT
model, which partially aligns with PSMILES, had the high-
est RMSE (0.214) and a lower R2 score (0.80) with the
ionization potential (IP) dataset. The GCN model demon-
strated similar RMSE values for both PSMILES and WDG,
with a slight RMSE reduction for WDG. Corresponding R2

scores were 0.84 and 0.85 for PSMILES and WDG, respec-
tively. DMPNN, designed for WDG, performed better with
an RMSE of 0.156 and R2 of 0.89 compared to 0.162 and
0.88 for PSMILES. The baseline DMPNN with monomer
representation in WDG had an RMSE of 0.16, slightly out-
performing the PSMILES DMPNN. Including additional
weight data in the DMPNN featurization using DeepChem
reduced the RMSE to 0.156 and improved the R2 score to
0.89. The evaluation metrics from the test set are summa-
rized in Table 2. Mean Absolute Percentage Error (MAPE)
and R2 score are calculated as additional metrics. The met-
rics values for each discriminator variation has been visual-
ized in Figure 6.

Model Variation RMSE R2 Score
GCN with PSMILES 0.186 0.84
GCN with WDG 0.185 0.85
MAT with PSMILES 0.214 0.80
DMPNN with PSMILES 0.162 0.88
DMPNN with WDG 0.156 0.89
Baseline DMPNN with WDG 0.16 0.88

Table 1: The calculated RMSE and R2 Score for differ-
ent models with different representations compared with the
baseline DMPNN implemented with monomer representa-
tion using weighted directed graphs dataset (42K) targeting
Ionization Potential (IP)

Valid Unique Novel

Generator Models 1K Gen
LSTM w WDG 67% 79% 7%
LSTM w PSMILES 51% 100% 100%
BRICS w PSMILES 100% 100% 100%

10K Gen
LSTM w WDG 67.5% 37% 16.5%
LSTM w PSMILES 50.7% 100% 99.9%

Table 2: Metrics of Validity, Uniqueness, and Novelty
for Generator Models (LSTM with WDG, LSTM with
PSMILES, and BRICS with PSMILES) averaged over 10
sample runs of 1,000 and 10,000 generations.

Generator Evaluation
The generator was evaluated over 1,000 (1K) generations us-
ing both LSTM and BRICS models across 10 samples. The
valid, unique, and novel polymer generation metrics for each
sample and varied LSTM representations are shown in Fig-
ure 7. On average, 671 valid polymers were generated in 1K

Figure 6: The bar plot between PSMILES and Weighted
Directed Graph representation mapped with discrimina-
tive architecture Directed Message Passing Neural Network
(DMPNN) and Graph Convolution Network (GCN) com-
prising Mean Squared Error (MSE) loss (section A), R
Squared Value (section B), and Mean Absolute Percentage
Error (MAPE) (Section C)

generations with the Weighted Directed Graph (WDG) rep-
resentation, of which 531 were unique and 41 were novel,
corresponding to valid, unique, and novel rates of 67%, 79%,
and 7%, respectively. In a separate experiment with 10,000
(10K) generations using WDG, 6,757 valid polymers were
produced, including 2,496 unique and 412 novel polymers.
The results indicate that, while valid generations remain
consistent at larger scales, the number of unique polymers
decreases, yet novel polymers remain stable.



Figure 7: Line plot comparison of generator performance
with PSMILES and WDG representations, showing (A) the
number of valid polymers, (B) the number of unique poly-
mers, and (C) the number of novel polymers over 1,000 gen-
erations across 10 sample runs.

With LSTM and PSMILES, 1K generations yielded 512
valid molecules, all of which were unique and novel, result-
ing in a 51% valid score and 100% unique and novel scores.
At 10K generations, valid scores remained at 50.7% (5,071
valid molecules), with 100% uniqueness and a slight reduc-
tion in novelty to 99.9% (5,068 novel molecules). These re-
sults highlight significant differences between LSTM with
WDG and LSTM with PSMILES. The smaller latent space
from LSTM with WDG (trained on 42K samples) compared
to LSTM with PSMILES (trained on 1M samples) leads

to repeated candidates, lowering uniqueness and novelty.
BRICS, a reaction-based generator, consistently produced
100% valid, unique, and novel polymers over 1K genera-
tions. Testing with 10 PSMILES inputs resulted in 1,476
valid PSMILES, of which the first 1,000 were used for eval-
uation, all being unique and novel.

Time Constraint Analysis
The filter margins for polymer candidate generation were set
at 0.1 and 0.01. In both cases, the LSTM with PSMILES re-
quired less time per cycle due to more efficient generation
and shorter PSMILES sequences. With a 0.1 filter margin,
the WDG pipeline took 45.7 seconds to generate 10 candi-
dates, while with a 0.01 margin, it took 506 seconds. In con-
trast, the PSMILES pipeline required 11.1 seconds with a
0.1 margin and 93 seconds with a 0.01 margin. Regardless of
representation, narrowing the filter margin from 0.1 to 0.01
increased the time required by approximately 10-fold.

Time constraints appeared to stabilize after the 4th itera-
tion for both representations. For the 0.1 margin, WDG took
14.4 seconds and PSMILES took 4.3 seconds in the 5th it-
eration, compared to 13.1 and 3.2 seconds in the 4th itera-
tion, respectively. With a 0.01 margin, WDG took 86 sec-
onds and PSMILES took 22.8 seconds in the 4th iteration,
followed by 90 seconds and 13.3 seconds in the 5th itera-
tion. While time reduction stabilized after the 4th iteration
for WDG with both margins, the PSMILES pipeline contin-
ued to show gradual time reduction beyond the 4th iteration
in the 0.01 margin case. The time reduction trends are visu-
alized in Figure 8.

Conclusion
This research presents a pipeline that integrates open-source
discriminative and generative model architectures capable of
iteratively generating hypothetical polymers for a specific
target property. The pipeline accommodates various poly-
mer representation formats, enabling both neural network-
based and reaction-based generation approaches. Experi-
ments were conducted to evaluate the performance of the
generators, discriminators, and filter mechanisms in produc-
ing relevant polymer candidates within a defined timeframe.
Ionization potential (IP) was used as the target property
for training and implementation. The pipeline components
demonstrated state-of-the-art performance, successfully pre-
dicting polymer candidates for the specified property. Per-
formance variations due to representational differences were
analyzed and addressed.

References
Aldeghi, M.; and Coley, C. W. 2022a. A graph represen-
tation of molecular ensembles for polymer property predic-
tion. Chemical Science, 13(35): 10486–10498.
Aldeghi, M.; and Coley, C. W. 2022b. A graph represen-
tation of molecular ensembles for polymer property predic-
tion. Chemical Science, 13(35): 10486–10498.
Bradshaw, J.; Paige, B.; Kusner, M. J.; Segler, M.; and
Hernández-Lobato, J. M. 2019. A model to search for syn-



Figure 8: Line plot showing the time taken for the pipeline to generate 10 polymers with a filter tolerance of 0.1 (A) and
0.01 (B), across 5 intervals from the target property mean. The plots compare the time taken across pipelines with different
representational variations.

thesizable molecules. Advances in Neural Information Pro-
cessing Systems, 32.
Brown, N.; Fiscato, M.; Segler, M. H.; and Vaucher, A. C.
2019. GuacaMol: benchmarking models for de novo molec-
ular design. Journal of chemical information and modeling,
59(3): 1096–1108.
Frey, N. C.; Gadepally, V.; and Ramsundar, B. 2023. Fast-
flows: Flow-based models for molecular graph generation.
https://arxiv.org/abs/2201.12419. arXiv:2201.12419.
Gomes, J.; Ramsundar, B.; Feinberg, E. N.; and Pande,
V. S. 2017. Atomic Convolutional Networks for Predicting
Protein-Ligand Binding Affinity. CoRR, abs/1703.10603.
Graves, A.; and Graves, A. 2012. Long short-term mem-
ory. Supervised sequence labelling with recurrent neural
networks, 37–45.
Gurnani, R.; Shukla, S.; Kamal, D.; Wu, C.; Hao, J.; Kuen-
neth, C.; Aklujkar, P.; Khomane, A.; Daniels, R.; Desh-
mukh, A. A.; et al. 2024. AI-assisted discovery of high-
temperature dielectrics for energy storage. Nature commu-
nications, 15(1): 6107.
Han, X.; Jia, M.; Chang, Y.; Li, Y.; and Wu, S. 2022. Di-
rected message passing neural network (D-MPNN) with
graph edge attention (GEA) for property prediction of
biofuel-relevant species. Energy and AI, 10: 100201.
IT, A. 2023. Inside the nascent industry of AI-designed
drugs. Nature medicine, 29: 1292–1295.
Jin, W.; Barzilay, R.; and Jaakkola, T. 2020. Hierarchical
generation of molecular graphs using structural motifs. In
International conference on machine learning, 4839–4848.
PMLR.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;
Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žı́dek,
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