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Abstract
Ordinary Differential Equations (ODEs) are widely used in
physics, chemistry, and biology to model dynamic systems,
including reaction kinetics, population dynamics, and biolog-
ical processes. In this work, we integrate GPU-accelerated
ODE solvers into the open-source DeepChem framework
(Ramsundar et al. 2019), making these tools easily accessi-
ble. These solvers support multiple numerical methods and
are fully differentiable, enabling easy integration into more
complex differentiable programs. We demonstrate the capa-
bilities of our implementation through experiments on Lotka-
Volterra predator-prey dynamics, pharmacokinetic compart-
ment models, neural ODEs (Chen et al. 2018), and solv-
ing PDEs using reaction-diffusion equations. Our solvers
achieved high accuracy with mean squared errors ranging
from 10−4 to 10−6 and showed scalability in solving large
systems with up to 100 compartments.

Introduction
Solving ordinary differential equations (ODEs) is funda-
mental to the computational sciences. Researchers rely on
ODEs to model complex biological systems such as disease
dynamics, cellular interactions, and drug behaviors within
the body. These models help predict how these systems will
evolve and respond over time, which is essential for fields
like pharmacokinetics and ecology. In pharmacokinetics, for
example, ODEs help simulate how drugs are absorbed, dis-
tributed, metabolized, and excreted, allowing scientists to
predict concentration levels and therapeutic effects more ac-
curately.

Numerical methods offer a practical way to solve complex
ODEs when analytical solutions aren’t possible. Techniques
like Euler’s Method and Runge-Kutta (Runge 1895; Kutta
1901) approximate solutions by breaking down higher-order
equations into simpler update rules. However, selecting the
best numerical method for a specific problem can be chal-
lenging (Sumon and Nurulhoque 2023).

In addition, numerical methods for solving ODE face lim-
itations with complex biological models that involve high-
dimensional or stiff systems. These computational demands
are difficult to meet without significant resources, limiting
accessibility and slowing research in data-intensive fields.
Furthermore, the lack of GPU acceleration in many ODE-
solving frameworks hinders large-scale simulations and pa-
rameter estimation tasks, particularly in applications like

pharmacokinetics that require quick, iterative computations.
More robust open-source support for GPU-enabled ODE
solvers could enable numerous downstream applications.

DeepChem (Ramsundar et al. 2019) is an open-source
Python library designed for machine learning and deep
learning, with a focus on applications in drug discovery
and materials science. DeepChem’s modular structure en-
ables researchers to address challenging scientific problems
in fields such as drug discovery, bioinformatics, and compu-
tational physics. In this work, we expand DeepChem’s ca-
pabilities by integrating a GPU-accelerated ODE-solving in-
frastructure designed for science, with a particular focus on
pharmacokinetic modeling. Our contributions include new
optimization primitives for parameter estimation and simu-
lations in DeepChem, that allow researchers to model drug
transport and dynamics efficiently. Additionally, we have
contributed a tutorial to guide users through these optimiza-
tions and open-sourced our infrastructure to promote acces-
sibility and innovation within the field.

Background
Prior Research at solving ODE Systems
The study of ODEs began in the late 1600s when Newton
and Leibniz developed calculus. In the 1700s, Euler and
d’Alembert expanded on these methods, applying ODEs to
new problems in physics and engineering, which solidified
their role in scientific modeling. In the early 1900s, itera-
tive numerical methods were introduced to address the need
for higher accuracy in complex systems, like the Runge-
Kutta methods (Runge 1895; Kutta 1901), which calculate
solutions through multiple evaluations within each step. The
fourth-order Runge-Kutta (RK4) method remains popular
today for its balance of accuracy and computational effi-
ciency. Additionally, methods like Broyden’s approach for
nonlinear systems have become essential for solving com-
plex ODE systems (Broyden 1965).

Numerical Methods for solving ODE systems
Numerical methods for solving ordinary differential equa-
tions (ODEs) are essential for addressing a wide range of
problems in science and engineering where analytical solu-
tions are not feasible. These methods approximate solutions



by discretizing the equations, allowing for practical compu-
tation. Below are key numerical techniques commonly used:

Euler’s Method: A straightforward technique that ap-
proximates solutions by using the slope at the current point
to estimate the next value (Burden and Faires 2011).

Runge-Kutta Methods: These are iterative techniques to
approximate solutions to ODEs (Butcher 1996). They im-
prove on simpler techniques such as Euler’s method, which
relied solely on the slope at the beginning of each interval
by evaluating slopes at multiple points. More sophisticated
methods, such as the fourth-order Runge-Kutta (RK4), eval-
uate multiple slopes at specifically chosen points to achieve
higher accuracy. In our experiments, we used RK4 and
RK38 methods (Butcher 2008).

Predictor-Corrector Methods: These combine a predic-
tor step to estimate the next value and a corrector step to
refine this estimate (Gear 1971).

Multi-step Methods: These use information from several
previous points to compute the next value, enhancing effi-
ciency (Hairer, Nørsett, and Wanner 1993).

Implicit Methods: Useful for stiff ODEs, these methods
require solving equations at each step but offer improved
stability (Ascher and Petzold 1998).

Understanding Differentiable Programming
Differentiable programming is a paradigm that structures
programs in a way that allows them to be differentiated
throughout their execution. This allows optimization algo-
rithms, especially gradient-based methods, to be applied di-
rectly to the program’s outputs. By making each part of the
computation differentiable, it becomes possible to compute
gradients for any output with respect to any input or inter-
nal parameter (Wang et al. 2018; Izzo, Biscani, and Mereta
2017).

Differentiable programming as a paradigm extends be-
yond traditional neural networks to allow the integration
of complex mathematical operations and domain-specific
knowledge directly into learnable models. This flexibil-
ity makes it a powerful tool not only in machine learn-
ing but also in scientific fields more broadly. Differentiable
physics advocates for the use of differentiable programs to
model physical systems (Ramsundar, Krishnamurthy, and
Viswanathan 2021). A number of proposed approaches com-
bine neural networks with differential equations to model
various physical systems (Navarro, Moreno, and Rodrigo
2023). These methods need GPU-accelerated software to
conduct experiments effectively, as they require a large
amount of computation.

Ordinary Differential Equations (ODEs) in
Systems Biology
ODEs are mathematical equations that describe the relation-
ship between a function and its derivatives. They model dy-
namic systems where changes in a quantity depend on other
variables over time, making them essential tools in systems
biology for studying cellular metabolism, gene regulation,

and disease progression. The general form of an ODE is as
follows:

dy

dx
= f(x, y) (1)

A common approach in systems biology is to use com-
partment models, which divide complex systems into in-
terconnected compartments. Each compartment represents
a distinct region where substances can move, accumulate, or
be processed. In pharmacokinetics, for example, these mod-
els track how drugs are absorbed, distributed, metabolized,
and excreted across different organs or tissues. ODEs gov-
ern the transfer rates between compartments. This enables
researchers to predict the dynamics and interactions of the
system over time.

However, many biological models are ”stiff,” requiring
careful selection of numerical integration methods and hy-
perparameters to ensure accurate and efficient solutions. Re-
cent research emphasizes the importance of choosing robust
ODE solvers that can handle the challenges posed by stiff
biological systems effectively (Städter et al. 2021). In this
paper, as a case study, we use GPU-accelerated ODE solvers
in DeepChem to efficiently simulate pharmacokinetic com-
partment models and benchmark their performance against
existing solvers.

Related Work
In recent years a lot of effort has been expended to build
software tools for efficient and accurate solutions of ODE
Systems. For instance, SciPy has implemented an extensive
set of solvers that are fast and can be easily used (Virtanen
et al. 2020). Their approach, however, is limited to CPUs,
which can create bottlenecks when a large number of ODEs
need to be solved. More recently, Julia-based libraries like
DiffeqGPU have tried to address this issue (Utkarsh et al.
2024), but as these libraries are not native to the Python
ecosystem they cannot be easily integrated with popular
Python machine-learning frameworks and pipelines. Our
implementation of ODE solvers is entirely written in Python
and integrated with the DeepChem ecosystem. These de-
sign choices allow our implementations to run efficiently on
GPUs and integrate easily into pre-existing DeepChem and
Torch-based scientific workflows. Torchdiffeq (Chen 2018)
provides similar capabilities but does not integrate into a sci-
entific ecosystem like DeepChem’s natively.

Recent work has investigated the use of black-box ODE
solvers for modeling time-series data, supervised learn-
ing tasks, and density estimation. In particular, continuous-
time normalizing flows, offer a flexible trade-off between
computation speed and accuracy (Chen et al. 2018). Other
related work presents a vectorized algorithm using deep
neural networks to solve complex ODE-related problems
such as stochastic or delay differential equations (Dufera
2021). Additionally, deep learning-based ODE solvers have
greatly improved computational efficiency in chemical ki-
netics while maintaining accuracy for stiff ODE systems
(Zhang et al. 2020).



Methodology

DeepChem and Differentiable Optimizers

Embedding physics knowledge into deep neural networks
can reduce data requirements for deep learning (Ramsundar,
Krishnamurthy, and Viswanathan 2021). By integrating dif-
ferentiable scientific functions, like ODE solvers and opti-
mization tools, models can simulate known physical behav-
ior accurately without needing to learn from large amounts
of data. However, existing machine learning libraries of-
ten lack differentiable equation solvers essential for scien-
tific applications. Recent work has begun to close this gap
with the development of PyTorch-based libraries providing
critical scientific functions along with first and higher-order
derivatives (Kasim and Vinko 2020). We have incorporated
similar differentiation utilities into DeepChem to support
complex scientific simulations. Our implementations build
on those from (Kasim and Vinko 2020), but with consider-
able modification and adaption to the DeepChem ecosystem.

We have added a number of optimization algorithms to
DeepChem, like Anderson acceleration, Adam, and Gra-
dient Descent, and root-finding algorithms like Broyden’s
First Method and Broyden’s Second Method.

Using DeepChem for System Identification

Integrating differentiable solvers directly into DeepChem al-
lowed us to straightforwardly integrate standard machine
learning techniques like gradient descent and Adam opti-
mizers with ODE solvers. For example, in the experiments,
we use a combination of gradient descent and ODE solver
tools to conduct system identification experiments on Lotka-
Volterra and compartment models.

Using DeepChem for Parameter Estimation

Parameter estimation refers to the techniques used to derive
estimates of unknown system parameters based on observed
data that may contain inherent randomness. In DeepChem,
we combined minimization tools like gradient descent and
Adam, which we used with our ODE Solvers to conduct pa-
rameter estimation experiments.

Training Neural ODEs using DeepChem

We leverage our new differentiable utility implementations
to implement a Neural ODE model within DeepChem. Neu-
ral ODEs enable continuous-time modeling of time series
data. Unlike other temporal architectures like recurrent neu-
ral networks, Neural ODEs model dynamics as differential
equations and provide an efficient, flexible representation of
temporal systems. This is especially valuable in scientific
fields like biology, where continuous-time processes, such
as gene expression and population dynamics, can play a cru-
cial role (Chen et al., 2018). DeepChem’s new differentiable
ODE solvers enabled a fast and effective implementation of
Neural ODEs and demonstrated the powerful composability
of differentiable numerical tools.

Figure 1: DeepChem ODE Solving workflow

Pharmacokinetics Simulation using
DeepChem

Pharmacokinetics models use mathematical equations to de-
scribe how a drug is absorbed, distributed, metabolized,
and excreted in the body over time. These models help
understand the drug’s concentration in different compart-
ments of the body and ensure therapeutic levels are achieved
without causing toxicity. In drug discovery, pharmacokinet-
ics models help identify candidates with favorable ADME
properties, reducing attrition rates in clinical trials. (Cald-
well et al. 2003). DeepChem’s ODE solvers and minimiz-
ers introduced in this work enable the resolution of multi-
compartment pharmacokinetic models with remarkable flex-
ibility. We demonstrate the solver’s capabilities by success-
fully modeling complex scenarios involving up to 100 indi-
vidual compartments.

Applications of Pharmacokinetics Model
Pharmacokinetics has diverse applications across various
stages of drug development and clinical practice (Krishna
2004; Ruiz-Garcı́a et al. 2008). One of the most signifi-
cant applications in developing dosage regimens. By ana-
lyzing drug concentration in different body compartments
over time, pharmacokinetic models provide critical insights
that guide the selection of appropriate dosages. These mod-
els consider individual variability, including factors like age,
weight, genetic makeup, and organ function, ensuring that
the right dose is administered for maximum therapeutic ef-
fect while minimizing adverse reactions.

In toxicology, pharmacokinetic models are used to predict
the thresholds at which substances may become harmful.



Algorithm 1: Parameter Estimation using Deepchem Mini-
mizers and ODE Solvers

1: Input: Observed data yobs = {yobs,i} at times {ti}, ini-
tial parameter guess θ0, ODE model dx

dt = f(t,x; θ),
tolerance ϵ.

2: Output: Estimated parameter vector θ̂.
3: Initialize parameter θ ← θ0
4: repeat
5: Solve the ODE system dx

dt = f(t,x; θ) with current
parameter θ to get predictions xpred(t; θ) at times {ti}

6: Compute the residual r(θ) = yobs − xpred(t; θ)
7: Define the cost function as J(θ) =

∑
i ∥r(θ)∥2,

where ∥ · ∥ denotes the Euclidean norm
8: Update θ using an optimization method (e.g., Gradi-

ent Descent, Levenberg-Marquardt) to minimize J(θ)
9: until J(θ) < ϵ or convergence criteria are met

10: Return θ̂ = θ

These models are essential for establishing safety margins
and designing drugs with favorable safety profiles. By simu-
lating the complex interactions between chemicals and var-
ious tissues, pharmacokinetic studies can identify potential
toxicities early in the development process. Furthermore, it
helps refine experimental designs in toxicity testing by elu-
cidating the relationships between external dosages and in-
ternal tissue exposures. (Leung 1991).

In drug development, they allow researchers to extrapo-
late animal data to predict human responses before clinical
trials begin. This predictive capability saves time and re-
sources by refining drug candidates early on and identifying
those that are more likely to succeed in human trials. More-
over, pharmacokinetic models facilitate dose adjustments
across different populations, such as children, the elderly,
or individuals with compromised organ functions, enhanc-
ing personalized medicine approaches. Furthermore, lever-
aging pharmacokinetic principles early in discovery can sig-
nificantly improve go/no-go decision-making and reduce the
high costs of clinical development (Caldwell et al. 2003).

Experiments and Results
Experiments were conducted using Google Colab with 12
GB of RAM, an Nvidia T4 GPU, and an Intel Xeon CPU
(2.2 GHz).

We tested our ODE solver infrastructure on four case
studies:

• Lotka-Volterra (Predator-Prey Model) ODE Modeling
and Parameter Optimization

• Pharmacokinetic Compartment Models
• Training Neural ODEs
• PDE Solving using ODE Solvers

Ordinary Differential Equation Solving
In this experiment, we analyze and solve two classical bio-
logical models described by systems of ordinary differential

Figure 2: DeepChem parameter estimation workflow

equations (ODEs): the Predator-Prey model and the Com-
partment model. These models are chosen because they ex-
emplify different applications of ODEs in biology, with one
focusing on population dynamics and the other on substance
distribution across compartments. We solve these ODEs us-
ing our implementations of Runge-Kutta methods and ana-
lyze their accuracy and efficiency. Specifically, we are fo-
cusing on initial value problems (IVPs) of the form:

dy

dt
= f(t, y), y(t0) = y0 (2)

where f(t, y) represents the differential equation func-
tion, y(t0) = y0 is the initial condition, and t is the inde-
pendent variable (often time).

ODE-solving experiments used the RK38 method from
torchdiffeq and DeepChem, but since SciPy doesn’t have
an RK38 implementation, we use the default Runge-Kutta
method of order 5(4) (RK5(4)). SciPy is partially written in
C and C++ and uses adaptive stepping for their ODE solvers,
while torchdiffeq and DeepChem use fixed steps and are
purely Python-based, so the timing results are not directly
comparable in our benchmarks but still serve as a useful
comparison point.

1. Predator-Prey Model The Predator-Prey model, also
known as the Lotka-Volterra model, describes the interaction
between two species: a prey and a predator. The system of
equations is given by:



Table 1: Time taken (in sec) by different ODE Solvers for
solving all the models. (The difference in time between
SciPy and torchdiffeq/DeepCehm can be attributed to the
adaptive stepping used by SciPy, which is highly optimized
and uses Fortran, C, and C++ in addition to Python.)

Solvers torchdiffeq SciPy DeepChem

Time Taken 54.4566 15.2681 52.2793

Table 2: L1 distance between trajectories obtained
Deepchem’s ODE Solver and baseline trajectories obtained
using SciPy’s Solver. (Willmott and Matsuura 2005)

Solver Predator L1 Prey L1

DeepChem vs. SciPy 0.0197 0.0275

dx

dt
= αx− βxy (3)

dy

dt
= γxy − δy (4)

where, x represents the prey population, y represents the
predator population, α, β, γ, and δ are rate constants that
dictate the interaction rates.

Experimental Setup: We solve 10 models, each for time
t : 0→ 100 and 10000 time steps using step size h of 0.01.
These models were solved with initial values of x and y
varying between [10, 15] and [5, 10] and the values of rate
constants varying between [0, 1]. In Tables 1 and 2, we com-
pare the performance of our implementation with torchdif-
feq and SciPy.

2. Pharmacokinetic Compartment Model Pharmacoki-
netic compartment models divide the body into ”compart-
ments” that represent groups of tissues or organs with simi-
lar drug distribution characteristics. The system of equations
for a three-compartment model is given by:

dC1

dt
= −(k10 + k12 + k13)C1 + k21C2 + k31C3 (5)

dC2

dt
= k12C1 − k21C2 (6)

dC3

dt
= k13C1 − k31C3 (7)

where, C1 represents the central compartment while C2 and
C3 are peripheral compartments, k10 is the elimination rate,
k12 and k13 are rate constants for central to peripheral com-
partment motion, k21 and k31 are rate constants for periph-
eral to central compartment motions. Peripheral compart-
ments are not connected directly.

Compartment models with more compartments can be
constructed in a straightforward manner extending these
equations.

Figure 3: Predator-prey equation solutions obtained using
the SciPy and DeepChem match closely.

Figure 4: Schematic representation of a three-compartment
model without a direct connection between peripheral com-
partments.

Experimental Setup: We solve 10 models, each for time
t : 0 → 100 and 10000 time steps with step size h of 0.01.
These models were solved with initial values of C1 at 10 and
C2, C3 at 0 while the values of rate constants varied between
[0, 1]. In Tables 3 and 4, we compare the performance of
our implementation with torchdiffeq and SciPy, in which we
simulated three different compartment models with 3, 10,
and 100 compartments respectively.

3. Training Neural ODEs We trained a Neural ODE on
synthetic data from a Damped Harmonic Oscillator model
to capture the dynamics of oscillatory systems. The Damped
Harmonic Oscillator is represented by the set of equations
given below:

dx

dt
= v (8)

dv

dt
= −kx− bv (9)

where x is the position, v is the velocity, k is the spring con-
stant and b is the damping coefficient.

This approach highlights the versatility of Neural
ODEs for modeling time-varying phenomena governed by



Table 3: Comparison of time taken (in seconds) for solv-
ing models with varying numbers of compartments (Comp.)
using different ODE solvers. The solvers compared include
torchdiffeq, SciPy, and DeepChem.

torchdiffeq SciPy DeepChem

3 Comp. 88.2022 20.2429 84.6690

10 Comp. 105.1800 23.6817 101.1345

100 Comp. 298.5121 40.4703 296.9111

Table 4: L1 Error between simulated and predicted values of
a Harmonic Oscillator by Neural ODE

Function L1 Error

Harmonic Oscillator 0.0156

continuous-time dynamics. Tables 4 and 5 provide experi-
mental results. While the damped harmonic oscillator sys-
tem is simple, our results serve as proof-of-concept valida-
tion of DeepChem’s Neural ODE implementation. We will
perform further validation in future studies.

Experimental Setup: We simulate a Damped Harmonic
Oscillator for time t : 0 → 30 and 100 time steps with
parameters b = 1 and v = 0.1 and starting values of po-
sition and velocity being 0.99 and −0.99 respectively. We
then train a 2 layer MLP with 32 units per layer. We use a
tanh activation in the hidden layers for smoothness which
helps mimic the dynamics of the continuous-time system.
The forward pass is solved by the DeepChem ODE Solver
using the Runge Kutta 3/8 method. We used the Adam op-
timizer to train a Neural ODE model on this simulated data
with a learning rate of 0.01 and trained the model for 1000
epochs.

Parameter Estimation
Parameter estimation seeks to learn system parameters
for dynamical systems governed by differential equations.
These techniques have applications across diverse fields,
from robotics and control engineering to biology, eco-
nomics, and even environmental science.

For this experiment, we use DeepChem’s ODE tools to
estimate the parameters of the Lotka Volterra model from
simulated data. While we use simulated data, the same tech-
niques can be applied to time-series population counts or
field observations. Table 5 shows comparisons between us-
ing DeepChem Solver along with the SciPy Minimizer and
the DeepChem Solver along with the DeepChem Minimizer
(Adam).

Solving PDEs Using ODE Solvers
This experiment investigates an innovative methodology for
solving partial differential equations (PDEs) using the ODE
solvers available within the DeepChem framework. Specif-
ically, the focus is on reaction-diffusion systems (Figure

Figure 5: Harmonic Oscillator Dynamics using Neural
ODEs: We compare a simulated Damped Harmonic Oscil-
lator, solved using an ODE Solver, with the predictions of a
Neural ODE and use the model to predict the dynamics of
the system for the next 30 seconds.

Table 5: Lotka-Volterra Parameter Estimation. The ODE
solver is DeepChem (dc). Either SciPy’s parameter estima-
tion or DeepChem’s Adam implementations are used to min-
imize parameter error. The top row contains ground-truth
values.

Solver Mini. α β γ δ

- - 1.1000 0.4000 0.1000 0.4000

dc SciPy 0.8646 0.3447 0.1181 0.4903

dc dc 1.0909 0.3909 0.0909 0.3909

6), which are instrumental in modeling the interactions of
chemical species that undergo both reaction and spatial
diffusion. Reaction-diffusion equations are used in various
fields, including biology, chemistry, and physics to model
phenomena such as pattern formation, population dynamics,
and the spread of diseases.

The reaction-diffusion system for concentrations
U(x, y, t) and V (x, y, t) is given by the following partial
differential equations.

∂U

∂t
= DU∇2U − UV 2 + F (1− U) (10)

∂V

∂t
= DV∇2V + UV 2 − (F + k)V (11)

• U(x, y, t) and V (x, y, t) are the concentrations of chem-
ical species U and V , respectively.

• DU and DV are the diffusion coefficients for U and V .
• F is the feed rate for U .
• k is the kill rate for V .
• ∇2 is the Laplacian operator, representing diffusion in

two-dimensional space:

∇2Z =
∂2Z

∂x2
+

∂2Z

∂y2



Experimental Setup We model a two-dimensional grid to
represent a flat homogeneous spatial domain, wherein the
concentrations of species U and V evolve over time. The
system parameters are initialized as follows:

• DU = 0.16: Diffusion coefficient for species U .
• DV = 0.08: Diffusion coefficient for species V .
• F = 0.04: Feed rate for species U .
• k = 0.06: Kill rate for species V .

Initial concentration profiles are established to create a
localized interaction zone. Specifically, within the central
square region defined by 30 ≤ x, y ≤ 70, the concentration
of U is initialized at 0.5, indicating a higher concentration,
while V is initialized at 0.25, indicating a lower concentra-
tion. Outside of this central region, both U and V are initial-
ized at minimal baseline values, representing their negligible
presence.

Using an ODE solver to integrate the discretized system
over time, the spatio-temporal dynamics of U and V are ob-
served. This evolution leads to the formation of complex
spatial patterns, including spots, stripes, and wavefronts.
These emergent patterns provide valuable insight into how
relatively simple reaction-diffusion interactions can give rise
to intricate and biologically significant structures.

We ran the experiments while varying the hyperparame-
ters by a margin of 50% of the earlier initialized values (0.16,
0.08, 0.04, 0.06). This series of experiments gave us a more
varying set of patterns.

Figure 6: Reaction-Diffusion Dynamics: Simulating Pat-
tern Formation with U and V Interactions. This visualiza-
tion showcases the evolution of chemical concentrations in
a reaction-diffusion system modelled using a grid of size
100x100 over 900 time steps.

Conclusion
This paper implements GPU-accelerated ODE solvers in
DeepChem and studies their use in various scientific appli-
cations. We applied these solvers to solve predator-prey dy-
namics and pharmacokinetic compartment models. We also
leveraged the solvers as building blocks to implement neural
ODEs and PDE solvers in DeepChem. DeepChem solvers
achieved high accuracy in parameter estimation and also
demonstrated scalability by solving systems with up to 100

compartments. Additionally, Deepchem solvers are effective
for modeling both simple and complex ODE systems.

In our experiments, we compared DeepChem solvers with
SciPy and torchdiffeq and found DeepChem to be slightly
faster than torchdiffeq but significantly slower than SciPy,
likely due to the use of fixed timesteps and being written
completely in Python. We aim to address this gap in future
works. By open-sourcing this infrastructure, we aim to make
these tools accessible and encourage innovation in systems
biology and related fields.
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Appendix
Anderson Acceleration Anderson acceleration is a
method for improving the convergence rate of fixed-point it-
erations, particularly for nonlinear systems, by linearly com-
bining previous iterations to achieve faster results without
needing derivative information. (Anderson 1965)

Fixed-point iterations are fundamental in numerical anal-
ysis for solving equations of the form:

x = G(x) (12)

where G is a given function. The iterative process starts with
an initial guess x0 and generates a sequence:

xk+1 = G(xk) (13)

Convergence depends on the properties of G and the choice
of x0. Specifically, if the spectral radius of the derivative
G′(x∗) at the fixed point x∗ is less than 1, the iteration con-
verges locally.

Adam Adam (Adaptive Moment Estimation) is an opti-
mization algorithm that adjusts learning rates based on the
first and second moments of gradients, improving conver-
gence for deep learning models (Kingma and Ba 2015).

Gradient Descent Gradient Descent is used for training
a vast array of machine learning models. Its performance
heavily depends on factors like learning rate selection, fea-
ture scaling, and the specific variant of gradient descent em-
ployed.

Initialization
• Choose an initial set of parameters θ0.
• Select a learning rate α, which determines the step size

during each update.

Iterative Update

1. Compute the Gradient:

∇f(θk) =
[
∂f

∂θ1
,
∂f

∂θ2
, . . . ,

∂f

∂θn

]T
(14)

2. Update the Parameters:

θk+1 = θk − α∇f(θk) (15)

3. Convergence Check:

• If ∥∇f(θk+1)∥ is below a predefined threshold, stop.
• Otherwise, set k = k + 1 and repeat.

Broyden’s First Method Broyden’s First Method itera-
tively updates an approximation of the Jacobian matrix.

Mathematical Formulation
Given the current iterate xk, the Jacobian approximation

Bk, and the function evaluation F(xk), the method proceeds
as follows:

1. Compute the Newton Step Solve the linear system to find
the step sk.:

Bksk = −F(xk) (16)



2. Update the Solution

xk+1 = xk + sk (17)

3. Compute the Change in Function Values

yk = F(xk+1)− F(xk) (18)

4. Update the Jacobian Approximation
The Jacobian is updated using a rank-one update for-
mula:

Bk+1 = Bk +
(yk −Bksk)s

⊤
k

s⊤k sk
(19)

Here, s⊤k denotes the transpose of sk.

Broyden’s Second Method Broyden’s Second Method it-
eratively updates an approximation of the inverse Jacobian
matrix.

Algorithm Steps
Given:

• An initial guess x0.
• An initial inverse Jacobian approximation B0 (com-

monly the identity matrix).

The method proceeds as follows for each iteration k =
0, 1, 2, . . .:

1. Compute the Newton Step:
Solve the linear system:

BkF(xk) = −sk (20)

to find the step sk.
2. Update the Solution:

xk+1 = xk + sk (21)

3. Evaluate the Function at the New Point:

F(xk+1) (22)

4. Compute the Change in Function Values:

yk = F(xk+1)− F(xk) (23)

5. Update the Inverse Jacobian Approximation:
The inverse Jacobian is updated using a rank-one update
formula:

Bk+1 = Bk +
(sk −Bkyk)s

⊤
k Bk

s⊤k Bkyk
(24)

Here, s⊤k denotes the transpose of sk.
6. Convergence Check:

If ∥F(xk+1)∥ is below a predefined tolerance level, ter-
minate the algorithm. Otherwise, set k = k+1 and repeat
the iteration.

Pharmacokinetic Compartment Models Pharmacoki-
netic compartment models are mathematical models used to
describe the way drugs are absorbed, distributed, metabo-
lized, and eliminated by the body. These models simplify
the complex processes of drug movement and interaction
within the body by dividing it into compartments that rep-
resent different physiological spaces. The compartments are
not necessarily anatomical structures but conceptual spaces
where the drug concentration is assumed to be uniform.

Figure 7: Schematic representation of a model with 10 com-
partments

Figure 8: Compartment model showing interaction between
the peripherals


