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Abstract
When developing an autonomous safety-critical system, it is
crucial that the system is able to act safely in a wide range
of scenarios. One way to help validate this is through Adap-
tive Stress Testing (AST). AST is used to stress test a safety-
critical system by altering the variables of a simulated en-
vironment, finding likely sequences of environment distur-
bances that result in failure events such as collisions. AST
search times increase drastically for systems with long sim-
ulation times. In this paper we study several computational
methods that promise to reduce search time. Inspired by com-
puter game agents including AlphaZero, we introduce neural
networks to select the most promising paths when travers-
ing the search tree as well as performing simulation rollouts
that are more likely to result in failure events. Also studied
is the method of memoization, which amounts to periodically
storing simulation states for commonly traversed search tree
nodes. This allows us to speed up future simulations with-
out impacting search accuracy. The efficiency of the proposed
speed-up methods is studied with AST for simulation-based
validation of an autonomous ferry.

1 Introduction
Context. Testing the limits of a system by observing how
it behaves in a range of challenging scenarios is known as
scenario-based stress testing. While such stress testing can
be performed in the real world, one often encapsulates the
system under test (SUT) in a simulator (Lee et al. 2015; Por-
res, Azimi, and Lilius 2020; Koren et al. 2018; Hjelmeland
et al. 2022). Using a simulator is often essential as it allows
us to tailor the scenarios with full control of external distur-
bances. The simulation approach is also scalable, safe, and
cost efficient compared to real world testing. In this work we
stress test an autonomous ferry using simulation.

We study scenario-based stress testing by means of adap-
tive stress testing (AST). AST aims to find the most likely
failure event of a system structured as a Markov decision
process (MDP) (Lee et al. 2015, 2020). AST has shown
promise in several applications, including testing of air-
craft collision avoidance systems (Lee et al. 2015, 2020),
autonomous vehicle pedestrian collision avoidance systems
(Koren et al. 2018), and maritime collision avoidance sys-
tems (Hjelmeland et al. 2022). In this paper we use AST
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(Lee et al. 2015) with Monte Carlo Tree Search (MCTS)
for reinforcement learning (RL) to stress test the mA2 au-
tonomous ferry (Brekke et al. 2022) via simulation.1 MCTS
is based on the Monte Carlo method, randomly sampling re-
wards of random solutions to a deterministic problem, using
the rewards as heuristics. MCTS works by building a tree
where each branching path down the tree represents differ-
ent actions that form unique simulation-based solutions to
the MDP. In the final tree structure, a state is represented by
nodes, while different actions are represented by the edges.
A natural result of this approach is a strong correlation be-
tween the simulation time and total search time for AST.

Challenges. While AST has shown promising results,
there are also challenges (Corso et al. 2019; Hjelmeland
et al. 2022). Specifically, we study the challenge of com-
putational cost, which limits the scalability of AST. In mA2
pilot studies we found that MCTS was capable of finding
collision avoidance (ColAv) failure events, even in scenar-
ios with an exceedingly low rate of failures. However, we
also observed a need for a large number of searches to get
a reliable result. This can be a problem when the computa-
tional cost of simulation is high, as often happens in science
and engineering. Since a simulator is an abstraction of the
real world, we need to consider how realistic and accurate
that abstraction is. There is a trade-off, as a more realistic
simulator generally requires more computational resources,
resulting in longer simulation times. Developing simulation
for AST consequently becomes a balancing act between re-
alistic simulations with more accurate validation results and
less complex simulations with faster runtimes.

Contributions. Simulators are often used for crucial en-
gineering validation testing. This includes validation of col-
lision avoidance (ColAv) systems within transportation, in-
cluding for autonomous vehicles (Lee et al. 2015; Porres,
Azimi, and Lilius 2020; Koren et al. 2018; Corso et al. 2019;
Lee et al. 2020; Hjelmeland et al. 2022). Unfortunately,
ColAv simulators can be relatively costly to run, with sim-
ulation times of 1 second or higher. In this work,2 we study

1Similar approaches, not using AST, for testing ship collision
avoidance systems exist; Porres et al. (Porres, Azimi, and Lilius
2020) present a scenario-based testing system that aims to generate
challenging test scenarios to stress-test autonomous vessels.

2This paper is based on Brage Lytskjold’s MS thesis from
NTNU (Lytskjold 2022).



methods to improve AST scalability, by reducing the impact
of costly simulation runs, without negating the validity of
the results. Specifically, we introduce Monte Carlo Forrest
Search with Action Pruning (MCFS-AP). The MCFS-AP
algorithm is based on the MCTS-PW algorithm (Lee et al.
2020), with the addition of constructing search tree differ-
ently and using neural networks similar to AlphaZero (Sil-
ver et al. 2017). Using MCFS-AP with ColAv simulators, we
study the behaviour of mA2 in different scenarios, while ap-
plying disturbances to the ferry and environment throughout
the simulations. Multiple simulators and variants of MCFS-
AP are studied, enabling a safe, cost-effective, and scalable
way of testing different dimensions of ColAv systems for
autonomous ferries such as mA2.

2 Background and Related Work
Testing Ship Collision Avoidance Systems. (Porres, Az-
imi, and Lilius 2020) present a scenario-based testing sys-
tem that aims to generate challenging scenarios to stress-test
autonomous vessels. For the reward function, a subset of the
COLREG3 rules, a Collision Regulation rule set quantify-
ing safe behaviour for marine vessels is used. By simulating
and calculating the total reward, a scenario can be evalu-
ated in regard to how well the autonomous vessel, the SUT,
complies with COLREG rules while avoiding collisions. Al-
though this method shows promising results in uncovering
failure states of the given system under test, one should take
into account the relatively high failure rate of the system:
around 10% given random initial states. The method is es-
sentially a filtered random search, making the method inef-
fective for finding failure events if they are sufficiently rare.
If applied to mA2, given the robustness of the system, the
method is unlikely to perform well.

Hjelmeland et al. study AST applied to mA2 (Hjelme-
land et al. 2022; Hjelmeland 2022). They demonstrate that
AST can be used to find failures, specifically collisions with
adversary vessels. Four different AST reward functions are
considered, along with their respective impacts on simula-
tion results including the types of failures discovered. Simi-
lar to our work, they use AST in the mA2 setting, and note
that an important limitation is the computational require-
ment when using a detailed simulation. This limitation of
AST when it comes to computational cost is exactly what
we are studying in this paper. Specifically, we are investi-
gating methods to improve the computational feasibility of
AST, with a particular focus on marine ColAv and computa-
tionally expensive simulations.
Adaptive Stress Testing (AST). Adaptive stress testing
(AST) aims to find the most likely failure event of a system
structured as a Markov decision process (MDP) (Lee et al.
2015, 2020). RL is applied to the MDP and uses previous
experiences to effectively search a typically vast state space,
finding likely failure events. Such events can be used to fur-
ther guide the development and improvement of the SUT.
The search is directed by a reward function that counter-
intuitively rewards collisions and close misses with high

3Convention on the International Regulations for Preventing
Collisions at Sea

transition probabilities.
When introduced, AST was used to find probable failure

events that were not handled by ACAS X, a novel collision
avoidance system for aircraft (Lee et al. 2015). To search
for likely failure events, Lee et al. apply Monte Carlo tree
search (MCTS). MCTS searches thousands of simulations
with varying sequences of disturbances to find likely se-
quences leading to near mid-air collisions (NMACs). MCTS
directs search towards sequences that are similar to those
that are most promising so far, while also considering less
explored sequences. As a result, AST proves effective in un-
covering failure states, allowing a comparison of the current
collision avoidance system, TCAS, and ACAS X.

(Koren et al. 2018) apply two versions of AST to com-
pare the use of MCTS and deep RL (DRL) when searching
for failure events. Koren et al. implement a simulation con-
taining an autonomous vehicle (AV) approaching a pedes-
trian crossing. The pedestrians are controlled by AST to find
paths where the AV is unable to avoid hitting the pedestrians.
Through three different experiments, Koren et al. find that
AST using DRL outperforms MCTS, in the sense of finding
more likely failure scenarios with a higher efficiency. (Corso
et al. 2019) argue that the results found by Koren et al. (Ko-
ren et al. 2018) are mostly uninteresting, as most failures
were caused by pedestrians walking into an already-stopped
AV. Thus, it acted correctly in the given scenario. Another
problem that Corso et al. study is the lack of variations
in the failure scenarios found by Koren et al.. Their pro-
posed solution is to introduce two enhancements to the re-
ward functions. With the implementation of the augmented
reward function, a short experiment is run, resulting in mul-
tiple failures caused by the AV acting improperly. Corso et
al. provide interesting results in a domain beyond aerospace,
thus inspiring our study in the marine domain.
Monte Carlo Tree Search in Games. Monte Carlo Tree
Search is often used in deterministic, sequential board
games, including in AlphaZero. AlphaZero has made sub-
stantial advances within Computer Chess, Computer Shogi
(Silver et al. 2017), and Computer Go (Silver et al. 2016). A
core concept introduced in AlphaZero is the use of MCTS
in conjunction with both value and rollout policy networks.
Through a simulation-based rollout search, MCTS seeks to
find moves, among all legal moves, with the highest likeli-
hood of a win. Aiding in this search are value and rollout
policy networks. The value network uses previous games
to better evaluate what actions to explore, while the roll-
out policy network improves the actions chosen in a look-
ahead over games. Gradually generating a better rollout pol-
icy in turn improves the virtual oponent’s skill. The resulting
model learns through self-play, needing no human expert in-
put. While very different from scenario-based stress testing
using simulators, AlphaZero’s use of MCTS in games in-
spires several choices made in our work (see Section 3).
Costly Fitness Functions and Simulations. The computa-
tional cost of running a simulation is a manifestation of a
broader problem when AI is applied in science and engi-
neering. This is the problem of fitness function evaluation
cost (Snoek, Larochelle, and Adams 2012; Lee et al. 2021;
Luong et al. 2021; Mengshoel et al. 2022). Here, “cost” may



refer to computational cost, energy cost, engineering cost, or
other costs. There are several variants of costly fitness func-
tions (CFFs), including the following. First, fitness function
evaluation may have consistently high computational cost,
for instance when simulations are used in AI (Lee et al.
2015; Porres, Azimi, and Lilius 2020; Koren, Corso, and
Kochenderfer 2020; Hjelmeland et al. 2022). CFF applica-
tions include black-box topology optimization via simula-
tion of mechanical structures (Guirguis et al. 2020; Zavala
et al. 2014) and neural architecture search in ML (White,
Nolen, and Savani 2021). A second CFF variant exists when
the cost of fitness function evaluation varies drastically over
a search space (Snoek, Larochelle, and Adams 2012; Lu-
ong et al. 2021). Such CFFs can be found in ML. Specif-
ically, ML feature selection using wrappers (Kohavi and
John 1997) is an application that often have a varying CFF
(Mengshoel et al. 2022).

Studies on handling CFFs fall into different categories.
One can directly perform CFF minimization by using fit-
ness function approximation or surrogates (Shi and Rasheed
2010). Non-revisiting methods form another approach (Yuen
and Chow 2007; Lou, Yuen, and Chen 2021). Fitness func-
tion cost minimization via carefully optimizing an algo-
rithm’s heuristics and hyperparameters (DaCosta et al. 2008;
Mengshoel, Wilkins, and Roth 2011; Snoek, Larochelle, and
Adams 2012; Karafotias, Hoogendoorn, and Eiben 2015) is
another approach. Here, methods for optimizing heuristics
and hyperparameters to minimize the computational cost of
problem of feature selection are important (Kohavi and John
1997; Mengshoel, Ahres, and Yu 2016; Yu, Kveton, and
Mengshoel 2017; Mengshoel et al. 2022). Our research in
this paper is related to these works, but specifically targets
computational simulation cost associated with the sequential
AST setting.

3 The MCFS-AP Method
We partition the states S created with a simulation S into
failure events E ⊂ S and non-failure events Ē ⊂ S. Fail-
ure events E are of particular interest to us, as they repre-
sent collisions between mA2 and one or more other vessels
or adversaries. When S terminates, at a terminal time tend
with a corresponding state stend , there is either a collision
stend ∈ E or not stend /∈ E. Let RE be reward at failure
and I an indicator function. We define the term IE to indi-
cate a collision: IE = RE · I(stend ∈ E). Let d be the closest
distance between mA2 and an adversary. We define IĒ to in-
dicate a non-collision: IĒ = d · I(stend ̸∈ E). The following
objective function is used for AST (Lee et al. 2020):

f(x0, . . . , xtend) =

[ tend∏
t=0

P (xt|st) + IE − IĒ

]
. (1)

Optimum r∗ is then defined as:

r∗ = max
x0,...,xtend

f(x0, . . . , xtend). (2)

In our domain, (1) and (2) express a goal to minimise the
distance between our vessel and other objects until a colli-
sion occurs. Further, the joint likelihood of the disturbance

sequence [x0, . . . , xtend ] should be maximised. After all, we
seek the most likely sequence of disturbances that results in
a failure event, a collision.

For a deterministic time step simulator S with a fixed ini-
tial state s0, any state sn can be represented as a unique se-
quence of disturbances [x0, . . . , xn−1]. This sequence con-
sists of the disturbances that were originally applied to S
at each time step from s0 to sn. Revisiting the state sn is
done by retracing the disturbances, stepping through each
disturbance xt in [x0, ..., xn−1] = x0:n−1 from s0 of S. Due
to the deterministic nature of S, the same state transition is
computed given the same disturbance, thus we we arrive at
the desired state sn. In other words, when given the same
initial state and disturbance sequence, the SUT and environ-
ment should change in the same manner, resulting in the ex-
act same set of states at every time step. Such deterministic
and noiseless simulators have been shown to work well with
AST (Koren et al. 2018) and is what we focus on here.

Using (1) we compute an r̂∗ that approximates r∗. We are
also interested in the corresponding state ŝ∗n or disturbance
sequence x̂∗

0:n−1. To compute these, we introduce Monte
Carlo Forrest Search with Action Pruning (MCFS-AP), see
Algorithm 1.

3.1 Monte Carlo Forrest Search (MCFS)
We now explain the pseudo-code of MCFS-AP (see Algo-

rithm 1). MCFS-AP inputs and parameters are the simulator
S as well as wrappers for the value and rollout policy neu-
ral networks. MCFS-AP outputs the most likely disturbance
or action sequence x̂∗ leading to a failure event, found via
search by optimising (1). For simplicity we use in MCFS-
AP just x̂∗ instead of x̂∗

0:n−1 = [x̂∗
0, . . . , x̂

∗
n−1].

The algorithm consists of several loops and nested loops.
The outer for-loop, lines 2–24, builds nt search trees. The
for-loop in lines 5–24 handles action pruning and state
memoization. Here the simulator is fast forwarded to the
state of current root, deepening as more actions are pruned in
line 24 (see Section 3.2). The for-loop in lines 8–23 is sim-
ilar to previous MCTS algorithms for AST (Lee et al. 2015,
2020) and consists of three while-loops that perform MCTS.
The while-loop in lines 10–13 performs selection and pro-
gressive widening. For value computation V in line 12, V0
represents a baseline using normal UCT-selection (Kocsis
and Szepesvári 2006) while V1 uses UCT with a value neu-
ral network weight (see Section 3.3). The while-loop in lines
14–17 performs rollout including simulation with S. In line
16, the rollout action is computed usingR (see Section 3.3).
In lines 18–19, reward r̄ and disturbances x̄ from the simu-
lation S are computed by means of (1) and the best-so-far r̂∗
and x̂∗ are potentially updated. Using (1), higher reward is
given for a simulation that results in failure via high transi-
tion probabilities. The while-loop in lines 20–23 backprop-
agates up the search tree, updating the expected reward of a
node using information from S.

The main additions of MCFS-AP compared to previous
MCTS methods for AST are: (i) the approach to search tree
construction and (ii) the use of neural networks when select-
ing actions during the selection and rollout process.



Algorithm 1: MCFS-AP
Input: Simulator S, Value Computation V , Rollout Policy
ComputationR
Parameter: Number of trees nt, number of prune steps nd,
and search loops at each root nl.
Output: Most likely sequence of actions x̂∗ resulting in a
failure event.

1: x̂∗, r̂∗ ← ∅
2: for 1 to nt do
3: sR ← new Node(∅)
4: S.initiate()
5: for 1 to nd do
6: S.memoizeState()
7: sC ← sR
8: for 1 to nl do
9: S.setMemoizedState()

10: while sC .nrOfChildren > 0 do
11: sC .progWiden()
12: sC ← V(sC)
13: S.step(sC .seedAction())
14: while not S.terminal() do
15: ŝ← S.getState()
16: rolloutAction←R.getAction(ŝ)
17: S.step(rolloutAction)
18: x̄, r̄ ← S.getReward()
19: x̂∗, r̂∗ ← S.getBestReward(x̄, r̄, x̂∗, r̂∗)
20: while sC is not sR do
21: sC .update()
22: sC ← sC .parent()
23: sC .update()
24: sR ← sR.getRobustChild()
25: S.step(sR.seedAction())
26: return x̂∗

3.2 Action Pruning and Memoization
A key difference between MCFS-AP and the algorithm pre-
sented by Lee et al. (Lee et al. 2020) is our study of differ-
ent methods A of handling disturbances or actions. Method
A0, the baseline, starts every search at depth 0. With action
pruning, A1, we periodically select actions early in the ac-
tion sequence and actively prune branches of the tree that are
not performing as well as the main branch. Our A1 method
is illustrated in Figure 1. Action pruning in MCFS-AP uses
a robust child strategy (Chaslot et al. 2008), introduced as
final move selection for sequencial games. Lines 6, 9, and
24 in MCFS-AP concern action pruning. We pick, in line
24, the most visited child node of the current root to become
the new root, removing all other paths down the tree. Root
pruning is performed after nl search loops of a root node and
repeated nd times.

Closely related to action pruning is memoization M.
MemoizationM1 can be applied to the new root node, start-
ing S at the state represented by the new root, avoiding recal-
culation of previous states (greyed out for d = 1 and d = nd

in Figure 1). When memoization is not done, denotedM0,
recalculation does take place.

The main advantage of MCFS-AP action pruning and

repeat nt times

d = 0 ...d = 1 d = nd

Figure 1: Construction of one MCFS-AP search tree, where
nodes represent states and edges represent actions or dis-
turbances. The root node (light blue) is moved downwards
as the tree grows. Periodically, a child (black) of the cur-
rent root node is picked as the new root and nodes in other
branches connected to the current root are pruned (grey). Af-
ter this, subsequent searches start from the new root. Pruning
is done nd times per tree and nt such trees are constructed.

memoization is this: By periodically making the search more
shallow, we can stop calculating the earlier parts of the sim-
ulations. Given a deterministic time step simulator, the end-
state of a given disturbance sequence is constant, removing
the need for the simulation to rerun what has already been
calculated. That said, MCFS-AP moves us slightly away
from AST’s black-box simulation idea, as we need to start
simulation in any state and not just the initial state.

3.3 Rollout Policy and Value Neural Networks

To further improve the effectivity of the search for failure
states, we have implemented a rollout policy network and a
value network, inspired by Alpha Zero (Silver et al. 2017).
The networks use experiences from previous MCFS-AP it-
erations to better direct the search for failure states.

Rollout policy computation R in line 16 of MCFS-AP
proceeds in one of two ways:R0 is a baseline whileR1 uses
a rollout policy neural network. The baseline R0 is a ran-
dom rollout policy. Both traditional MCTS and MCTS-SA
use a random rollout policy, executing random seed-actions
until reaching a terminal state. For R1, the rollout policy
neural network gives a prediction of what action is most
advantageous given the input state. Specifically, the rollout
policy network ρπ uses previous experiences to pick advan-
tageous seed-actions, aiming to give rollouts that terminate
with higher rewards. Our rollout policy network takes an in-
put vector ŝ representing the state of the simulator. In our
naval setting this vecor consists of the coordinates x and y,
as well as the angle θ, of each vessel in the simulation. The
target value is a distribution of seed-actions, given by a list
of length k where an element dn is the relative frequency
of seed-actions x̄ ∈

[
n
k ,

n+1
k

]
. The target distribution in a

state is found by getting the distribution of traversals of the
seed-actions out of the node representing the given state.

Value computation V in line 12 of MCFS-AP proceeds
in one of two ways: V0 is a baseline while V1 uses a value
neural network. Either way, prediction uses augmented UCT



selection:

argmax
a

[
Q(s, a) + c1

√
logN(s)

N(s, a) + 1
+ c2vθ(ŝ, a)

]
. (3)

For V0, we put c2 = 0 in (3), giving standard UCT. For V1,
we put c2 ̸= 0, thus enabling the value network vθ in (3). The
value neural network vθ aims to improve UCT selection by
approximating the state-action function Q(s, a). The value
network is trained using state-action functions Q(s, a) from
previous trees. The goal of the value network is to predict the
expected reward of taking any action a from a given state s.

The value neural network takes an input vector ŝ, similar
to the rollout policy network, alongside a disturbance a. The
target is the state-action value Q(s, a).

Both the rollout policy and value networks are trained us-
ing statistics from each fully explored tree. As MCFS-AP
builds multiple trees using action pruning, the statistics at
the current root of each depth are used for training. The rea-
son behind this is that root nodes are likely to be frequently
traversed, providing the most accurate predictions.4

3.4 Marine ColAv Simulation
We structure our system as a Markov decision process in or-
der to apply RL. Thus, a ColAv simulator should advance
through discrete state transitions.5 This is achieved by using
discrete time steps of equal length in a simulation S. Fol-
lowing the deterministic time step simulator principles laid
out above, we now discuss our two ColAv simulators.
The Efficient ColAv Simulator S0. To test the effective-
ness of the AST system, an efficient but simple ColAv sim-
ulator S0 is implemented. The goal of S0 is to eliminate
any noise and uncertainty, resulting in an efficient but low-
fidelity simulation with two vessels moving at a fixed speed
on a flat plane without other obstacles or disturbances. The
SUT is a vessel unaware of its surroundings moving across
the plane from left to right, in a straight line. The adversarial
vessel starts at the bottom of the plane, facing upward. The
heading of the adversarial vessel, given as the disturbance,
is altered by RL in searching for a failure event. While S0
hugely oversimplifies the probable heading of a vessel, it al-
lows for more understandable results through the simplicity
of the transition model and intuitive solutions.
The Complex ColAv Simulator S1. The complex simula-
tor S1 is for fine-grained stress testing of mA2. The simula-
tor, illustrated in Figure 2, encapsulates mA2 and its desired
path alongside a variable set of other vessels. A set of dis-
turbances was implemented for AST to tune while search-
ing for failure events. The main disturbance studied here is
altering the delay in mA2’s sensed position of the adver-
sarial vessel, given by a delay function. A noise function is
used to revert the sensed position to a previous one. Adding

4Training was carried out taking the state represented in a root
node, setting the positional data as input, and the statistics of the
node as target values, before using propagation to tune the network
weights (Lytskjold 2022).

5A distinction is made between simulation and simulation in-
terface in the MS thesis (Lytskjold 2022). For simplicity we do not
make that distinction here.

Figure 2: Top-down 2D view of the complex ColAv simula-
tor S1. The current position and previous path of the mA2
ferry are shown, respectively, as a red circle and a “tail,”
overlaid on a dashed vertical blue line showing its desired
path. An adversarial vessel’s path is shown in brown while
a yellow line shows current perceived heading. When sens-
ing delay is added, the perceived (perhaps incorrect) posi-
tion is shown as a brown circle. The perceived position is
used to calculate safety zones as indicated by the three poly-
gons (blue, green, and red) surrounding the adversary. Safety
zones should not be entered by mA2. Here, a delay in per-
ceived position of the adversarial vessel is introduced.

a noise vector equal to the difference between the current
and a specified previous state allows the sensed position and
heading to be altered, matching a previous state.

4 Experiments
4.1 Experimental Protocol and Setup
The system used for the experiments is an implementation of
AST, using two simulator implementations (of S0 and S1).
The S1 simulator is a much more detailed simulator than S0,
potentially giving us more realistic and interesting simula-
tion results. The downside of this is increased computational
cost. Simulation time goes up, approximately, from 2.2 ms
for S0 to 1 s for S1, a 450-fold increase.

The new RL agent implemented is MCFS-AP. The goal
with our implementation is a generalised version of AST that
is able to find failure events more efficiently. The complete
implementation of MCFS-AP can be found on GitHub.6

The experiments were run using a single 3.6GHz CPU
core with 16 GB of 3.2GHz DDR4 RAM. GPU acceleration
is not used for any of the models.

4.2 Experiment 1: AST ColAv Studies
AST has been used to create many valuable mA2 validation
scenarios (Hjelmeland et al. 2022; Hjelmeland 2022; Lyt-
skjold 2022). We here focus on one scenario that illustrates
an important class of scenarios involving sensing delays.

Goal. The goal of this experiment is to study how MCFS-
AP is able to find failure events for this scenario: How can

6MCFS-AP is fully implemented in Python: https://github.com/
bragelyt/Flexible-Adaptive-Stress-Testing



Table 1: Ability of different variants of MCFS-AP versus MCTS-SA to find failure events. All models build build 200 trees. All
MCFS-AP variants use action pruning A1 and memoizationM0.

RL agent MCFS-AP MCFS-AP MCFS-AP MCFS-AP MCTS-SA
Nerual networks RP/VN RP/- -/VN -/- -/-

Failures found 78 74 41 59 71
Failure rate 39% 37% 20.5% 29.5% 35.5%
Global best r̂∗ 29.092 28.650 28.784 28.061 28.245
Average of best r̂∗ 5.818 4.776 -1.426 1.927 2.304

(a) Major mA2 sensing delay, as reflected
in the large distance between filled and un-
filled brown circles, masks the adversarial
vessel’s actions.

(b) Reduced delay, reflected in the small
distance between filled and unfilled brown
circles, results in mA2 stopping for the ad-
versarial vessel.

(c) The mA2 ferry is unable to avoid side
collision with the adversary as its momen-
tum is too high and there is again a major
sensing delay.

Figure 3: Results of sensor delay experiment for the mA2 ferry (red filled circle) with rapid turning of the adversary (brown
filled circle), shown in a top-down 2D view. The course of mA2 is indicated with a vertical line segment (solid red and dashed
blue) at x = 0. Three time steps of the most likely failure event are shown, created using MCFS-AP/RP/VN with S1 simulation.

an adverserial sharp turn sensed with varying delay impact
mA2’s perceived course for the adversarial vessel?
Metod and Data. The complex simulator S1 is used with
MCFS-AP/RP/VN, resulting a many interesting simulation
runs (Lytskjold 2022). One of them is studied here.
Results. Examining the most likely failure event, illustrated
in Figure 3, we see that varying delays are being added dur-
ing the sharp turn. Clearly, such variation can mask an ad-
versarial vessel’s change in course. While not fully reflected
here, the sensing delay fluctuates substantially. Towards the
final time steps before the collision, the delay is again rela-
tively high for a short time. This results in a miscalculation
of the safety zones, see Figure 3c, tricking the ColAv sys-
tem. This results in mA2 speeding up, making the momen-
tum gained too great to slow down during the last time steps
when it becomes clear that the two vessels may collide.

4.3 Experiment 2: Improving Search Efficiency
We study empirically three main components of MCFS-AP:
the rollout policy network, the value network, and action
pruning without memoization.
Goal. As all three components directly alter the paths chosen
when traversing a search tree, this experiments aims to mea-
sure how this alteration impacts the search accuracy, as well
as how the different components impact the search time.
This experiment is run using simulator S0, in order to get
much quantitative data. As the runtimes of this simulator are
small, we are not using memoization here.
Method and Data. Five different models were implemented

to test the impact of the three main components. The first
three models are used to directly test the impact of the rollout
policy network and the value network. Here we implement
an MCFS-AP model for each network, using either the roll-
out policy network (RP), the value network (VN), or both.
These models are referred to as MCFS-AP/RP/- (using R1

and V0), MCFS-AP/-/VN (using R0 and V1), and MCFS-
AP/RP/VN (usingR1 and V1) respectively.

We consider two baseline methods. The first baseline is
MCFS-AP/-/- (usingR0 and V0). The second baseline is our
implementation of MCTS-SA (Lee et al. 2020). All MCFS-
AP variants use action pruning A1 with a maximum prune
depth of 18 and 500 nodes being added at each root. This re-
sults in 9,000 nodes and simulations per search. Each search
using MCTS-SA runs 9,000 simulations. Each method’s
search is run 200 times, resulting in a total of 1,800,000 sim-
ulations per method. The neural nets used in the MCFS-AP
variants are trained on data from the previous trees built by
that method in the current experiment.
Results. To compare the efficiency of different methods,
we build on the failure finding rate presented in Table 1.
Specifically, we study how approximate relative failure find-
ing rate depends on simulation runtime. The results, as pre-
sented in Figure 4, do not factor in time saved through mem-
oization. In other words, we always use the full simula-
tions. Importantly, failure rate is best for MCFS-AP/RP/VN
in Table 1. This result is also reflected for high simulation
runtimes in Figure 4, where both MCFS-AP/RP/VN and
MCFS-AP/RP/- slightly outperform MCTS-SA for high x-



Figure 4: Relative rate of finding failures over time (y-axis),
depending on full simulation run time (x-axis). Memoiza-
tion is not enabled, but action pruning is:M0 and A1.

Table 2: Simulation run times of MCFS-AP and MCTS-SA.

Parameter MCFS-AP/-/- MCTS-SA

Simulations run 440 440
Total run time (s) 227.335 412.521
Avg sim. run time (s) 0.517 0.938

values.

4.4 Experiment 3: Impact of Memoization
A key idea in MCFS-AP is to mimic MCTS in sequen-
cial games, locking down moves through action pruning. By
memoizing an action or disturbance sequence for S, we can
later recall the result of this sequence, only requiring us to
calculate states reached through later actions.
Goal. This experiment aims to measure memoization’s im-
pact on MCFS computation time. This is done through per-
foming action pruning at incremental depths, also memoiz-
ing or saving the state reached through a locked sequence of
disturbances or actions (see Figure 1).
Method and Data. The experiment is run using S1 with run-
times of around 1 s and a maximum of 25 steps. Memoiza-
tion M1 is performed for each root chosen through action
pruning down to a depth of nd = 22. As a baseline MCTS-
SA was used; it runs complete simulations. While MCTS-
SA calculates all states in every simulation, MCFS-AP only
calculates the states after the memoized state. At initial root
depth of 0, MCFS-AP starts simulation at time step t0 and
thus computes all 25 steps. In contrast, at the maximum root
depth of 22, MCFS-AP starts simulation at timestep t22 and
calculates only the last 3 time steps.
Results. Comparing the run time of MCFS-AP to the run
time of MCTS-SA, which always performs full simulations,
we see a substantial decrease in average simulation time,
presented in Table 2. This decrease in average simulation
time for MCFS-AP/-/- results in a faster overall search time,
allowing MCFS-AP to search the same number of distur-
bance sequences as MCTS-SA at approximately 55% of the

Figure 5: Relative rate of finding failures over time (y-axis),
depending on average simulation time (x-axis). MCFS-AP
methods use action pruning A1 and memoizationM1.

time if the simulation time is sufficiently long.
In order to further understand the effect of memoization

or action recall, we combine the findings of Figure 4 with the
runtime improvements presented in Table 2. The results, pre-
sented in Figure 5, show an approximation of the efficiency
of different methods (along y-axis) given varying simula-
tion times (along x-axis). MCFS-AP/RP/- is best in the time
interval from 15ms to 196.21ms, while MCFS-AP/RP/VN
is best for higher simulation run times. This demonstrates
the benefit of MCFS-AP/RP/VN when simulation times are
high, which is a main focus in this work, and a problem that
can also be found in other areas of science and engineering.

5 Conclusion and Future Work
Stress testing of engineered or natural systems can be per-
formed by encapsulating them in a simulator. We seek to
address the problem of long simulation times through our
proposed method, Monte Carlo Forrest Search with Action
Pruning (MCFS-AP). MCFS-AP aims to improve the effi-
ciency of MCTS through two methods: (i) a neural network
rollout policy and a value neural networ as well as (ii) pe-
riodically memoizing the internal state of the simulator, re-
moving the need to calculate frequently visited states mul-
tiple times. Combining neural networks and memoization
gives promising results. Memoization with state recall can
reduce the average simulation time by 45% and when com-
bined with the neural network models (MCFS-AP/RP/VN)
results in a potential doubling of the method’s efficiency.

Future work opportunities include the following. First, RL
remains compute-intensive, even in light of the improve-
ments discussed. For example, we are batching 20 simula-
tion steps for each RL step in experiments. Consequently,
further improvements in RL efficiency would be welcome.
One could use parallel computing, as the methods discussed
are amendable to such techniques. Second, while memoiza-
tion was introduced as an add-on to action pruning, the two
techniques are independent. Therefore, we propose to fur-
ther study just memoization for nodes, depending on their
depth and number of visits. This could, we hypothesize, re-
duce total search time.
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