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Abstract

Characterizing materials with electron micrographs poses sig-
nificant challenges for automated labeling due to the complex
nature of nanomaterial structures. To address this, we intro-
duce a fully automated, end-to-end pipeline that leverages
recent advances in Generative AI. It is designed for analyzing
and understanding the microstructures of semiconductor mate-
rials with effectiveness comparable to that of human experts,
contributing to the pursuit of Artificial General Intelligence
(AGI) in nanomaterial identification. Our approach utilizes
Large MultiModal Models (LMMs) such as GPT-4V, along-
side text-to-image models like DALL·E-3. We integrate a
GPT-4 guided Visual Question Answering (VQA) method to
analyze nanomaterial images, generate synthetic nanomate-
rial images via DALL·E-3, and employ in-context learning
with few-shot prompting in GPT-4V for accurate nanomaterial
identification. Our method surpasses traditional techniques
by enhancing the precision of nanomaterial identification and
optimizing the process for high-throughput screening.

Introduction
The multifaceted journey of semiconductor production in-
volves several stakeholders. Fabless firms such as NVIDIA,
Qualcomm, and AMD focus on designing and developing
semiconductor chips, yet they do not own fabrication fa-
cilities. Instead, they utilize Electronic Design Automation
(EDA) tools for designing, simulating circuits, and verify-
ing semiconductor devices. Following this phase, specialized
foundries like Taiwan Semiconductor Manufacturing Com-
pany (TSMC) and Samsung Electronics fabricate the designs
provided by the fabless companies onto silicon wafers. These
foundries employ advanced sub-14 nm technology to etch
precise geometries essential for modern high-performance
chips. After fabrication, companies like Advantest and Ter-
adyne employ specialized semiconductor test equipment to
subject the chips to a rigorous evaluation phase, ensuring
they meet performance and reliability standards. Post-testing,
packaging, and assembly companies such as ASE Technology
Holding and Amkor Technology prepare the semiconductor
devices for integration into larger electronic systems. In con-
trast to these individual stakeholders, Integrated Device Man-
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ufacturers (IDMs) like Intel and Texas Instruments oversee
nearly all aspects of the semiconductor production process,
from design to packaging. As the semiconductor industry
continues to strive toward miniaturization, aiming for more
powerful and energy-efficient chips, it faces challenges such
as manufacturing errors and quantum tunneling. Addressing
these challenges requires advanced imaging and analysis, as
well as innovative engineering approaches, all of which are
crucial for maintaining the rapid evolution of semiconductor
technology in today’s digital age. One of the key advance-
ments in the industry, particularly in sub-7 nm technology,
hinges on achieving micro and nanoscale precision. Tools
like Scanning Electron Microscopy (SEM) and Transmission
Electron Microscopy (TEM) are at the forefront of this effort.
These electron beam tools provide detailed micrographs, or
nano images, of semiconductor materials and structures. The
advanced imaging techniques play a vital role in manufactur-
ing analysis, enabling clear visualization and analysis of mi-
crostructures. This makes these tools indispensable for qual-
ity control, process monitoring, and failure analysis to ensure
that semiconductors adhere to design parameters and identify
defects. Materials characterization at the micro and nanoscale
is imperative for continued technological advancement. How-
ever, automated labeling of electron micrographs faces chal-
lenges due to the high similarity between different nano-
material categories (high inter-similarity), wide appearance
variance within a single category (high intra-dissimilarity),
and spatial heterogeneity of patterns of nanomaterials across
different length scales in electron micrographs. The mani-
fold complexities of automated nanomaterial identification
tasks are illustrated in Figure 1. Advancements in machine
learning and image recognition technologies are crucial for
the accurate labeling and analysis of electron micrographs,
thereby improving quality control and performance in the
semiconductor industry and aiding its further progression.
In the realm of AI, Large Language Models (LLMs) such
as GPT-4 (language-only), which empower conversational
agents like ChatGPT to generate human-like dialogue as re-
sponses to user inputs, have recently gained prominence and
showcased unprecedented capabilities in human-AI interac-
tion. These large-scale models leverage an autoregressive,
decoder-only architecture and undergo pre-training in a self-
supervised learning paradigm on vast amounts of unlabeled



text corpora. At their core, they operate by predicting the next
token in a sequence based on the context provided by preced-
ing tokens—a foundational principle of language modeling.
Additionally, to refine their outputs and better align with
human preferences, they are fine-tuned using reinforcement
learning from human feedback (RLHF). The foundational
LLMs have revolutionized natural language processing(NLP)
with their advanced text comprehension and sophisticated
logical reasoning, leading to remarkable performance across
various NLP tasks. A key feature of these large-scale models
is their “prompt and predict” paradigm, which allows users
to instruct LLMs using natural language prompts to set the
context and task-specific instructions to generate the text-
based response. The term “prompting” refers to the method
of conditioning the language model to respond to the instruc-
tions based solely on the patterns and knowledge acquired
during the training phase. General-purpose language mod-
els, like GPT-4, can be steered to generate desired outputs
using various prompt engineering strategies. One of these
strategies is zero-shot learning, where the language model
generates an output based solely on its pre-trained knowl-
edge, without any task-specific demonstrations (input-output
mappings). In contrast, few-shot learning provides the lan-
guage model with a limited number of demonstrations to
guide its output. In essence, prompts that include both ex-
plicit conditioning based on task-specific instructions and
a few demonstrations are termed few-shot prompts, while
those that rely solely on task-specific instructions are re-
ferred to as zero-shot prompts. Chain-of-thought (CoT) and
tree-of-thought (ToT) prompting techniques assist LLMs in
explaining their reasoning step-by-step and in exploring mul-
tiple possible thought paths simultaneously, thus enhancing
performance on tasks involving reasoning, logic, and more.
The choice between these strategies typically depends on the
context and specific objectives of the request, with each de-
signed to optimize the language model’s performance. Propri-
etary LLMs, such as GPT-4(OpenAI 2023b), demonstrate ad-
vanced language comprehension. However, their ‘black-box’
nature can pose challenges to interpretability and explain-
ability, especially given the lack of direct access to internal
state representations like logits or token embeddings. Further-
more, while general-purpose LLMs are designed to handle
a broad range of tasks, adapting them for niche tasks can be
highly resource-intensive due to their high model complexity
and size, and their performance might not always be opti-
mized for specialized applications. In contrast, open-source
small-scale models like BERT(Devlin et al. 2018), follow-
ing a “pre-training and fine-tuning” approach, can be more
cost-efficient for task-specific customization. These smaller
language models also provide better interpretability because
they allow access to internal state representations like logits
or token embeddings, thanks to their open nature. However,
they might not match the reasoning and generalization ca-
pabilities of proprietary LLMs, sometimes producing less
coherent and contextually apt outputs. In recent times, the
trend has shifted towards exploring and expanding the capa-
bilities of foundational language-only LLMs in multimodal
settings to enhance their performance and applicability across
a wider range of tasks. GPT-4 with Vision (GPT-4V(OpenAI

2023c)) represents a significant advancement over the earlier,
text-focused OpenAI GPT-4, which was limited to language
processing. Large multimodal models (LMMs) such as GPT-
4V are instruction-following, language-based human-AI in-
teraction systems capable of analyzing image inputs by inter-
preting and responding to text prompts, which enables them
to generate text-only outputs conditioned on the provided
visual context. GPT-4V integrates visual capabilities with its
existing language processing abilities, enabling it to perform
tasks such as analyzing and describing images based on tex-
tual prompts, transcribing text from images, and deciphering
data, among others, thereby broadening the horizons for real-
world applications. Similarly, DALL·E-3(OpenAI 2023a,d),
an advanced version of OpenAI’s DALL-E(Ramesh et al.
2022), excels in text-to-image synthesis, designed to gen-
erate accurate images from textual prompts. A significant
advancement over previous models in the realm of AI image
generation, DALL·E-3 not only generates high-quality im-
ages that accurately reflect the intended textual descriptions
but also has the new ability to modify (edit) and transform
existing images based on textual inputs

(a) MEMS devices exhibit high intra-class dissimi-
larity, indicating that they can appear distinct even if
they are from the same category.

(b) Nanomaterials from different categories (listed
from left to right as films and coated surfaces,
porous sponges and powders), have a high degree
of inter-class similarity as they look similar or even
identical.

(c) The spatial heterogeneity of nanoparticles can
be observed with different patterns appearing at
different magnifications.

Figure 1: The figure highlights the complexity of classifying
micrographs in the SEM dataset((Aversa et al. 2018)).

In the semiconductor manufacturing sector, traditional
vision-based frameworks are becoming increasingly limited,
especially in comparison to recent advancements in Gener-
ative Deep Learning. The lack of an integrated approach in
existing architectures, which can process both visual and
linguistic data simultaneously, diminishes their robustness
and precision. This significant gap has the potential to hinder
future innovation in the semiconductor industry. Our study
introduces a novel approach to the automatic nanomaterial
identification task by harnessing the strengths of GPT-4V
and DALL-E-3. This endeavor represents a pioneering step
towards addressing this challenge. The workflow of the pro-
posed approach, Generative Deep Learning for Nanomate-



rial Identification (GDL-NMID), is illustrated in Figure 2.
Our novel approach to nanomaterial identification is both
autonomous, reducing the need for constant human oversight,
and versatile, requiring minimal manual configuration or ad-
justment to work effectively. The main contributions of our
work can be summarized as follows:

• GPT-4V-Guided Visual Question Answering(VQA) for
Nanomaterial Image Analysis: Utilizing the language
model GPT-4, we generate natural language questions
tailored for analyzing nanomaterial images. These open-
ended questions serve as detailed instructions to unearth
insights about the material’s structure, properties, and po-
tential applications. Combined with visual data such as
nanomaterial images, these instructions become prompts
for VQA, facilitated by the multimodal capabilities of
GPT-4V. We employ the Zero-shot Chain of Thought
(Zero-shot-CoT) prompting technique with LMMs like
GPT-4V to delve deeper into nanomaterial images, lever-
aging the model’s pre-trained knowledge to generate the
technical descriptions conditioned solely on the multi-
modal prompt. Unlike traditional language-centric CoT,
our multimodal CoT approach combines textual queries
with visual inputs within its prompts. GPT-4V can thus
produce context-rich text responses that detail the visual
intricacies of nanomaterial images. The structured CoT
prompts ensure comprehensive exploration of the nanoma-
terial’s characteristics. Additionally, the textual descrip-
tions guide the generation of synthetic nanomaterial im-
ages with DALL-E 3, translating text into precise visual
representations.

• Zero-Shot Prompting with DALL-E 3 for Synthetic
Image Generation: We utilize DALL-E 3 ability to con-
vert textual descriptions, referred to as ‘prompts’, into
high-quality nanomaterial images without task-specific
fine-tuning. This text-to-image model leverages its prior
knowledge acquired during training in a manner similar
to zero-shot prompting in language models. DALL-E 3
generates images based on text inputs, especially from
the Q&A pairs provided by GPT-4V. Our research high-
lights the zero-shot prompting capability of DALL-E 3,
which interprets Q&A pairs and visually translates them
into synthetic nanomaterial images. Data augmentation
using synthetic images enhances nanomaterial identifi-
cation in electron micrographs. This approach addresses
data scarcity, boosts the diversity of training datasets, and
improves the robustness of classification models. By gen-
erating images that simulate rare scenarios, it offers a
cost-efficient alternative to extensive data collection.

• In-Context Learning for Nanomaterial Identifica-
tion with Few-Shot Prompting with Multimodal
Models(GPT-4V): Our work investigates in-context learn-
ing using few-shot prompting with Language Model Mul-
timodals (LMMs), such as GPT-4V, to eliminate the need
for traditional gradient-based fine-tuning when classify-
ing various nanomaterials in microscopy images. These
LMMs utilize minimal examples(demonstrations) based
on few-shot prompting—without any updates to the model
parameters—to leverage analogy-based learning from
prior knowledge for nanomaterial identification.

Problem Statment
Our study focuses on the classification of electron micro-
graphs using few-shot learning in large multimodal models
(LMMs), such as GPT-4V. This approach involves leveraging
a small set of relevant demonstrations(image-label pairs) to
make predictions on new data (query images) without further
fine-tuning of the model parameters. A common scenario is
where the model samples image-label pairs from a training
dataset D as demonstrations, and then predicts the label of a
query image from the test dataset based on these demonstra-
tions. Consider a training dataset D consisting of image-label
pairs {(Ii, yi)}

N
i=1. Additionally, let Iq denote a query im-

age. The task is to predict the label yq of the query image
Iq based on D, without model parameters update. In this
scenario, using GPT-4V, the task can be framed as a proba-
bilistic inference problem where the objective is to estimate
the conditional probability distribution P (yq|Iq,D), repre-
senting the probability of the label yq given the query image
Iq and the training dataset D. Through this formulation, the
few-shot learning task aims to sample the relevant demonstra-
tions in the dataset D to make an informed prediction for the
label yq of the query image Iq, without requiring additional
training of the model parameters.

Textual Descriptions
GPT-4V DALL.E 3

Zero-Shot-CoT GPT-4V Prompting Zero-Shot-DALL.E 3 Prompting

GPT-4V

La
b

el

Few-Shot-GPT-4V Prompting

Synthetic Images

Figure 2: Our framework comprises three sequentially operat-
ing methods: (a) GPT-4 Guided VQA for Nanomaterial Im-
age Analysis: GPT-4 actively formulates questions to analyze
nanomaterial images, which, in conjunction with GPT-4V,
extract detailed insights from the images, yielding compre-
hensive textual descriptions of the nanomaterial structures
and patterns. These Q&A pairs subsequently guide DALL-E
3 in generating synthetic nanomaterial images. (b) Zero-
Shot Prompting with DALL-E 3: DALL-E 3 uses zero-shot
prompting to transform the Q&A pairs into visual representa-
tions, demonstrating its ability to generate synthetic images of
nanomaterials without prior examples. This addresses nano-
material identification and mitigates data scarcity challenges.
(c) In-Context Learning with Few-Shot Prompting with
GPT-4V: This method employs few-shot prompting with
GPT-4V for nanomaterial classification, sidestepping tradi-
tional fine-tuning through analogy-based learning. Overall,
the framework operates autonomously, eliminating the need
for human intervention (human-out-of-the-loop) and forgo-
ing parameter updates (parameter-free), thus highlighting its
ease of use and efficient data processing.

Proposed Method
Electron Micrograph Encoder: Let’s consider an input
image, denoted as I expressed as a 3D tensor with dimensions
H ×W × C, where H represents the image’s pixel height,
W its pixel width, and C the number of channels associated
with each pixel in the image. To process this input image, it
is divided into smaller, non-overlapping patches, with each
patch treated as a token having fixed-size spatial dimensions
of P × P × C, where P represents the patch size. The tok-



enization of the image results in a total number of patches
given by n =

(

HW
P 2

)

. These patches are linearly encoded
into 1D vectors, forming a sequence of tokens represented
as I′ ∈ R

n×d where d is the patch embedding dimension. To
maintain the spatial information of patches from the origi-
nal image, differentiable positional embeddings representing
patch positions are added element-wise to the patch embed-
dings. This process allows the framework to effectively ana-
lyze and understand the complex visual and spatial context of
image patches. We also append a classification token <cls>
to the token sequence. This token aggregates information
from all patches, creating a global representation that helps
the framework gain a coherent understanding of the holistic
visual context of the image. We input this augmented token
sequence into ViT(Dosovitskiy et al. 2020), which is com-
posed of multiple stacked transformer encoder layers. Each
encoder layer processes the patch embeddings hierarchically
using a higher-order attention mechanism instead of the stan-
dard multi-head self-attention (MHSA), iteratively updating
patch representations at different levels of abstraction. The
hierarchical attention mechanism allows the framework to
grasp visual information comprehensively at different levels
of detail, from fine-grained features to high-level context.
This process operates in two stages: local attention, which
focuses on patch-level relationships to capture the interac-
tions between patches and their immediate context within
the image, and global attention, which aggregates global in-
formation by incorporating the classification token, aiding
the framework in achieving an overarching understanding of
the visual context throughout the entire image. After passing
through the transformer layers, we consider only the output
embedding hcls corresponding to the < cls> token as the
unified, holistic representation of the entire image, aggregat-
ing information from all patches by distilling the diverse and
distributed information from the smaller, localized regions
of the image. In summary, the framework processes input
images by dividing them into patches, encoding them into
tokens, incorporating a classification token <cls>, and using
a hierarchical attention mechanism to create a holistic image
representation, hcls, that embodies both local and global con-
text. For few-shot prompting of LMMs such as GPT-4V, we
provide a small number of demonstrations(image-label pairs
as input-output mappings) for nanomaterial identification
in the query image. This is accomplished using an electron
micrograph encoder that selects relevant images from the
training set resembling or matching the query image.

Zero-Shot Chain-of-Thought (CoT) GPT-4V Prompting:
The GPT-4V API, accessible through Multimodal Modeling
as a Service (MMaaS)—a cloud-based platform that accepts
both image and text inputs to generate output—is not yet fully
available to the public. While still in beta phase, GPT-4V can
be accessed by ChatGPT Plus subscribers at chat.openai.com,
but usage is subject to a cap. Our work on nanomaterial image
interpretation begins with using GPT-4 to generate natural
language questions that serve as task-specific instructions.
These textual prompts, combined with visual (image) inputs,
are employed to construct multimodal prompts that guide
GPT-4V in Visual Question Answering (VQA) tasks for ana-
lyzing nanomaterial images. Consequently, GPT-4V provides

contextually rich textual responses that encapsulate the infor-
mation within the visual inputs. The task instructions created
by GPT-4 (language-only) are crucial for directing GPT-4V’s
VQA performance on nanomaterial images. By utilizing a
zero-shot CoT prompt template with these instructions and
the query image, LMMs like GPT-4V can generate detailed
descriptions of nanomaterial images. This approach takes ad-
vantage of the multimodal model’s intrinsic domain-specific
knowledge acquired during training to provide comprehen-
sive insights into the images. Essentially, GPT-4 formulates
general questions about nanomaterial images, which are then
converted into structured CoT prompts guiding GPT-4V in
its detailed visual analysis that explores the image’s structure,
patterns, imaging techniques, and context—be it experimen-
tal, real-world, or theoretical. In guiding GPT-4V’s analysis
of nanomaterial images, we focus on the following key areas:
(a) Basics: Identify the type and scale of the nanomaterial. (b)
Morphology and Structure: Describe the shape, layers, do-
mains, and uniformity. (c) Size and Distribution: Determine
size, distribution pattern, and signs of aggregation. (d) Sur-
face Characteristics: Observe texture, defects, or impurities.
(e) Composition and Elements: Identify compositional varia-
tions and specific elements. (f) Interactions and Boundaries:
Examine nanostructure interactions and boundaries. (g) Exter-
nal Environment: Observe interactions with surroundings and
identify non-nanomaterial structures. (h) Image Technique
and Modifications: Identify the imaging technique and any
post-processing. (i) Functional Features: Look for functional
features and assess if dynamic processes are captured. (j)
Context and Application: Understand the sample’s intended
use and its status as real, experimental, or theoretical. The
CoT prompt format is as follows:

Prompt 1: **Basics** - What type of nanomaterial
is depicted in the image? - What is the scale of the
image? (e.g., what does one unit of measurement rep-
resent?). Prompt 2: **Morphology and Structure** -
What is the general shape or morphology of the nano-
materials in the image? - Are there distinct layers,
phases, or domains visible? - Do the nanomaterials
appear uniform in size and shape or are they var-
ied?. Prompt 3: **Size and Distribution** - What
is the approximate size or size range of the individ-
ual nanostructures? - How are the nanomaterials dis-
tributed throughout the image? (e.g., evenly spaced,
clustered, random) - Is there any evidence of aggrega-
tion or bundling?. Prompt 4: **Surface Characteris-
tics** - Does the nanomaterial appear smooth, rough,
or have any specific textures? - Are there any visible
defects, pores, or impurities on the surface?. Prompt
5: **Composition and Elements** - Is there evidence
of compositional variations in the image (e.g., dif-
ferent colors, brightness, or contrasts)? - Are there
any labels or markers indicating specific elements or
compounds present?. Prompt 6: **Interactions and
Boundaries** - How do individual nanostructures
interact with one another? (e.g., are they touching,
fused, or separate?) - Are there clear boundaries be-
tween different structures or phases?. Prompt 7:



**External Environment** - Is there any evidence
of the nanomaterial interacting with its surrounding
environment or matrix (e.g., solvents, polymers, or
other materials)? - Are there other structures or ob-
jects in the image that are not nanomaterials? If so,
what are they?. Prompt 8: **Image Technique and
Modifications** - What imaging technique was used
to capture this image? (e.g., SEM, TEM) - Were there
any post-processing or modifications made to the im-
age (e.g., false coloring, 3D rendering)?. Prompt 9:
**Functional Features** - If applicable, are there any
functional features visible (e.g., active sites, regions
with distinct properties)? - Are there dynamic pro-
cesses captured in the image or is it a static represen-
tation?. Prompt 10: **Context and Application** -
What is the intended application or use of the nanoma-
terial being depicted? - Is this a experimental sample,
or a theoretical or simulation-based representation?

The structured prompts are designed to facilitate a compre-
hensive, in-depth exploration of various facets, ranging from
fundamental aspects like size and distribution, to morphology
and structure, to practical applications associated with these
nanomaterials. Zero-shot CoT prompting in LMMs such as
GPT-4V generates text that responds to and elaborates on the
specific aspects mentioned in each prompt.

(Chatbot’s Response) [Generated Text]

In the following section, we will outline our approach to
integrating these generated technical descriptions, which will
serve as input for creating synthetic nanomaterial images us-
ing DALL-E 3, an advanced text-to-image generation model,
capable of translating textual descriptions into highly accu-
rate images that adhere closely to the provided text prompts.
Table 1 shows the Q&A pairs for patterned surface nanoma-
terials using Zero-Shot CoT prompting of GPT-4V.

Zero-Shot DALL-E 3 Prompting: The DALL-E 3 API,
available as a cloud service, is engineered to transform text
inputs into high-quality images. Public access to the API,
however, is limited. ChatGPT Plus subscribers can utilize
DALL-E 3 on chat.openai.com, subject to usage limits, which
enables the generation of realistic nanomaterial images based
on textual descriptions. These technical descriptions are pro-
vided in the form of question-answer pairs by GPT-4V and
contain in-depth information about the nanomaterials de-
picted in the images. DALL-E 3 is designed to understand
textual prompts and create visually accurate representations
based on those prompts. The zero-shot prompting capability
of DALL-E 3 emphasizes its ability to accurately convert text
into images without requiring additional prompt engineering
or task-specific tuning. This capability is achieved by leverag-
ing its pre-existing knowledge, akin to zero-shot prompting
with language models, which respond to tasks without hav-
ing been exposed to specific examples during training. The
zero-shot prompt format is as follows,

Please generate multiple synthetic images based on
the textual information provided below in the form
of question-answer pairs for a given nanomaterial.

Table 2 displays synthetic images of patterned surface
nanomaterials, created by DALL-E 3 through Zero-Shot
prompting, using textual descriptions generated by GPT-4V.
Few-Shot GPT-4V Prompting in Nanomaterial Identifi-
cation: Few-shot prompting is a technique that enables in-
context learning in language-and-vision multimodal models
(LMMs) such as GPT-4V, guiding these large-scale models
to better performance on complex, unseen tasks. With this
technique, LMMs can tackle new tasks without the need
for traditional gradient-based fine-tuning on labeled data
for domain-specific task adaptation. Instead, the multimodal
model uses a minimal set of task-specific input-output pairs
as demonstrations to apply analogy-based learning, using
the implicit prior knowledge acquired during pre-training to
handle new tasks. Context-augmented prompting enhances
the emerging few-shot learning abilities of LMMs by includ-
ing both task-specific instructions and demonstrations in the
prompt, aiding LMMs to better adapt and perform on unseen
tasks, thereby improving their generalization capabilities. In
the realm of nanomaterial identification, few-shot prompting
employs a small number of image-label pairs, represented as
(Ii,Yi), sampled from the training set relevant to the query
image, which serves as guiding demonstrations. Task-specific
instructions involve a natural language question to instruct
GPT-4V to predict the labels of query images. At inference
time, for test images denoted as Itest, few-shot prompting
determines the output label using the conditional probabil-
ity distribution, articulated as P(Ytest | ((Itrain,Ytrain), Itest)).
This showcases a data-efficient learning paradigm that en-
hances the multimodal models’ adaptability and generaliza-
tion capabilities for unseen or novel tasks, crucial in scenarios
with limited labeled data. Building upon the foundation of
few-shot prompting in the context of nanomaterial identifi-
cation, we delve into the influence of both the quality and
quantity of demonstrations on task performance. Specifically,
we evaluate two contrasting sampling strategies for selecting
these demonstrations: random and similarity-driven sampling.
The random method offers a naive approach by arbitrarily se-
lecting demonstrations (image-label pairs) from the training
data, without adhering to any specific criteria or systematic
approach, thereby serving as a baseline for our evaluations.
On the other hand, similarity-driven sampling utilizes the
cosine similarity method to find the most similar images in
the training data to the query image. Underlying this strategy
is the hypothesis that demonstrations closely mirroring the
data distribution of the query image can potentially boost
the adaptability and precision of the multimodal model used
for nanomaterial identification. By employing diverse strate-
gies to sample demonstrations when constructing multimodal
prompts, we aim to provide a thorough analysis of how dif-
ferent demonstration sampling methods affect the efficacy
of few-shot learning of LMMs in nanomaterial identification
tasks. Furthermore, the effectiveness of these demonstrations
is directly linked to the sampling methods used to retrieve
the top-K images that closely align with a new or unseen
query image. To delve deeper into the impact of the number
of demonstrations (K) on performance, we adjust K for each
query image. Utilizing the electron micrograph encoder, we
process an image dataset to extract the holistic representation



Table 1: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the patterned surface nanomaterial category. In summary, the question-answer pairs
(generated text) provide in-depth information about an image related to patterned surface nanomaterials.

Please answer the following questions based on the
provided input image belonging to the patterned surface

nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image depicts a patterned surface nanomaterial. The scale of the image is
indicated by the bar at the bottom-left corner, which represents 1 µm.

**Morphology and Structure** The general shape or morphology of the nanomaterials in the image is hexagonal.
The image seems to show one distinct layer of hexagonal nanostructures on a
textured background. The nanomaterials appear uniform in size and shape.

**Size and Distribution** The approximate size of the individual nanostructures is slightly less than 1 µm
given the provided scale. The nanomaterials are evenly spaced and arranged in a
hexagonal grid pattern. There is no visible evidence of aggregation or bundling.

**Surface Characteristics** The hexagonal nanomaterials appear smooth, while the background has a textured
pattern. There are no obvious defects, pores, or impurities on the hexagonal
structures.

**Composition and Elements** The image is grayscale, so it’s difficult to determine compositional variations
based on colors. However, there is contrast between the hexagonal structures
and the background. There are no visible labels or markers indicating specific
elements or compounds.

**Interactions and Boundaries** The individual hexagonal nanostructures seem to be separate from one another
with clear gaps in between. There are clear boundaries between the hexagonal
structures and the background.

**External Environment** There isn’t direct evidence from the image to indicate interactions between
the nanomaterial and its surrounding environment. The background texture
appears distinct from the hexagonal nanostructures but is not labeled, making its
composition or identity unclear.

**Image Technique and Modifica-
tions**

The image appears to be taken using Scanning Electron Microscopy (SEM)
based on the details provided in the image. There is no indication in the image
about post-processing or modifications.

**Functional Features** It’s unclear from the image alone if there are any functional features visible. The
image represents a static view of the nanostructures.

**Context and Application** The intended application or use of the nanomaterial is not provided in the image.
Given the detailed nature of the image and the presence of measurement scales
and settings, it appears to be a real, experimental sample.

Table 2: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 1.



hcls for each image. We then compute similarity scores
between the query image and the images in the dataset using
metrics such as cosine similarity or Euclidean distance. By
ranking the images based on these similarity scores, we select
the top-K most similar images. These selected images serve
as the demonstration set for few-shot prompting, aiding the
model in making accurate predictions for the query image.
In brief, our objective is to explore the promising, few-shot
learning abilities of LMMs via prompting on nanomaterial
identification task. A multimodal prompt consists of selected
few image-label pairs from the training data, accompanied by
task-specific instructions that guide the LMMs in predicting
the nanomaterial category of the query image. This evalua-
tion examines the LMMs’ capability to predict nanomaterial
categories based solely on the contextual prompt, without any
parameter updates or access to external knowledge, distin-
guishing it from traditional supervised learning where models
are fine-tuned on labeled data.

Below are the provided image-label pairs for the
nanomaterial identification task. Based on these

pairs, predict the nanomaterial category for the given
query image.

In summary, few-shot prompting enables models like GPT-
4V to predict nanomaterial categories without fine-tuning
by utilizing select demonstrations, task-specific instructions,
and the prior knowledge acquired from training on diverse
multimodal datasets.

Experiments And Results

Figure 3: The figure shows sample microscopic images of
nanomaterials with different structures and morphologies
found in the SEM dataset (Aversa et al. 2018). From left to
right in the first row: biological, fibers, films; in the second
row: MEMS, nanowires, particles; in the third row: patterned
surface, porous sponges, powder; and in the last row: tips.

Datasets: The primary focus of our research was to au-
tomate the identification of nanomaterials using the SEM
dataset (Aversa et al. 2018). This benchmark dataset, anno-
tated by human experts, encompasses 10 unique categories

that reflect a wide variety of nanomaterials, including parti-
cles, nanowires, and patterned surfaces. It contains around
21,283 electron micrographs in total. A visual depiction of the
nanomaterial categories within the SEM dataset is provided
in Figure 3. Although the first experimental findings (Modar-
res et al. 2017) explored a subset of this dataset, our work
leveraged the entire dataset as the subset was not publicly
available. The curators of the original dataset (Aversa et al.
2018) did not specify predefined splits for training, validation,
and test datasets, prompting us to employ a custom approach
to evaluate the performance of our framework. This approach
enabled a balanced comparison with widely-accepted base-
line models in a competitive benchmark scenario.

Data Prepration : Identifying Hard-to-Classify
Micrographs: A Train/Test Approach
The SEM dataset(Aversa et al. 2018), comprises images with
original dimensions of 1024 × 768 × 3 pixels, which were
downscaled to 224× 224× 3 pixels to facilitate our analy-
sis. We standardized the images using z-score normalization
to ensure a mean of zero and a variance of one, and then
flattened the images into 1D-vectors. Subsequently, we em-
ployed Principal component analysis (PCA) to reduce the
dimensionality of the image data, which involved computing
the eigenvectors and eigenvalues of the data covariance ma-
trix. We selected the top-N eigenvectors, where N represents
the desired reduced dimensionality, and projected the orig-
inal data onto the lower-dimensional subspace spanned by
these eigenvectors. After dimensionality reduction with PCA,
we applied K-Means clustering to segment the images into
distinct groups based on inherent patterns and similarities, en-
abling a more structured analysis of the electron micrographs
to identify and understand underlying structures and varia-
tions. For our analysis, we set the initial number of clusters
at K=10, in line with the predefined number of nanomaterial
categories in the SEM dataset. K-Means clustering iteratively
works by randomly initializing centroids, assigning each im-
age to the nearest centroid, recalculating the centroids as the
mean of the images in each cluster, and repeating this process
until the centroids no longer change significantly. After clus-
tering, the most difficult images to classify can be identified
by calculating the distance of each image from its assigned
centroid, where larger distances suggest greater classification
difficulty. Images in smaller or high-variance clusters may
also indicate a more challenging classification task. Addi-
tionally, calculating the silhouette score for each image, with
lower scores indicating a possible better fit with neighboring
clusters, further highlights classification challenges. Evalu-
ating the clustering and pinpointing hard-to-classify images
through comparison with available ground truth labels en-
ables a thorough analysis and deeper understanding of the
image data. We sampled 10% of the hard-to-classify images
from the SEM dataset to create a fixed test dataset, and used
the remaining images as the training dataset. We then eval-
uated our proposed framework and the baseline algorithms
on these datasets. Incorporating hard-to-classify images into
the test set is essential for a thorough evaluation of classifi-
cation algorithms. This approach challenges the algorithms,
providing a rigorous assessment that prevents overestimation
of performance based on simpler examples. Moreover,



Table 3: The table compares our method to baseline algorithms, such as vision-based supervised convolutional neural networks
(ConvNets), vision transformers (ViTs), and self-supervised learning (VSL) algorithms.

Algorithms Top-1 Top-2 Top-3 Top-5

C
o

n
v

N
et

s

AlexNet((Krizhevsky, Sutskever, and Hinton 2017)) 0.528 0.551 0.700 0.827
DenseNet((Huang et al. 2017)) 0.569 0.799 0.876 0.929

ResNet((He et al. 2016)) 0.485 0.729 0.847 0.897
VGG((Simonyan and Zisserman 2014)) 0.538 0.669 0.756 0.808

GoogleNet((Szegedy et al. 2015)) 0.609 0.883 0.922 0.969
SqueezeNet((Iandola et al. 2016)) 0.404 0.496 0.646 0.698

V
S

L

Barlowtwins(Zbontar et al. 2021) 0.148 0.218 0.305 0.410
SimCLR(Chen et al. 2020b) 0.130 0.218 0.266 0.379

byol(Grill et al. 2020) 0.143 0.248 0.318 0.453
moco(He et al. 2020) 0.169 0.201 0.280 0.472

nnclr(Dwibedi et al. 2021) 0.158 0.278 0.331 0.563
simsiam(Chen and He 2021) 0.188 0.283 0.419 0.535

V
is

io
n

T
ra

n
sf

o
rm

er
s(

V
iT

s)

CCT(Hassani et al. 2021) 0.570 0.802 0.906 0.981
CVT(Wu et al. 2021) 0.577 0.802 0.867 0.930

ConViT(d’Ascoli et al. 2021) 0.609 0.764 0.863 0.957
ConvVT(Wu et al. 2021) 0.319 0.598 0.781 0.921

CrossViT(Chen, Fan, and Panda 2021) 0.442 0.692 0.805 0.915
PVTC(Wang et al. 2022) 0.596 0.812 0.856 0.964
SwinT(Liu et al. 2021) 0.707 0.804 0.940 0.993

VanillaViT(Dosovitskiy et al. 2020) 0.655 0.870 0.891 0.970
Visformer(Chen et al. 2021) 0.398 0.609 0.679 0.856

ATS(Fayyaz et al. 2021) 0.540 0.744 0.861 0.973
CaiT(Touvron et al. 2021b) 0.657 0.799 0.974 0.989
DeepViT(Zhou et al. 2021) 0.546 0.746 0.919 0.988

Dino(Caron et al. 2021) 0.049 0.230 0.396 0.437
Distillation(Touvron et al. 2021a) 0.533 0.751 0.885 0.955

LeViT(Graham et al. 2021) 0.624 0.841 0.903 0.970
MA(He et al. 2021) 0.202 0.311 0.362 0.491

NesT(Zhang et al. 2022) 0.660 0.863 0.922 0.985
PatchMerger(Renggli et al. 2022) 0.578 0.756 0.913 0.975

PiT(Heo et al. 2021) 0.555 0.742 0.863 0.979
RegionViT(Chen, Panda, and Fan 2021) 0.606 0.827 0.883 0.948

SMIM(Xie et al. 2021) 0.171 0.319 0.478 0.646
T2TViT(Yuan et al. 2021) 0.749 0.918 0.978 0.992

ViT-SD(Lee, Lee, and Song 2021) 0.597 0.802 0.940 0.973

GDL-NMID 0.962 0.973 0.989 0.999

it gauges the algorithm’s ability to generalize to complex,
ambiguous data and helps prevent the model from developing
a bias towards easier, more common cases during training.
Results: We conducted a comprehensive evaluation of the
efficacy of our proposed framework, comparing it with well-
established computer vision standard baseline models. Our
method was juxtaposed with both supervised learning ap-
proaches, such as Convolutional Neural Networks (Con-
vNets) and Vision Transformers (ViTs, (al. 2022b,a)), and
self-supervised techniques like Vision Contrastive Learning
(VCL, (et al. 2020)). The results of this evaluation are summa-
rized in Table 3. To maintain an unbiased and thorough eval-
uation, we ensured uniform experimental settings across all
baseline algorithms, utilizing the Top-N accuracy as the eval-
uation metric and focusing on values of N within {1, 2, 3, 5}.
Our proposed framework demonstrates superior performance,
with a marginal rise of 28.43% in the Top-1 accuracy and
a slight increment of 0.70% in the Top-5 accuracy when
compared with the second-best baseline algorithm, T2TViT

((Yuan et al. 2021)). Table 4 shows the experimental find-
ings contrasting our framework’s performance with multiple
supervised learning-centric standard models, encompassing
different Graph Neural Networks (GNNs) variants ((Rozem-
berczki et al. 2021; Fey and Lenssen 2019)). For further
comparison, we incorporated Graph Contrastive Learning
(GCL, (Zhu et al. 2021)) methods. Our proposed framework
achieves state-of-the-art results on the benchmark dataset
(Aversa et al. 2018) when contrasted with the baselines.

Conclusion
In this work, we introduce an autonomous framework that
innovatively applies advanced generative AI for identifying
nanomaterials in electron micrographs. Our framework syner-
gizes the sophisticated capabilities of large multimodal mod-
els like GPT-4V with the generative prowess of text-to-image
models such as DALL·E 3 to substantially enhance nanoma-
terial classification accuracy. It employs GPT-4V’s Visual
Question Answering (VQA) for in-depth analysis of nanoma-
terial images, utilizes DALL·E 3 for creating synthetic images



from question-and-answer pairs generated by GPT-4V, and
leverages few-shot prompting of GPT-4V’s for in-context
learning, enabling more efficient classification. The method
marks a significant advance over conventional techniques,
offering a streamlined process for high-throughput screening
within the semiconductor industry.
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Technical Appendix

Experimental Setup

In our experiments, we specifically designed an electron mi-
crograph encoder to process electron micrographs and gener-
ate a comprehensive image representation. The ultimate goal
is to leverage this encoder for few-shot prompting of Large
Multimodal Models (LMMs), such as GPT-4V, to identify
the nanomaterial category for a given query image. In this
few-shot prompting approach, the encoder computes image
embeddings and then identifies a select number of analo-
gous or identical images from the training set, relevant to the
query image, through a similarity learning technique. By pre-
senting these selected demonstrations (sampled image-label
pairs) to the LMMs, they can effectively predict the nano-
material category of the query image, even with minimal
demonstrations. Unsupervised image representation learning
is essential in this context for several reasons. First, it pro-
vides the foundation for few-shot prompting with LMMs like
GPT-4V, enabling the electron micrograph encoder to cap-
ture comprehensive image representations that are critical for
effectively identifying relevant demonstrations (input-output
pairs). Unsupervised learning may lead to more generalized
image representations since the encoder, not limited by prede-
fined labels, can capture a wider range of features potentially
relevant to the identification of nanomaterials—features that
supervised training sets might not include. Moreover, the
encoder’s ability to identify similar images affords a nuanced
understanding of the data, uncovering relationships and struc-
tures within the electron micrographs that could elude human
observers or be too complex for supervised models to discern
without extensive labeled data. In essence, this approach is
a calculated strategy that utilizes the abundance of data to
set the stage for proficient few-shot prompting with LMMs.
We describe the training of the electron micrograph encoder
in unsupervised learning settings as follows: We utilized the
SEM dataset(Aversa et al. 2018), which is a compilation of
electron micrographs of various nanomaterials with dimen-
sions of 1024× 768× 3 pixels. For our analysis, we resized
these images to 224× 224× 3 pixels and standardized them
to maintain a constant mean and covariance of 0.5 across
channels. This data preprocessing ensures that image values
span between -1 and 1. Subsequently, we split the downsized
images into distinct patches, representing the micrographs
as patch sequences. We obtained patch sequences with a res-
olution of 32 pixels each. The patch dimension (dpos) and
the position embedding dimension (d) were both set to 128.
The encoder was trained for 50 epochs with an initial learn-
ing rate of 1 × 10−3 and a batch size of 48. Additionally,
we configured a few hyperparameters for the attention layer:
the number of attention heads (H) was set to 4, and the di-
mensionality of Key/Query/Value (dh) was set to 32. To
enhance the performance of the electron micrograph encoder,
we employed two key strategies: (a) early stopping on the
validation set, which halts training when the encoder’s per-
formance on the validation data plateaus, thereby preventing
overfitting; and (b) a learning rate scheduler that systemati-
cally reduces the learning rate by half if the validation loss
does not improve for five consecutive epochs. This reduction

in the learning rate aids the encoder in converging to a better
solution and mitigates overfitting. Moreover, we utilized the
Adam optimization algorithm (Kingma and Ba 2014) to up-
date the encoder’s trainable parameters. Training the electron
micrograph encoder for unsupervised image representation
learning involves optimizing a similarity measure between
the representations of different views of the same image while
minimizing similarity between views of different images. The
Normalized Temperature-Scaled Cross Entropy Loss (NT-
Xent Loss(Sohn 2016; Chen et al. 2020b)) is a commonly
employed loss function for this task. Given a batch of images,
we first generate two augmented views of each image. The
micrograph encoder is then used to obtain representations

hk
cls and hk+

cls of the two views of each image. The NT-Xent
loss is defined as follows:
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where N is the number of images in the batch,

sim(zk, zl) =
z⊤

k
zl

∥zk∥∥zl∥
is the cosine similarity between rep-

resentations zk and zl, k
+ is the index of the positive pair

for zk, and τ is the temperature parameter. The objective is
to minimize LNT-Xent with respect to the parameters of the
micrograph encoder, typically using gradient-based optimiza-
tion algorithms to learn a representation space where similar
images are mapped close together and dissimilar images
are mapped far apart, thus maximizing similarity between
like images. Once the micrograph encoder has been trained
to represent images, it can be used to sample related im-
ages from the entire training dataset for few-shot prompting
of GPT-4V. This is achieved by using the unsupervised im-
age embeddings computed by the micrograph encoder to
determine the similarity between different images. The im-
ages most similar to a given query image are then selected.
The corresponding image-label pairs (demonstrations), along
with the task-specific instruction to predict the nanomate-
rial category of the query image, are provided to GPT-4V,
which then outputs the predicted nanomaterial category. The
experiments were carefully designed to demonstrate the ef-
fectiveness of the proposed fusion framework, Generative
Deep Learning for Nanomaterial Identification (GDL-NMID)
leveraging the strengths of both GPT-4V and DALL·E 3, in
comparison to the baselines. Note: API access for GPT-4V
and DALL·E 3 has been restricted from public use but may
become accessible starting in mid-November 2023. ChatGPT
Plus subscribers can access GPT-4V and DALL·E 3 through
the OpenAI ChatGPT web interface. To optimize compu-
tational resource usage, the system is trained on two V100
GPUs, each equipped with 8 GB of GPU memory, utilizing
the PyTorch framework. This configuration ensures that the
training process is completed within a reasonable timeframe.
We conducted two individual experiments and reported the
averaged results. Figure 6 illustrates the end-to-end pipeline
of the framework. In our work, we explore Large Multimodal
Models (LLMs) such as GPT-4V, which can process both
input text and images to generate text responses, and text-
to-image diffusion generative models like DALL·E 3. These



Figure 4: The figure shows the extended comparison of the proposed framework with vision-based supervised convolutional
neural networks (ConvNets), vision transformers (ViTs), and self-supervised learning (VSL) algorithms on the SEM dataset
(Aversa et al. 2018).

Table 4: The table compares our proposed method to supervised-learning based GNNs and self-supervised graph contrastive
learning (GCL) algorithms on the SEM dataset (Aversa et al. 2018).

Algorithms Top-1 Top-2 Top-3 Top-5
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GBT(Bielak, Kajdanowicz, and Chawla 2021) 0.547 0.577 0.646 0.706
GRACE(Zhu et al. 2020) 0.598 0.617 0.680 0.750

BGRL(Thakoor et al. 2021) 0.556 0.605 0.649 0.696
InfoGraph(Sun et al. 2019) 0.526 0.601 0.651 0.702
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APPNP(Klicpera, Bojchevski, and Günnemann 2018) 0.632 0.699 0.742 0.786
AGNN(Thekumparampil et al. 2018) 0.538 0.760 0.819 0.894

ARMA(Bianchi et al. 2021) 0.582 0.800 0.907 0.987
DNA(Fey 2019) 0.622 0.634 0.853 0.916

GAT(Veličković et al. 2017) 0.491 0.761 0.849 0.985
GGConv(Li et al. 2015) 0.563 0.834 0.907 0.992

GraphConv(Morris et al. 2019) 0.658 0.822 0.924 0.996
GCN2Conv(Chen et al. 2020a) 0.732 0.869 0.929 0.998

ChebConv(Defferrard, Bresson, and Vandergheynst 2016) 0.504 0.805 0.875 0.951
GraphConv(Morris et al. 2019) 0.509 0.694 0.895 0.993
GraphUNet(Gao and Ji 2019) 0.657 0.680 0.930 0.978

MPNN(Gilmer et al. 2017) 0.603 0.822 0.939 0.999
RGGConv(Bresson and Laurent 2017) 0.618 0.692 0.951 0.961

SuperGAT(Kim and Oh 2022) 0.598 0.627 0.920 0.985
TAGConv(Du et al. 2017) 0.598 0.718 0.841 0.999

GDL-NMID 0.962 0.973 0.989 0.999

large-scale general-purpose models build upon the capabil-
ities of Large Language Models (LLMs) like GPT-4 (text
only), integrating language understanding with visual data
interpretation. While GPT-4V exhibits impressive skills, such
as describing image contents in detail, and DALL·E 3 gener-
ates high-quality synthetic images from textual descriptions,
they sometimes misinterpret images or textual descriptions.

This challenge is known as ‘hallucination’, and it is a rec-
ognized issue in the current development of multi-purpose
large-scale models. In our work, we manually discard both
the textual descriptions generated by GPT-4V and the cor-
responding synthetic images generated by DALL·E 3 from
these textual descriptions if they are misaligned with the
ground-truth image.



Figure 5: The figure shows the extended comparison of the proposed framework with supervised-learning based GNNs and
self-supervised graph contrastive learning (GCL) algorithms on the SEM dataset (Aversa et al. 2018).

A Multi-Metric Evaluation of Framework
Performance in the Classification of Nanomaterials
Using Electron Micrographs

We conducted systematic experimentation to evaluate the
capabilities of our proposed framework in classifying elec-
tron micrographs of diverse nanomaterials, spanning from
elementary to sophisticated patterns. Nanomaterials exhibit a
wide spectrum of patterns due to variations in attributes such
as composition, morphology, and crystalline nature. Conse-
quently, electron micrographs offer invaluable insights into
the inherent characteristics of these nanomaterials, making
their precise classification essential for applications in ma-
terials science. In the classification of nanomaterials using
electron micrographs, several critical metrics gauge the accu-
racy and precision of the framework. We employ a detailed
multi-metric evaluation to compare the performance of our
framework with baseline models, with a primary focus on
classifying electron micrographs across various nanomate-
rial categories. The evaluation focuses on a confusion matrix
that captures key metrics: True Positives (TP) represent cor-
rectly classified micrographs for a specific category; False
Negatives (FN) are cases where micrographs belonging to
a specific category were incorrectly overlooked or misclas-
sified. True Negatives (TN) indicate accurate identifications
of micrographs that do not belong to a particular category,
whereas False Positives (FP) represent micrographs that have
been incorrectly assigned to a category. Precision (TP/(TP
+ FP)) evaluates the proportion of correctly classified mi-
crographs among all those classified for a category, with an
emphasis on minimizing false positives. Recall (TP/(TP +

FN)) measures how effectively the framework identifies ac-
tual micrographs of a category, prioritizing the reduction of
false negatives. The F1-score seamlessly combines precision
and recall into a unified metric, offering a comprehensive
assessment of the framework’s performance in classifying
electron micrographs across nanomaterial categories. In the
intricate domain of nanomaterial identification via electron
micrographs, these metrics are indispensable tools, enabling
a comprehensive and nuanced evaluation of the effectiveness
and reliability of the classification framework. Our results,
highlighted in Figure 7, show the bar chart overview of the
metrics for different nanomaterial categories and validate
the framework’s robustness using multiple metrics on the
SEM dataset(Aversa et al. 2018). Incorporating these metrics
into our analysis provides deeper insight into our model’s
effectiveness in categorizing electron micrographs across di-
verse nanomaterial categories. It’s important to note that the
SEM dataset exhibits significant class imbalance. Notably,
our framework demonstrates higher classification scores for
nanomaterial categories with a substantial number of labeled
instances, outperforming those with fewer instances. This
remarkable success in classifying categories with fewer la-
beled instances can be attributed to our proposed framework’s
reduced reliance on nanomaterial-specific relational induc-
tive biases, setting it apart from conventional methods. In
summary, our extended experiments have significantly bol-
stered our confidence in the framework’s ability to generalize
and accurately categorize various nanomaterials using elec-
tron micrographs. We anticipate that these advancements will
have a substantial impact on the broader scientific commu-



nity, facilitating the acceleration of materials characterization
and related research.

Figure 6: A visual representation of the training pipeline
details the step-by-step process, which begins by sampling
hard-to-classify images from the SEM dataset and ends with
employing few-shot prompting to instruct GPT-4V for nano-
material identification. The pipeline illustrates the integration
of a self-supervised learning micrograph encoder, the zero-
shot prompting of GPT-4V, and the utilization of DALL·E
3 to generate synthetic images from textual descriptions.
Note: The micrograph encoder model parameters are up-
dated through unsupervised learning on the training dataset.

Baseline Algorithms

Our baseline methods are categorized into four primary
groups. First, we leverage Graph Neural Networks (GNNs)
for supervised multi-class classification of vision graphs
(Rozemberczki et al. 2021; Fey and Lenssen 2019). In this
approach, we construct vision graphs from electron micro-
graphs by employing the Top-K nearest neighbor search
method. Here, patches are used as nodes, and edges connect
semantically similar neighboring nodes. We opt for a 32-pixel
patch size and set K to 5 for simplicity, thus avoiding the
complexity of multi-scale vision graphs with varying patch
resolutions. Second, we employ Graph Contrastive Learning
(GCL) techniques (Zhu et al. 2021), designed to generate
multiple correlated graph views for graph data augmentation
and then learn representations consistent across these views.
These methods using diverse contrastive loss functions, aim
to maximize the similarity between positive pairs and mini-
mize it between negative pairs from different graphs. Typi-
cally, the Graph Attention Network (GAT) (Veličković et al.
2017) serves as a node-level graph encoder to compute unsu-
pervised node embeddings. Graph-level embeddings are then

obtained by sum-pooling of node-level embeddings. During
inference, Random Forest (RF) algorithms use these unsuper-
vised graph-level embeddings to predict nanomaterial cate-
gories. We evaluate the effectiveness of these unsupervised
embeddings based on the RF model’s accuracy with holdout
data. Third, for the for supervised classification of electron
micrographs, we use Convolutional Neural Networks (Con-
vNets) (al. 2022b,a) to operate on electron micrographs grids
and also utilize Vision Transformers (ViTs) (al. 2022b,a) by
evaluating patch sequences within electron micrographs for
nanomaterial identification. In addition, Vision Contrastive
Learning (VCL) techniques (et al. 2020) are applied for self-
supervised learning in computer vision, utilizing the ResNet
architecture for feature extraction.

Background

Text-to-image generation models are technologies that cre-
ate visual representations from textual descriptions. In the
field of artificial intelligence and deep learning, numerous
open-source models have emerged, translating text into im-
ages. The evolution of text-to-image models has been rapid.
Early models like the Generative Adversarial Network (GAN)
(Goodfellow et al. 2020) laid the foundation. Subsequent
models such as BigGAN (Brock, Donahue, and Simonyan
2018) improved resolution and fidelity. DALL-E (Ramesh
et al. 2021), introduced by OpenAI, showcased remarkable
capability in generating complex images from simple tex-
tual prompts. Its successor, DALL-E 2 (Ramesh et al. 2022),
highlights the ongoing developments in this field. More re-
cently, DALL-E 3, unveiled by OpenAI (OpenAI 2023a), is
an advanced text-to-image generation model that translates
nuanced requests into highly detailed and accurate images.
Integrated with the AI chatbot ChatGPT, it allows users to
refine image prompts interactively. Another significant model
is Stable Diffusion (Rombach et al. 2022; Podell et al. 2023),
an open-source AI-based image generation model that can
generate detailed and coherent images from textual descrip-
tions. It is utilized in popular applications such as Wombo1

and Lensa2. The model operates by gradually transforming a
pattern of random noise into an image that aligns with the pro-
vided text prompt. Furthermore, the Grounded-Language-to-
Image Generation (GLIGEN) (Li et al. 2023) model proposes
an extended approach to traditional text-to-image diffusion
models by allowing them to use additional grounding inputs
such as bounding boxes and reference images. This approach
improves image realism and controllability by combining
these inputs with pre-trained model knowledge to generate
more accurate and contextually appropriate images. Google’s
text-to-image neural network, Imagen (Saharia et al. 2022),
generates high-quality images by understanding and inter-
preting text inputs with a high degree of fidelity. Additionally,
the integration of Dreambooth with Stable Diffusion (Ruiz
et al. 2023) brings Dreambooth’s personalization capabilities
into the Stable Diffusion text-to-image model, enabling the
creation of custom images that reflect specific subjects or
styles from a user’s text descriptions. These developments

1For more information, refer to https://www.wombo.ai/.
2For more information, refer to https://prisma-ai.com/lensa.



collectively demonstrate collaborative advancements in text-
to-image and text-to-video generation, respectively. On the
other hand, SDXL3 from Stability AI is touted for its sig-
nificant improvements over previous diffusion models, such
as DALL-E 2 and Imagen, in terms of image quality, di-
versity, and efficiency, delivering more realistic image gen-
eration with improved composition and text interpretation.
OpenJourney4, a fine-tuned version of the Stable Diffusion
XL (SDXL) text-to-image diffusion model, creates AI art in
the style known as ‘Midjourney’, crafting images that are
reminiscent of the aesthetic associated with Midjourney5.
Furthermore, Deep Daze, a simple command-line tool for
text-to-image generation using OpenAI’s CLIP and Siren, en-
riches the ecosystem of open-source tools for text-to-image
synthesis (Radford et al. 2021; Sitzmann et al. 2020). Deep-
Floyd IF(deep floyd 2021), also from Stability AI, is a mod-
ular, cascaded pixel diffusion model capable of generating
high-resolution images, its design adeptly intertwining re-
alistic visuals with language comprehension. Meanwhile,
DreamShaper, another model in this field, elevates photore-
alism and anime-style generation with its diffusion model
architecture, seamlessly aligning images with input text. Ad-
ditionally, Waifu Diffusion(hakurei 2022), a descendant of
Stable Diffusion, garners acclaim for its ability to generate
high-quality anime images from text prompts, even those
that are complex or abstract. These open-source models, each
boasting distinctive flair and technological underpinnings, are
propelling the text-to-image generation domain toward new
horizons with applications that sprawl across content creation,
data visualization, and beyond. The convergence of language
and vision has ushered in a transformative paradigm in arti-
ficial intelligence, culminating in the development of Large
Multimodal Models (LMMs). State-of-the-art multi-modal
language models such as GPT-4(V)ision and LLaVA-1.5 ex-
emplify this advancement, showcasing unprecedented levels
of image understanding and reasoning. OpenAI’s GPT-4V is
a groundbreaking general-purpose LMM capable of process-
ing and interrelating text and image data. It is designed to
understand and generate language based on textual and visual
contexts. Built on a transformer-based design and fine-tuned
with reinforcement learning from human feedback, GPT-4V
can handle both text and image inputs. This breakthrough in
multimodal learning unlocks a myriad of new possibilities,
including generating text descriptions from images, trans-
lating images into different languages, or crafting creative
content based on visual prompts. Additionally, GPT-4V has
been conscientiously developed to be safe and ethical, with
significant efforts to mitigate potential misuse or harm. Over-
all, GPT-4V represents a major milestone at the forefront
of multimodal AI chatbots, integrating language and vision
capabilities and signifying a major milestone in multimodal
learning. In the evolving domain of multimodal learning,
several models have emerged as noteworthy counterparts to
OpenAI’s GPT-4V, fostering the fusion of visual and tex-
tual data processing to generate descriptive textual output

3For more information, refer to https://docs.sdxl.ai/.
4For more information, refer to https://openjourney.art/.
5For more information, refer to https://docs.midjourney.com/.

from image inputs. LLaVA-1.5(Liu et al. 2023a,b), which
embodies an end-to-end trained large multimodal model, is
an auto-regressive language model built on the transformer
architecture and was fine-tuned using LLaMA/Vicuna based
on GPT-generated multimodal instruction-following data. For
its visual understanding capabilities, LLaVA-1.5 uses a CLIP
(Contrastive Language–Image Pre-training) model as its vi-
sual encoder. LLaVA, although not compared on the same
benchmarks as GPT-4, shows promising results in understand-
ing visual content and responding to queries, performing well
even on out-of-domain images. However, in certain aspects of
detailed analysis, GPT-4V may demonstrate superior perfor-
mance compared to LLaVA. On a similar trajectory, Alibaba
Cloud’s Qwen-VL(Bai et al. 2023) aims to harmonize vi-
sion and language processing, albeit with fewer documented
specifics regarding its capabilities. Lastly, the Google PaLI-X
model(Chen et al. 2023) enhances the synergy between vision
and language processing by scaling up both the component
size and the training task mixture, achieving improved perfor-
mance across a broad spectrum of tasks such as image-based
captioning, question answering, and object detection. The
advent of these models underscores the burgeoning explo-
ration and achievements in multimodal learning, delineating
a promising trajectory for more intuitive and capable AI ap-
plications. However, LMMs are susceptible to vulnerabilities
such as language hallucination and visual illusion, caused
by the imbalance between their language and vision mod-
ules. Language hallucination leads LMMs to generate text
descriptions for images that do not exist, while visual illusion
results in erroneous visual interpretations. There is a need for
new methods to address these challenges, such as developing
more robust vision modules and new training methods that
explicitly teach LMMs to avoid these pitfalls. Overall, the
convergence of language and vision is a promising new direc-
tion in artificial intelligence, with LMMs having the potential
to revolutionize our interactions with intelligent machines
and the world around us.



Figure 7: The figure shows the bar charts displaying the evaluation metrics for nanomaterial categorization through electron
micrographs within the SEM dataset. The top chart represents Precision values across categories, the middle chart displays Recall
values, and the bottom chart showcases the F1 score values. Each category is represented by distinct bars, and their respective
values are labeled on top of each bar.



Table 5: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the biological nanomaterial category. In summary, the question-answer pairs (generated
text) provide in-depth information about an image related to biological nanomaterials.

Please answer the following questions based
on the provided input image belonging to the

biological nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image depicts a biological nanomaterial, possibly a cellular structure or
related biological entities. The scale of the image is 2 micrometers (µm) as
indicated by the scale bar.

**Morphology and Structure** The nanomaterials in the image display a dendritic or branched morphology.
There are no distinct layers or phases, but there are branching structures and
interconnected networks. The nanomaterials appear varied in size, with some
structures appearing larger and more prominent than others.

**Size and Distribution** The size of individual nanostructures varies, but most structures seem to be
within the sub-micrometer range, given the 2 µm scale bar. The nanomaterials
are distributed in a web-like or interconnected manner throughout the image.
There’s evidence of branching or interconnection, but not necessarily aggregation
or bundling.

**Surface Characteristics** The surface of the nanomaterial appears rough and textured. There are no clear
visible defects, but there are intricate details suggesting complex surface features.

**Composition and Elements** The grayscale image doesn’t indicate compositional variations based on color,
but brightness contrasts suggest variations in material density or composition.
No specific labels or markers indicating elements or compounds are visible.

**Interactions and Boundaries** The individual nanostructures appear interconnected, forming a network. There
are clear boundaries between the larger structures, but the smaller branching
structures are closely intertwined.

**External Environment** There doesn’t appear to be an interaction between the nanomaterial and a sur-
rounding matrix or solvent in the image. Most structures in the image seem to
be related to the biological nanomaterial. The background texture might be a
substrate or another type of material on which these structures are grown or
attached.

**Image Technique and Modifica-
tions**

The imaging technique used is Scanning Electron Microscopy (SEM) as indicated
by the parameters given (like EHT, Signal A, and WD). There is no clear evidence
of post-processing or modifications from the provided image.

**Functional Features** It’s challenging to identify specific functional features from this image without
additional context. However, the branched structures might have distinct proper-
ties related to their morphology. The image appears to be a static representation.

**Context and Application** The intended application or use of the depicted nanomaterial isn’t provided in
the image or accompanying information. This appears to be a real, experimental
sample given the details and the parameters provided in the SEM image.

Table 6: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 5.



Table 7: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the fibres nanomaterial category. In summary, the question-answer pairs (generated
text) provide in-depth information about an image related to fibre nanomaterials.

Please answer the following questions based
on the provided input image belonging to the

fibres nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image depicts fibrous nanomaterials. The scale of the image is 100µm,
meaning each unit of measurement in the scale bar represents 100 micrometers.

**Morphology and Structure** The nanomaterials in the image have a fibrous or filamentous morphology. There
do not appear to be distinct layers or phases, but the fibers are layered upon each
other. The fibers seem mostly uniform in terms of their width, but their lengths
and curvatures vary.

**Size and Distribution** The individual nanostructures, or fibers, appear to be a few micrometers in width,
but their lengths are much longer and harder to determine from the image. The
nanomaterials are densely packed and intertwined. There is evident bundling of
the fibers.

**Surface Characteristics** The surface of the nanomaterial appears somewhat rough or textured, possibly
due to the magnification level and the inherent structure of the fibers. There are
visible inconsistencies or impurities on the surface of some fibers.

**Composition and Elements** There aren’t significant compositional variations visible in the grayscale image.
The image does not provide specific labels or markers indicating the presence of
specific elements or compounds.

**Interactions and Boundaries** The individual nanostructures are closely intertwined and touch each other in
many places. Boundaries between individual fibers are evident, but due to their
intertwined nature, defining clear separations can be challenging.

**External Environment** There is no evidence in the image of the nanomaterial interacting with an external
matrix. All visible structures appear to be fibers; no other objects or structures
are discernible.

**Image Technique and Modifica-
tions**

The imaging technique used is Scanning Electron Microscopy (SEM), as indi-
cated by the “SE2” signal. There’s no explicit indication of post-processing or
modifications, but this often isn’t mentioned directly in SEM images.

**Functional Features** No specific functional features, like active sites, are discernible from the image.
The image seems to be a static representation.

**Context and Application** The intended application or use of the depicted nanomaterial isn’t provided
directly in the image, but fibrous nanomaterials can have applications ranging
from reinforcement in composite materials to filtration and sensing applications.
The image appears to be of a real, experimental sample given the details and
characteristics shown.

Table 8: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 7.



Table 9: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the films and coated surface nanomaterial category. In summary, the question-answer
pairs (generated text) provide in-depth information about an image related to films and coated surface nanomaterials.

Please answer the following questions based
on the provided input image belonging to the

Films and Coated Surface nanomaterial
category.

Query prompt GPT-4 Vision output

**Basics** The image depicts a nanomaterial surface, possibly a thin film or coated surface.
The scale bar represents 1 micrometer (µm).

**Morphology and Structure** The nanomaterials in the image have a flake or shard-like morphology. There are
no distinct layers, phases, or domains visible in the image. The nanomaterials
appear somewhat varied in size and shape but have a general uniformity in their
shard-like appearance.

**Size and Distribution** The approximate size of the individual nanostructures ranges from a few nanome-
ters to several hundred nanometers. The nanomaterials are densely packed and
distributed uniformly across the image. There is no apparent evidence of aggre-
gation or bundling.

**Surface Characteristics** The nanomaterial surface appears rough with distinct shard-like structures. There
do not appear to be any significant defects, pores, or impurities on the surface.

**Composition and Elements** There’s no evidence of compositional variations based on color, brightness, or
contrast in this grayscale image. There are no labels or markers indicating specific
elements or compounds present in the image.

**Interactions and Boundaries** The individual nanostructures seem to be touching and closely packed, with
some overlapping visible. The boundaries between different structures are clear
due to the distinct shapes of the nanostructures.

**External Environment** There’s no evident interaction of the nanomaterial with a surrounding matrix,
solvent, or polymer. The entire image seems to consist of the nanomaterial; no
other distinct structures or objects are observed.

**Image Technique and Modifica-
tions**

The image appears to be captured using Scanning Electron Microscopy (SEM)
based on the information provided and the visual characteristics. There is no
clear indication in the image about post-processing or modifications.

**Functional Features** From the image, no specific functional features such as active sites or regions
with distinct properties are visible. The image seems to be a static representation,
with no dynamic processes evident.

**Context and Application** The intended application or use of the nanomaterial is not provided in the image.
Based on the information and the appearance, it seems like a real, experimental
sample rather than a theoretical or simulation-based representation.

Table 10: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 9.



Table 11: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the nanowires nanomaterial category. In summary, the question-answer pairs (generated
text) provide in-depth information about an image related to nanowire nanomaterials.

Please answer the following questions based on the
provided input image belonging to the nanowire

nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image depicts nanowires. The scale of the image is represented by the
bar labeled ”200 nm,” indicating that the length of the bar corresponds to 200
nanometers.

**Morphology and Structure** The nanomaterials in the image have a rod-like or wire-like morphology. There
are no distinct layers, phases, or domains visible in the image. The nanowires
appear relatively uniform in size and shape.

**Size and Distribution** The approximate size of the individual nanostructures can be deduced to be
several hundred nanometers in length and likely tens of nanometers in diameter
based on the scale bar. The nanowires are distributed evenly and vertically
throughout the image. There is no visible evidence of aggregation or bundling.

**Surface Characteristics** The nanowires appear smooth. No obvious defects, pores, or impurities are
visible on the nanowire surface.

**Composition and Elements** The image does not show evidence of compositional variations based on the
grayscale representation. There are no visible labels or markers indicating specific
elements or compounds present.

**Interactions and Boundaries** Individual nanostructures seem separate and do not appear to be touching or
fusing with one another. Clear boundaries exist between different nanowires.

**External Environment** There is no evidence of the nanowires interacting with their surrounding envi-
ronment or matrix in this image. The darker areas between the nanowires do
not appear to be nanomaterials, likely representing voids or spaces between the
nanowires.

**Image Technique and Modifica-
tions**

The imaging technique used appears to be Scanning Electron Microscopy (SEM)
based on the details provided in the image (e.g., EHT, Mag, Signal). There is no
evidence from the image to suggest post-processing or modifications like false
coloring or 3D rendering.

**Functional Features** The image does not provide specific information regarding functional features
or distinct properties. The image is a static representation and does not capture
dynamic processes.

**Context and Application** The intended application or use of the nanowires is not specified in the image.
Based on the details provided, it appears to be a real, experimental sample as
opposed to a theoretical or simulation-based representation.

Table 12: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 11.



Table 13: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the porous sponge nanomaterial category. In summary, the question-answer pairs
(generated text) provide in-depth information about an image related to porous sponge nanomaterials.

Please answer the following questions based on the
provided input image belonging to the Porous Sponge

nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image depicts a porous sponge nanomaterial. The scale of the image indicates
that one unit of measurement represents 1 µm (micrometer).

**Morphology and Structure** The nanomaterials in the image display a sponge-like morphology with inter-
connected pores. There don’t appear to be distinct layers, but the structure is
characterized by varied pore sizes and interconnecting channels. The nanomate-
rials pores do not appear uniform in size and shape.

**Size and Distribution** The approximate size of the individual pores varies, but many appear to be in
the range of several hundred nanometers to a few micrometers. The pores and
channels of the nanomaterial are distributed throughout the image in a somewhat
random manner. There isn’t evidence of aggregation or bundling, but rather of
an interconnected porous structure.

**Surface Characteristics** The surface of the nanomaterial appears rough and textured, consistent with a
sponge-like structure. There are visible pores of varying sizes throughout the
material, which are intrinsic to its sponge-like nature.

**Composition and Elements** The image is grayscale, so it’s hard to determine compositional variations based
on color. However, variations in brightness could suggest differences in material
thickness or density. The provided labels do not indicate specific elements.

**Interactions and Boundaries** The nanostructures, or pores, appear interconnected, and many of them are
touching or fused with adjacent structures. Boundaries between individual pores
are clear, but the interconnected nature makes it a continuous structure

**External Environment** There isn’t evidence in the image of the nanomaterial interacting with an external
environment or matrix. No other distinct structures or objects that aren’t part of
the nanomaterial are visible in the image.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM), as sug-
gested by the details in the image corner. There’s no indication in the provided
data about post-processing or modifications made to the image.

**Functional Features** The interconnected pores and channels can be considered functional features, as
they may play a role in substance transport, filtration, or other applications. The
image appears to be a static representation of the material.

**Context and Application** The intended application or use of the nanomaterial is not provided in the image
or its accompanying data. Based on the data provided and the appearance of
the image, it seems like a real, experimental sample rather than a theoretical or
simulation-based representation.

Table 14: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 13.



Table 15: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the tips nanomaterial category. In summary, the question-answer pairs (generated text)
provide in-depth information about an image related to tips nanomaterials.

Please answer the following questions based on the
provided input image belonging to the tips nanomaterial

category.

Query prompt GPT-4 Vision output

**Basics** The image appears to depict a sharp nanotip, possibly used in probe microscopy
or other related applications. The scale bar in the image is labeled “10 µm”,
indicating that one unit of measurement represents 10 micrometers.

**Morphology and Structure** The general shape or morphology of the nanomaterial is a sharp, elongated
tip. There do not appear to be distinct layers, phases, or domains visible. The
nanomaterial seems to be uniform in shape.

**Size and Distribution** The approximate size of the individual nanostructure can be gauged using the
scale bar. The tip appears to be several micrometers in length. The image focuses
on one nanomaterial, so there is no distribution to assess. There is no evidence
of aggregation or bundling.

**Surface Characteristics** The nanomaterial appears relatively smooth with minor roughness. There seem
to be some small dark spots which could be defects, pores, or impurities, but it’s
challenging to say for sure without more information.

**Composition and Elements** The image is in grayscale, so there are no evident compositional variations
based on color. However, the variations in brightness and contrast could suggest
differences in material composition or thickness. The image has no explicit labels
indicating specific elements or compounds.

**Interactions and Boundaries** Since the image primarily shows a single nanotip, there’s no interaction with
other nanostructures visible. The boundaries of the nanotip are clear and distinct
from the background.

**External Environment** There’s no evidence of interaction with surrounding materials or matrix. The
background appears uniform. Other than the nanotip, there are no other distinct
structures or objects evident.

**Image Technique and Modifica-
tions**

The image likely comes from a Scanning Electron Microscope (SEM) based on
the data present on the image, such as “EHT”, “Mag,” and “Signal A”, There’s
no evidence in the image to suggest post-processing or modifications, but the
grayscale nature of SEM images is typical, and there’s no indication of false
coloring.

**Functional Features** There aren’t any distinct functional features visible. The sharpness of the tip
suggests it might be used for precise interactions at the nanoscale. The image
seems to be a static representation.

**Context and Application** The nanotip could be intended for applications like scanning probe microscopy,
electron field emission, or other nanoscale interactions. The image appears to be
of a real, experimental sample given the details and imperfections visible.

Table 16: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 15.



Table 17: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the particles nanomaterial category. In summary, the question-answer pairs (generated
text) provide in-depth information about an image related to particles nanomaterials.

Please answer the following questions based on the
provided input image belonging to the particles

nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image appears to depict spherical nanoparticles. - The scale of the image is
indicated by the ”100 nm” scale bar, meaning one unit of measurement represents
100 nanometers.

**Morphology and Structure** The nanoparticles have a spherical or nearly spherical shape. There are no distinct
layers, phases, or domains visible in the image. The nanoparticles appear to be
quite uniform in size and shape.

**Size and Distribution** The approximate size of the individual nanostructures can be gauged from the
100 nm scale bar, suggesting they are likely slightly below 100 nm in diameter.
The nanoparticles are distributed in a closely packed arrangement, resembling
an organized pattern. There doesn’t appear to be evidence of aggregation or
bundling.

**Surface Characteristics** The nanomaterial appears to have a smooth surface. No visible defects, pores, or
impurities on the surface are discernible from this image.

**Composition and Elements** There isn’t evidence of compositional variations in the image based on the
grayscale nature of the image. No labels or markers indicating specific elements
or compounds are present in the image.

**Interactions and Boundaries** The individual nanostructures appear to be in close proximity but not necessarily
fused. They are separate from one another. Clear boundaries between the different
nanoparticles are visible.

**External Environment** There is no evidence of the nanomaterial interacting with its surrounding envi-
ronment or matrix. The entire image appears to only showcase the nanoparticles.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM) as indicated
by the image details. There’s no evidence in the image to suggest post-processing
or modifications such as false coloring or 3D rendering.

**Functional Features** No specific functional features, such as active sites or regions with distinct prop-
erties, are visible in this image. The image appears to be a static representation.

**Context and Application** The intended application or use of the nanomaterial isn’t provided in the image
or context. It appears to be a real, experimental sample given the details and
nature of the image.

Table 18: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 17.



Table 19: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the powder nanomaterial category. In summary, the question-answer pairs (generated
text) provide in-depth information about an image related to powder nanomaterials.

Please answer the following questions based
on the provided input image belonging to the

powder nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image depicts a nanomaterial in the form of a powder. The scale of the image
is denoted by “2µm”, meaning one unit of the scale bar represents 2 micrometers.

**Morphology and Structure** The nanomaterials have a somewhat irregular, clumped morphology resembling
that of aggregated particles. There are no distinct layers, phases, or domains
visible. The nanomaterials do not appear uniform in size and shape; there are
varied sizes and shapes present.

**Size and Distribution** The size of the individual nanostructures varies, with some smaller granules
and some larger aggregates. It is hard to give an exact size without further
information, but they are definitely within the nanoscale to microscale range.
The nanomaterials are clustered together. There is evidence of aggregation as
many particles are clumped together.

**Surface Characteristics** The nanomaterial appears rough in texture. There are no visible defects, pores,
or impurities distinguishable at this resolution.

**Composition and Elements** The image is monochrome, so there is no direct evidence of compositional
variations based on color. The varied brightness might suggest different materials
or thicknesses, but it’s not definitive. There are no labels or markers indicating
specific elements or compounds.

**Interactions and Boundaries** Many of the individual nanostructures are touching or fused together. There are
clear boundaries between some structures, but many are aggregated together.

**External Environment** There’s no evidence of the nanomaterial interacting with any surrounding envi-
ronment or matrix in this image. All structures in the image appear to be part of
the nanomaterial powder.

**Image Technique and Modifica-
tions**

The image was captured using Scanning Electron Microscopy (SEM), as sug-
gested by the information provided at the bottom of the image. There’s no
evidence in the image itself of post-processing or modifications such as false
coloring or 3D rendering.

**Functional Features** No specific functional features are visible in the image. The image appears to be
a static representation.

**Context and Application** The intended application or use of the nanomaterial is not provided in the
image. Given the detailed nature and the labels present, this appears to be a real,
experimental sample rather than a theoretical or simulation-based representation.

Table 20: The table shows sample synthetic images generated by DALLE-3 from textual descriptions provided in a series
of question-answer pairs, as shown in Table 19.



Table 21: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the MEMS devices and electrodes nanomaterial category. In summary, the question-
answer pairs (generated text) provide in-depth information about an image related to MEMS devices nanomaterial
category.

Please answer the following questions based on the
provided input image belonging to the MEMS devices

and electrodes nanomaterial category.

Query prompt GPT-4 Vision output

**Basics** The image appears to depict nanoscale lines or strips which could be electrodes
or other conductive paths. The scale at the bottom left indicates 2µm, so one unit
of measurement represents 2 micrometers.

**Morphology and Structure** The nanomaterials in the image are linear and strip-like in shape. There seem to
be two distinct phases: the darker lines or strips and the lighter background. The
nanomaterial lines appear uniform in width, but there is variability in the length
and positioning of some lines.

**Size and Distribution** The width of the individual nanostructures (lines or strips) is smaller than the
provided scale, so they are less than 2µm in width. The nanomaterial lines are
parallel to one another and appear evenly spaced. No evident aggregation.

**Surface Characteristics** The nanomaterial lines appear smooth, while the background has a textured
appearance. There are a few visible defects or imperfections, particularly breaks
in some of the lines.

**Composition and Elements** The image is in grayscale, so it’s challenging to identify compositional variations
solely based on color. However, the differences in brightness might indicate
different compositions. No explicit labels or markers are indicating specific
elements or compounds.

**Interactions and Boundaries** Individual nanostructures (lines) are separate from each other with clear spaces
in between. There are clear boundaries between the lines and the surrounding
matrix.

**External Environment** The background or matrix in which these nanostructures are embedded appears
to be a different material, possibly an insulating layer. There are other structures
like breaks and dots, which might not be nanomaterials. Their nature is not clear
from the image.

**Image Technique and Modifica-
tions**

The imaging technique used is Scanning Electron Microscopy (SEM) as indicated
by the “Signal A = SE2” in the bottom right corner. There is no clear indication
of any post-processing or modifications made to the image in the provided
information.

**Functional Features** There aren’t any explicitly visible functional features like active sites. The linear
nature suggests they could serve as conductive paths or channels. The image
appears to be a static representation.

Table 22: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided MEMS devices and electrodes nano image as shown in the above Table 21.



Additional datasets and Experimental results

To enhance the robustness and validity of our framework, we
conducted evaluations using multiple open-source benchmark
datasets that are pertinent to our research area and cover a
variety of applications. This approach enabled us to confirm
the effectiveness of our framework and establish its suitability
for a wider array of datasets beyond merely the SEM dataset.

NEU-SDD((Deshpande, Minai, and Kumar 2020)): The
NEU-SDD dataset6 comprises 1800 electron microscopy im-
ages of surface irregularities on hot-rolled steel strips. These
grayscale images are 200×200 pixels each and are catego-
rized into six distinct types of defects, with each category
containing 300 representative micrographs. The categories
include pitted surfaces, scratches, rolled-in scale, crazing,
patches, and inclusion defects. Figure 8 provides illustra-
tive images from each of these categories. To evaluate the
performance of our proposed methodology, particularly for
multi-category defect detection tasks, we conducted a com-
parative analysis using several benchmark algorithms.

Figure 8: Representative electron microscopy images from
the NEU-SDD dataset, showcasing six types of surface de-
fects on hot-rolled steel strips: pitted surfaces, scratches,
rolled-in scale, crazing, patches, and inclusions.

CMI: The CMI dataset7 consists of 600 detailed electron
micrographs that display corroded panels. These images have
been annotated by corrosion experts according to the ASTM-
D1654 standards, with individual scores ranging from 5 to 9.
Each score corresponds to a set of 120 unique micrographs,
each with a resolution of 512×512 pixels. Figure 9 presents
examples from each scoring category. We evaluated the effec-
tiveness of our proposed technique for multi-category classi-
fication by comparing it with various established algorithms.

Figure 9: Samples of electron micrographs from the CMI
dataset, categorized by corrosion severity scores ranging from
5 to 9 according to ASTM-D1654 standards.

KTH-Tips: KTH-TIPS8 is a comprehensive texture dataset
that contains 810 electron micrographs, each representing
one of ten specific material classes. Each image, with a reso-
lution of 200×200 pixels, captures a wide range of materials

6Datasource: http://faculty.neu.edu.cn/yunhyan/NEU surface
defect database.html

7https://arl.wpi.edu/corrosion dataset
8https://www.csc.kth.se/cvap/databases/kth-tips/index.html

under varying lighting conditions, orientations, and scales.
The diverse textures include sponge, orange peel, styrofoam,
cotton, cracker, linen, crust, sandpaper, aluminum foil, and
corduroy. Figure 10 showcases representative images from
each material class. We assessed the performance of our
proposed method by comparing it with results from several
benchmark algorithms, specifically for multi-category texture
recognition tasks.

Figure 10: Representative electron micrographs from the
KTH-TIPS texture dataset, depicting the ten material classes
including sponge, orange peel, styrofoam, cotton, cracker,
linen, crust, sandpaper, aluminum foil, and corduroy

Table 23 provides an extensive comparative analysis, de-
tailing the performance of our method in relation to a range of
established techniques, across various datasets. Our findings
indicate that our method not only performs with remarkable
consistency but also achieves superior results when com-
pared to the standard approaches, thereby underscoring its
high effectiveness and dependability in different experimental
scenarios.

Algorithms NEU-SDD CMI KTH-TIPS

B
a

se
li

n
es ResNet 0.906 0.928 0.941
GoogleNet 0.936 0.928 0.929
SqueezeNet 0.955 0.943 0.963
VanillaViT 0.962 0.968 0.972

MultiFusion-LLM 1.0 1.0 1.0

Table 23: The table presents an in-depth comparison of the
performance metrics of our proposed framework against a
selection of benchmark algorithms, showcasing the results
obtained from the evaluations conducted on a diverse collec-
tion of datasets.

However, when it comes to generating question-answer
pairs or providing in-depth technical descriptions for the
analysis of material images from different datasets using
GPT-4(V), the idea that a single, universal prompt can cater
to all these varied tasks is a misconception. There is no one-
size-fits-all solution; each task demands a uniquely crafted
prompt, created with intention and understanding. In the
AI landscape, a diversity of prompting strategies is not just
beneficial—it’s essential. By tailoring our prompts to our
specific needs, we unlock the full potential of these advanced
AI models, ensuring that they serve us in the most effective
way possible. In these additional experiments, we utilize GPT-
4V to generate question-and-answer pairs for the material
category based on the input microscopy image, rather than
custom prompts generated using GPT-4(language-only).



CMI

Table 24: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the corrosion 5 category from the CMI dataset. In summary, the question-answer pairs
(generated text) provide in-depth information about an image related to the corrosion 5 category.

Please answer the following questions based on the
provided input image belonging to the corrosion 5

category.

Query prompt GPT-4 Vision response

What is the primary purpose of the
image?

The image is a representation of a corroded panel from the Corrosion Image
Data Set for Automating Scientific Assessment of Materials, specifically with a
Corrosion Rating of 5.

How is the severity of corrosion vi-
sually represented in this rating?

In the context of a rating of 5, there are visible signs of corrosion, but they are
not overwhelmingly dominant. The corrosion is evident but still moderate.

What is the dominant feature in the
image?

The dominant feature is a large X-shape, which appears to be scribed onto the
panel, displaying signs of corrosion emanating from it.

Describe the color and texture of the
X-shape.

The X-shape is dark brown to black, with a rough and corroded texture. There
are patches of uneven coloration, with some areas appearing lighter, indicating
variations in the severity of corrosion.

What’s notable about the back-
ground surrounding the X-shape?

The background is a beige hue, with a gradient that transitions from a lighter
shade at the top to a slightly darker shade at the bottom. It shows signs of aging
and subtle, uneven streaks and patches, indicating initial stages of corrosion.

Are there visible boundaries or divi-
sions between the X-shape and the
background?

The X-shape and the background are distinct, but the boundaries between them
are not sharply defined. The edges of the X appear corroded, making them blend
unevenly with the background.

Is there a pattern to the corrosion em-
anating from the X-shape?

The corrosion seems to emanate outward from the scribed X-shape, spreading in
a manner that suggests it’s creeping away from the scribe lines.

How do the dark speckles on the
background contribute to the overall
appearance of corrosion?

The sporadic, small dark speckles scattered throughout the beige background add
to the visual cues of wear and corrosion, indicating that the panel is undergoing
a consistent, albeit moderate, corrosive process.

Given the context of corrosion rat-
ings, what does a rating of 5 signify
in terms of material integrity and
longevity?

A rating of 5 suggests that while there are evident signs of corrosion, the material
still retains a significant portion of its original integrity. It’s midway between
pristine condition (rating 10) and severe corrosion (rating 0), indicating that the
material has undergone wear but is not entirely compromised.

Table 25: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided corrosion 5 category image as shown in the above Table 24.



Table 26: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the corrosion 9 category from the CMI dataset. In summary, the question-answer pairs
(generated text) provide in-depth information about an image related to the corrosion 9 category.

Please answer the following questions based on the
provided input image belonging to the corrosion 9

category.

Query prompt GPT-4 Vision response

What is the primary intent of the im-
age?

The image is a representation of a corroded panel from the Corrosion Image
Data Set for Automating Scientific Assessment of Materials, specifically with a
Corrosion Rating of 9.

Can you describe the overall color
scheme of the image?

The image predominantly features a light beige background, with the corrosion
markings appearing in shades of brown, ranging from light to somewhat dark.

What is the main corroded feature
present in the image?

The principal corroded feature is a single, diagonal scribe or line that runs across
the panel, emanating signs of corrosion.

How does the corrosion manifest
around this scribed line?

The corrosion around the scribe appears as a gradient, with the most intense
corrosion closely hugging the scribe and gradually fading out as it spreads
outward. It has an uneven, feathery appearance, with some areas showing darker
brown patches.

Given the context of corrosion rat-
ings, how does a rating of 9 compare
to other ratings in terms of corrosion
severity?

A rating of 9 indicates very minimal corrosion. The material is close to its pristine
state, with only slight, localized signs of wear or corrosion. It’s significantly
better preserved than materials with lower ratings.

Is the corrosion consistent through-
out the scribed line?

No, the corrosion varies in intensity. Some parts of the scribe show denser, more
pronounced corrosion, while other parts are lighter and less distinct.

How does the background of the im-
age appear in comparison to the cor-
roded area?

The background is mostly uniform and retains its original beige color, with the
exception of the area immediately surrounding the scribed line. This contrast
emphasizes the localized nature of the corrosion in a rating 9 image.

If one were to run their fingers across
the image, what differences in tex-
ture might they expect between the
corroded scribe and the background?

While the background would feel smooth, the corroded scribe would offer a
rougher, uneven texture, reminiscent of early-stage rust or wear on a metal
surface.

Table 27: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided corrosion 9 category image as shown in the above Table 26.



KTH-TIPS

Table 28: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the aluminium foil category from the KTH-Tips dataset. In summary, the question-
answer pairs (retrieved text) provide in-depth information about an image related to aluminium foil category.

Please answer the following questions based on the
provided input image belonging to the aluminium foil

category.

Query prompt GPT-4 Vision response

What is the primary material de-
picted in the image?

The image primarily shows aluminium foil.

How is the surface texture of the ma-
terial?

The surface texture appears crumpled with multiple creases and folds.

What color predominates in the im-
age?

The predominant color is metallic silver.

Are there any reflections or shines
visible on the material?

Yes, there are several shiny reflections visible due to the metallic nature of the
foil.

How would you describe the overall
pattern on the foil?

The foil presents a chaotic pattern with random creases and crinkles throughout.

Is the foil flat or does it appear to
have depth and volume?

The foil appears to have depth and volume due to its crumpled nature.

Does the foil cover the entirety of
the image, or are there any other ele-
ments present?

The foil covers the entire image, with no other elements present.

How would you describe the lighting
on the foil?

The lighting appears to be coming from multiple directions, causing multiple
bright reflections on the foil’s surface.

Is there any uniformity in the crin-
kles and folds, or are they random?

The crinkles and folds seem to be random with no uniform pattern.

Is the background distinguishable, or
does the foil cover it completely?

The foil covers the entire image, making the background indistinguishable.

Table 29: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided aluminium foil image as shown in the above Table 28.



Table 30: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
queries about the input image of the corduroy category from the KTH-Tips dataset. In summary, the question-answer
pairs (generated text) provide in-depth information about an image related to corduroy category.

Please answer the following questions based on the
provided input image belonging to the corduroy category.

Query prompt GPT-4 Vision response

What type of material is depicted in
the image?

The image illustrates a segment of corduroy fabric.

What color does the corduroy fabric
primarily exhibit?

The corduroy fabric primarily presents a warm tan or light brown hue.

Describe the texture and pattern no-
ticeable on the corduroy.

The corduroy exhibits a distinct vertical ribbed texture, characterized by continu-
ous raised lines or wales.

Are these raised lines uniformly dis-
tributed throughout the fabric?

Yes, the raised lines appear evenly spaced and maintain a consistent width across
the fabric.

How does light interact with the fab-
ric’s texture?

The raised lines or wales reflect light more prominently than the recessed sections,
giving them a subtle sheen.

Describe the spacing between the
ribs.

The ribs are closely spaced, giving the fabric a densely ribbed appearance.

How does the fabric’s texture vary
between the raised lines and the gaps
in between?

The raised lines have a slightly rough and elevated texture, while the intervening
gaps are smoother and more recessed.

Are there any visible imperfections
or signs of wear on the corduroy?

The fabric appears to be in excellent condition with no apparent signs of wear or
imperfections.

From which angle or perspective is
the fabric being observed?

The fabric is viewed from a close-up perspective, highlighting its vertical ribbed
texture in detail.

Is the image a full representation of
the fabric or just a section?

The image showcases a section of the corduroy fabric, emphasizing its signature
texture and pattern.

Table 31: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided Corduroy image as shown in the above Table 30.



Table 32: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the linen category from the KTH-Tips dataset. In summary, the question-answer pairs
(generated text) provide in-depth information about an image related to linen category.

Please answer the following questions based on the
provided input image belonging to the linen category.

Query prompt GPT-4 Vision response

What is the primary material dis-
played in the image?

The image prominently features a section of linen fabric.

Can you identify the primary color
of the linen fabric in the image?

The linen fabric has a light beige or off-white color.

Describe the texture or pattern visi-
ble on the linen.

The linen showcases a distinct woven texture, characterized by closely interlaced
threads in a crisscross pattern.

How would you describe the spacing
between the woven threads?

The threads are finely woven with a relatively tight weave, but individual threads
can be distinctly seen due to the inherent coarse nature of linen.

Does the linen appear soft or rigid
based on the visible texture?

Based on the texture, the linen seems to have a crisp yet naturally soft appearance,
typical of the material.

Are there any observable sheen or
reflective properties on the linen?

The linen has a matte finish with no significant sheen, reflecting its natural and
breathable quality.

How consistent is the texture
throughout the displayed section?

The texture is relatively consistent, but there are subtle variations in the thread
thickness and weave, imparting a natural and organic feel to the linen.

Based on the visible attributes, how
would you describe the tactile sensa-
tion of the fabric?

Given its appearance, the fabric likely feels textured but soft to the touch, cool,
and breathable — typical qualities of linen.

Are there any discernible imperfec-
tions or unique characteristics in the
fabric?

The linen has an inherently uneven texture with some minor variations in the
weave, which is characteristic of natural linen and adds to its charm. There don’t
appear to be any significant imperfections or stains.

Table 33: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided linen image as shown in the above Table 32.
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Table 34: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the scratches category from the NEU-SDD dataset. In summary, the question-answer
pairs (generated text) provide in-depth information about an image related to the scratches category.

Please answer the following questions based on the
provided input image belonging to the scratches

category.

Query prompt GPT-4 Vision response

What category does this texture be-
long to?

The scratches category of the NEU-SDD dataset.

Describe the central feature in the
image.

A pronounced vertical scratch or line that is brighter than the surrounding area.

How would you describe the con-
trast between the scratch and the sur-
rounding texture?

The scratch is much brighter and distinct, contrasting strongly with the darker,
uniform background.

What color tones dominate the im-
age?

Shades of gray dominate the major parts of the image.

Can you define the orientation of the
scratch?

The scratch is vertical.

How would you describe the edges
of the scratch?

The edges of the scratch are somewhat jagged and irregular, with varying bright-
ness.

Is the scratch in the center or towards
the side of the image?

It’s centralized in the image.

Are there multiple scratches or just
a single prominent one?

There’s a single prominent scratch, but it appears to have multiple adjacent lines
or striations.

Is the rest of the image’s texture
smooth or grainy?

The surrounding texture is relatively smooth with a subtle graininess.

How does the brightness of the
scratch compare to the overall im-
age?

The scratch is notably brighter than the overall image.

If you were to touch the scratch,
would it feel raised or recessed?

It might feel recessed or indented compared to the surrounding surface.

Table 35: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided scratches category image as shown in the above Table 34.



Table 36: The table presents the question-answer pairs generated by the LMM(GPT-4V) in response to natural language
questions about the input image of the patches category from the NEU-SDD dataset. In summary, the question-answer
pairs (generated text) provide in-depth information about an image related to the patches category.

Please answer the following questions based on the
provided input image belonging to the patches category.

Query prompt GPT-4 Vision response

What category does this texture be-
long to?

The patches category of the NEU-SDD dataset.

Describe the dominant features in
the image.

There are darker patches that contrast with the grainy and lighter background.

How would you characterize the con-
trast between the patches and the sur-
rounding area?

The patches are noticeably darker and stand out against the grainy, lighter back-
ground.

What color tones are prevalent in the
image?

Various shades of gray.

Describe the shape and arrangement
of the patches.

The patches have irregular shapes and are spread out, with one large patch on
the left side of the image.

How does the texture within the
patches compare to the rest of the
image?

The patches have a smoother, more uniform texture, while the surrounding area
appears noisier and more grainy.

Would you say the patches are cen-
tralized or more dispersed?

One significant patch is more towards the left, but overall they are dispersed.

Do the patches have well-defined
boundaries?

The boundaries are somewhat blended and gradient, transitioning subtly into the
surrounding texture.

Describe the granularity of the back-
ground texture.

The background has a fine-grained, noisy appearance with a speckled pattern.

In a real-world scenario, how might
such patches form on materials?

These patches could result from discoloration, wear, stains, or certain manufac-
turing processes.

Does the image lean more towards
being bright, dark, or neutral overall?

It strikes a balance, with the patches being dark and the surrounding being
brighter and neutral.

Table 37: The table shows the sample images generated by DALLE-3 with hints provided from a series of question-answer
pairs based on the provided patches category image as shown in the above Table 36.


