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Abstract

Mixed-Integer Linear Programming (MILP) is an optimiza-
tion technique widely used in various fields. Existing end-to-
end learning methods for MILP generate values for a subset
of decision variables and delegate the remaining problem to
traditional MILP solvers. However, this approach does not
guarantee solution feasibility (i.e., satisfying all constraints)
due to inaccurate predictions and primarily focuses on predic-
tion for binary decision variables. When addressing MILP in-
volving non-binary integer variables using machine learning
(ML), feasibility issues can become even more pronounced.
Since finding an optimal solution requires satisfying all con-
straints, addressing feasibility is critical. To overcome these
limitations, we propose a novel reinforcement learning (RL)-
based solver that interacts with MILP to incrementally dis-
cover better feasible solutions without relying on traditional
solvers. We design reward functions tailored for MILP, which
enable the RL agent to learn relationships between decision
variables and constraints. Furthermore, we leverage a Trans-
former encoder-based graph neural network (GNN) to ef-
fectively model complex relationships among decision vari-
ables. Our experimental results demonstrate that the proposed
method can solve MILP problems and find near-optimal solu-
tions without delegating the remainder to traditional solvers.
The proposed method provides a meaningful step forward as
an initial study in solving MILP problems entirely with ML
in an end-to-end manner.

1 Introduction
The traveling salesman problem (TSP) and the knapsack
problem are representative examples of combinatorial opti-
mization (CO) problems that have been extensively studied
in operations research and computer science. CO addresses
mathematical optimization problems that aim to minimize
or maximize the value of a specific objective function. If
the objective function and constraints of CO are linear, it is
called linear programming (LP). If some decision variables
in LP must take integer values, it becomes Mixed-Integer
Linear Programming (MILP) (Bengio, Lodi, and Prouvost
2021). MILP is widely used to model various problems
(Zhang et al. 2023) such as logistics (Kweon et al. 2024),
path planning (Zuo et al. 2020), and energy systems (Ren
and Gao 2010).
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(a) ML-based primal heuristics.

(b) Proposed method.

Figure 1: Solving MILP with end-to-end learning methods.

ML methods that directly learn and generate solutions for
CO problems are categorized as an end-to-end learning ap-
proach (Bengio, Lodi, and Prouvost 2021). ML-based pri-
mal heuristics are considered as end-to-end learning (Han
et al. 2023), which aim to quickly find initial solutions to
MILP by reducing the search space (Achterberg, Berthold,
and Hendel 2012). Unlike traditional primal heuristics,
which rely on expert knowledge and hand-crafted designs
(Bengio, Lodi, and Prouvost 2021), the ML-based one lever-
ages similar patterns shared by MILP instances generated
from a specific distribution (Gasse et al. 2022). Figure 1(a)
illustrates how ML-based primal heuristics solve MILP. A
trained ML model generates a partial solution for a subset of
integer variables in a given MILP instance. The partial so-
lution is passed to a traditional optimizer (e.g., Gurobi) that
optimizes the remaining problem to obtain the final solution.

Existing ML-based primal heuristics have demonstrated
their ability to quickly find good solutions by reducing the
problem space (Gasse et al. 2019; Nair et al. 2020; Yoon
2022; Han et al. 2023; Cantürk et al. 2024). However, inac-
curate ML predictions hinder solution feasibility (i.e., sat-
isfying all constraints), which emphasizes the need to con-
sider feasibility (Han et al. 2023). The infeasibility prevents
reaching the optimal solution, posing a significant obstacle
to solving MILP. Moreover, most ML-based primal heuris-
tics (Gasse et al. 2019; Yoon 2022; Han et al. 2023; Cantürk
et al. 2024) focus solely on predicting values for binary deci-
sion variables. However, many real-world problems involve
non-binary integer (integer, for short) variables such as lo-
gistics (Kweon et al. 2024), maritime transportation (Papa-
georgiou et al. 2014), and energy systems (Ren and Gao
2010). This highlights the need for techniques capable of
effectively handling integer variables.



Infeasibility caused by incorrect ML predictions can be
more pronounced for integer variables due to their broader
prediction range than binary variables. For instance, imag-
ine a naive ML approach that uses regression to predict the
value of an integer variable xi within the range [0, 1000].
The maximum possible prediction error for a binary vari-
able, with a range of [0, 1], is 1. However, since the range
of xi is significantly broader, the maximum prediction er-
ror for xi would also be broader. Moreover, additional er-
rors can occur due to rounding that makes the predicted val-
ues integers. Therefore, a more accurate ML-based method
for integer variables is required. Nair et al. have proposed a
method to handle integer variables by representing the val-
ues in binary format. To represent xi as a binary sequence,
the required sequence length would be ⌈log2(1000)⌉ = 10.
Thus, predicting a single decision variable requires multi-
ple dimensions, and the upper/lower bounds of a variable
may even be infinite in some cases. It calls for more efficient
methods to handle integer decision variables.

To address these limitations, we propose an RL-based
method for solving MILP. Figure 1(b) illustrates how the
proposed solver derives the final solution for an MILP
instance. Unlike the existing end-to-end learning meth-
ods that focus on predictions for a subset of variables in
MILP, the proposed method generates complete feasible
solutions. Rather than directly predicting the exact values
of integer variables, we adopt an indirect approach where
the ML model determines whether to increase, decrease,
or retain the current value of each decision variable. To
guide these decisions, we design an RL system tailored to
MILP, enabling the agent to effectively learn the relation-
ships between decision variables and constraints. The solu-
tion search process is divided into two phases: before and
after finding the first feasible solution of MILP. We design
reward functions for each phase to align with their objec-
tives. During training, the RL agent is updated based on the
degree of constraint violations and improvements in the ob-
jective value. To capture the relationships among all decision
variables effectively, we adopt a Transformer encoder-based
GNN as the agent’s architecture. The trained agent processes
unseen MILP instances and incrementally improves the so-
lution using the proposed local search strategy. Experimen-
tal results demonstrate that the proposed model achieves op-
timal solutions on a small dataset and finds near-optimal so-
lutions with roughly 1% of the optimal for a larger dataset.
Our main contributions are summarized as follows:

• We propose a novel RL-based MILP solver (RL-MILP
solver) capable of finding complete feasible solutions,
rather than a partial solution.

• We design an RL system that enables the agent to effec-
tively learn the relationships between decision variables
and constraints by interacting with MILP problems.

• We propose a Transformer encoder-based GNN as the
agent’s architecture, designed to effectively capture the
complex relationships among decision variables in MILP.

2 Preliminaries
2.1 Mixed-Integer Linear Programming
Mixed-Integer Linear Programming (MILP) is a mathemat-
ical optimization problem that minimizes (or maximizes) a
linear objective function while satisfying linear constraints
and the integrality requirements for some decision variables
(Bertsimas and Tsitsiklis 1997). The standard form of MILP
is as follows:

minimize cTx (1)
subject to Ax ≤ b (2)

xi ∈ Z,∀i ∈ I (3)
li ≤ xi ≤ ui,∀i (4)

where x ∈ Rn is a column vector of n decision variables,
c ∈ Rn is a column vector of coefficients for the objective
function, A ∈ Rm×n is the constraint coefficient matrix,
b ∈ Rm is a column vector of the right-hand side of the
constraints, I is the index set of integer decision variables,
li/ui denotes the lower/upper bounds for each decision vari-
able xi. The goal of MILP is to find the optimal solution,
and for a minimization problem, this corresponds to a fea-
sible solution x that minimizes obj = cTx. A feasible so-
lution is defined as a solution x that satisfies all constraints
(Eqs. 2-4). Integrality requirements (Eq. 3) make the solu-
tion space of MILP discrete. As the number of integer vari-
ables increases, the possible combinations grow exponen-
tially, increasing the difficulty of solving MILP within poly-
nomial time. LP-relaxation refers to the technique of remov-
ing the integrality requirement in MILP, which transforms
it into an LP problem solvable in polynomial time (Bertsi-
mas and Tsitsiklis 1997). LP-relaxation is widely used in tra-
ditional algorithms, such as Branch-and-Bound (Land and
Doig 2010) and Feasible Pump (Fischetti, Glover, and Lodi
2005), to obtain an initial solution for MILP.

All MILP problems can be transformed into the form
shown in Equations 1-4 (Bertsimas and Tsitsiklis 1997).
Let aTi denote a row vector of a single constraint, A =(
aT1 , . . . ,a

T
m

)
, and b = (b1, . . . , bm). An equality con-

straint aTi x = bi is equivalent to two inequality constraints
(aTi x ≥ bi and aTi x ≤ bi). Moreover, aTi x ≥ bi is equiva-
lent to −aTi x ≤ −bi. Similarly, maximizing cTx is equiva-
lent to minimizing −cTx. For example, a problem with the
objective function maximizing +2x1 + 3x2 − x3 can be re-
formulated as minimizing −2x1 − 3x2 + x3, and the con-
straint −x1 + 2x3 ≥ −5 can be rewritten as x1 − 2x3 ≤ 5.
Thus, regardless of the set of constraints or the optimiza-
tion direction, all cases can be transformed into the standard
form given in Equations 1-4. Consequently, we focus only
on solving MILP problems that follow this standard form.

2.2 Graph Representation of MILP
Studies on ML-based primal heuristics, which assist tradi-
tional optimizers (e.g., Gurobi, SCIP), represent MILP in-
stances as bipartite graphs (Gasse et al. 2019; Nair et al.
2020; Yoon 2022; Han et al. 2023; Cantürk et al. 2024). In
a bipartite graph representation of MILP, one set of nodes
is for constraints, and the other is for decision variables. An



edge connects a decision variable node to a constraint node
only if the variable appears in the corresponding constraint.
For example, in Figure 2(a), the decision variable x3 appears
in the constraint a2. Therefore, in the MILP bipartite graph,
the variable node for x3 is connected to the constraint node
for a2.

2.3 Graph Neural Networks
Message Passing Neural Network The Message Passing
Neural Network (MPNN) (Gilmer et al. 2017) is a general
framework for message-passing-based GNNs. Widely used
architectures such as GCN (Kipf and Welling 2017), GAT
(Veličković et al. 2018), and GIN (Xu et al. 2019) are GNN
architectures based on MPNN. Given a graph G, the new
representation h

(k+1)
v for a target node v is obtained as fol-

lows:

m(k+1)
vu = msg(h(k)

v , h(k)
u , evu),∀evu ∈ E

g(k+1)
v = agg({m(k+1)

vu |u ∈ N (v)}),∀v ∈ V (5)

h(k+1)
v = update(h(k)

v , g(k+1)
v ),∀v ∈ V

where h(0)
v is the initial feature vector of node v, and msg(·),

agg(·), and update(·) are the message-passing, aggregation,
and update functions, respectively. msg(·) generates a mes-
sage m(k+1)

vu using the representation of target node h(k)
v , the

neighbor node h
(k)
u , and the edge feature evu. agg(·) aggre-

gates the messages m
(k+1)
vu generated by msg(·) for each

target node. update(·) updates the target node v to a new
representation h

(k+1)
v by combining the aggregated informa-

tion g
(k+1)
v with the previous embedding h

(k)
v . The embed-

ding h
(k+1)
v is either used for message passing in the next

layer or for prediction tasks.
Since edges exist only between nodes from different sets

(i.e., variable-constraint) in an MILP bipartite graph, obtain-
ing a new representation for a decision variable requires two
rounds of message passing. As shown in Figure 2(b), a new
representation for the decision variables is obtained by per-
forming one constraint-side convolution and one variable-
side convolution after applying initial embeddings.

Transformer for Graphs Graph Transformers are mod-
els that extend the Transformer architecture (Vaswani 2017)
to handle graph data. Originally designed as a sequence-to-
sequence model for machine translation, the Transformer
has achieved significant success in various domains such
as NLP and computer vision. Recently, there have been nu-
merous efforts to adapt Transformers for the graph domain
(Lin et al. 2022; Min et al. 2022). The attention mechanism
of Transformers enables each node to attend to every node,
which allows the model to effectively learn relationships be-
tween distant nodes (Wu et al. 2021).

In contrast, MPNN-based GNNs receive messages from
the neighbor node, which is suitable for learning local struc-
tural information. However, they struggle to capture rela-
tionships between distant nodes (Zhang et al. 2020; Wu et al.
2021). To propagate messages from nodes that are K hops
away, an MPNN-based GNN requires K layers. However,

(a) Example of a bipartite graph representation for an MILP in-
stance with three variables and two constraints.

(b) GCN for bipartite graph representation of MILP. V: Variable
nodes, C: Constraint nodes, E: Edge features and adjacency matrix.

Figure 2: Illustration of MILP bipartite graph representation
and its GCN architecture.

deeper layers can lead to the oversmoothing, where nodes
have similar and indistinguishable representations (Li, Han,
and Wu 2018; Wu et al. 2021; Min et al. 2022).

A GNN for MILP may require deep layers to capture
the relationships between variables that influence each other
across multiple constraints. For instance, as illustrated in
Figure 2(a), the variables x2 and x3 are 4 hops apart (x2 - a1
- x1 - a2 - x3). Although x2 and x3 do not appear in the same
constraint, they are connected via x1, which appears in both
a1 and a2. A change in the value of x2 can affect x1, which
may subsequently affect x3. Thus, capturing the relation-
ship between these decision variables is essential. Propagat-
ing messages from x2 to x3 requires four graph convolution
layers. However, even shallow networks with 2-4 GNN lay-
ers can suffer from the oversmoothing (Wu et al. 2023). To
address this, we utilize a Transformer encoder-based GNN,
which can effectively learn relationships between all nodes,
regardless of their distance.

3 Methodology

This section provides a detailed introduction to our RL-
MILP solver. Figure 3 demonstrates how the proposed solver
incrementally improves feasible solutions. The first step in-
volves transforming the MILP instance in its standard form
(Eqs. 1-4) into a bipartite graph. The MILP bipartite graph
serves as input to the GNN-based agent. In the second step,
the agent trained with an RL algorithm selects actions es-
timated to yield high rewards. The agent decides for each
variable whether to increase, decrease, or retain its value. In
the third step, the selected actions are applied to derive a so-
lution for the given instance. The final solution is updated
if the new feasible solution x, obtained from the selected
actions, is better than the best feasible solution found so far.



Figure 3: The overview of our approach. Green ↑, red ↓, and gray− represent an increase, a decrease, and no change in decision
variable values, respectively. The white point, red point, and green points denote the initial solution, an infeasible solution, and
feasible solutions, respectively. The darkest blue area marks the optimal solution.

Figure 4: Diagram of reinforcement learning for MILP.

3.1 Reinforcement Learning for MILP
In our scenario, RL aims to train the agent to make deci-
sions that maximize rewards while interacting with a given
MILP instance. Figure 4 illustrates how the RL agent in-
teracts with an example MILP instance, where St, At, and
Rt denote the observation, the set of actions, and reward at
timestep t, respectively. The given instance M acts as the en-
vironment with which the RL agent interacts. Based on the
set of actions At = (at,1, . . . , at,n) selected by the agent
for n variables, the solution xt+1 is updated. This update,
in turn, changes the left-hand side of the constraints lhst+1,
the feasible state ft+1, and the objective value objt+1. We
address details regarding ft+1 in the next section (Observa-
tion in Section 3.1). In the next timestep, the agent faces the
new environment changed by its previous actions. The agent
selects a new action set At+1 that is expected to maximize
rewards in the new environment. By comparing the actual
rewardRt+1 obtained from the action with the expected re-
ward, the agent updates its policy π.

Observation In RL for solving MILP, we define the solu-
tion xt, the feasible state ft, and the objective value objt
at timestep t as the observation St = (xt, ft, objt). The
solution xt is derived by updating the values of each vari-
able based on the agent’s actions At−1. For example shown
in Figure 4, assuming At−1 = (at−1,1 = +1, at−1,2 =
+0, at−1,3 = +0), then xt−1 is updated to xt = (xt,1 =
3, xt,2 = 9, xt,3 = −2). With the updated xt, the new

lhst = Axt and objt = cTxt are calculated.
ft is obtained from the difference between b and lhst

(i.e., ft = b − lhst). Each element of the ft vector indi-
cates whether xt satisfies the corresponding constraint. A
positive element in ft indicates that the corresponding con-
straint is satisfied, whereas a negative element means that the
constraint is violated. To ensure stable training, ft is scaled
by the sum of |b| and |lhst| (i.e., ft = (b − lhst)/(|b| +
|lhst|)). However, for simplicity, this paper explains ft with-
out scaling. For example, in Figure 4, the lhst+1 for con-
straints a1 and a2 derived from xt+1 are 31 and 4, respec-
tively. Thus, we have ft+1 = (a1 = 30 − 31 = −1, a2 =
5 − 4 = 1). From the elements of ft+1, we can infer that
xt+1 violates a1 but satisfies a2.

Action The RL agent for solving MILP selects the opti-
mal action for each decision variable to maximize the re-
ward in a given situation. At timestep t, the agent determines
the change in each variable’s value based on the observation
St = (xt, ft, objt). For each variable, the agent can take one
of three types of actions: increase (↑), decrease (↓), or retain
(−), as shown in Figure 4. In this study, the magnitude of
change for both increases and decreases is set to 1, resulting
in three possible actions for each variable.

Reward The reward system for the RL agent solving
MILP is designed in two phases: phase1 and phase2.
phase1 covers the period until the first feasible solution is
found, while phase2 starts after the first feasible solution
is found. In phase1, the solver aims to find a solution that
satisfies all the constraints of the given MILP instance. The
reward in phase1 is calculated based on the degree of im-
provement or deterioration in each constraint and whether

Figure 5: Illustration of reward function in phase2. ◦: inside,
△: outside, green: feasible, red: infeasible, white△ : objb.



the bounds of the decision variables are satisfied, as follows:

Rt =

m∑
j=1

(ft+1,j − ft,j)−
n∑

i=1

I (xt,i /∈ [li, ui]) (6)

where ft denotes the m-dimensional feasible state for the
m constraints, and xt,i is the value of decision variable i
at timestep t. The reward depends on the degree of im-
provement or deterioration in each constraint caused by the
agent’s actions At (first term in Eq. 6). Using ft and ft+1

given in Figure 4, the calculated reward is {−1 − (−3)} +
{1− (−2)} = 5. Additionally, the agent is penalized by the
number of decision variables that violate their bound condi-
tions (second term in Eq. 6). As shown in Figure 4, since the
lower bound for all decision variables is 0, the bound penalty
at timestep t is −1 due to xt,3 = −2. Hence, the reward Rt

is obtained by summing the two terms: 5 + (−1) = 4.
In phase2, the solver aims to find feasible solutions that

yield a better objective value than the best one previously
found. The reward is calculated as follows:

Rt =


1− δb, if objt ∈ (objr, objb),

−δb, if objt /∈ (objr, objb) ∧ infeasible,
0, if objt /∈ (objr, objb) ∧ feasible.

(7)

Rt + = Creward, if feasible ∧ objt < objb (8)

δb =
|objt − objb|
|objb|

(9)

where objr serves as the lower bound that is the objective
value of the LP-relaxation of the original MILP problem,
and objb denotes the smallest objective value found so far,
Creward denotes a positive constant which is set to +1 in
our study. The value of δb, ranging from 0 to 1, indicates
how close objt is to objb (Eq. 9). Smaller δb values indicate
greater proximity between the two.

To enhance understanding, we explain the reward func-
tion in phase2 (Eq. 7) with Figure 5. If a better (i.e., lower)
objective value than objb exists, it must lie between the lower
bound objr and objb. Thus, the agent should explore solu-
tions in this interval to obtain a better objt. Getting closer
to objr improves the obj value, but finding feasible solu-
tions becomes harder in this region because of the tight con-
straints. Therefore, the agent is encouraged to search for so-
lutions closer to objb, where finding feasible solutions is rel-
atively easier. For this reason, within the interval, higher re-
wards are given as objt gets closer to objb (Case 1 in Eq. 7).
Regardless of whether xt is feasible, a reward is given if objt
lies within the interval. In Figure 5, the red and green circles
correspond to this first case. We regard the agent’s actions
that result in objt falling outside the interval as incorrect. For
infeasible solutions xt outside the interval, a penalty is given
proportional to the distance of objt from objb (Case 2 in Eq.
7). In Figure 5, the red triangle represents this second case.
On the other hand, penalizing feasible solutions outside the
interval could undermine the agent’s learning from phase1,
where the goal is to find feasible solutions. To preserve con-
sistency in encouraging feasible solution discovery across
phase1 and phase2, no penalties are given for feasible so-
lutions outside the interval (Case 3 in Eq. 7). In Figure 5,

the green triangle corresponds to this third case. If the agent
finds a better feasible solution within the interval, an addi-
tional reward of Creward is given (Eq. 8), and it corresponds
to the green circle in Figure 5. Finally, in both phase1 and
phase2, if the agent does not perform any exploration (i.e.,
no change (−) for all variables), a penalty of −10 is added
toRt to encourage exploration.

Learning Algorithm For training the RL agent, we utilize
the Actor-Critic algorithm (Mnih et al. 2016) which has been
effective in solving CO problems (Bello et al. 2016; Hubbs
et al. 2020). The Actor-Critic algorithm combines a policy-
based actor and a value-based critic. The policy-based actor
aims to optimize the agent’s parameters θ to maximize the
expected cumulative reward. The actor directly learns a pol-
icy π(A | S; θ), which maps the observation S into a prob-
ability distribution over actions A. Meanwhile, the value-
based critic evaluates the value of the action given an obser-
vation and learns to select actions that maximize cumulative
rewards. The critic learns a value function Q(S,A) estimat-
ing the expected cumulative reward for a given S-A pair.

At each timestep t, the agent observes the environment’s
state St and decides actions to take using the policy π. When
the agent executes a set of actions At, the environment re-
acts by providing a new observation St+1 and a reward Rt

associated with the action. The actual (observed) rewardRt

is compared with the estimated reward Q(St,At). The ac-
tor is trained to encourage actions that yield actual rewards
higher than the estimated reward while suppressing actions
that result in lower actual rewards. Meanwhile, the critic is
trained to minimize the difference between the actual reward
Rt and the estimated reward Q(St,At) to provide more ac-
curate feedback to the actor.

To enable the RL agent to learn optimal actions across
various environments, we expose the agent to a diverse set of
MILP instances. Details on the random generation of MILP
instances are provided in Section 4.1 The agent uses in-
stances as the environment and continues training until a ter-
mination condition is met. In this study, the agent terminates
training for an instance if it either reaches a predefined step
limit or fails to find a better solution in phase2 over a prede-
fined number of steps. Once the agent meets the termination
condition, it switches to a new MILP instance.

3.2 GNN Architecture of RL Agent
For the agent’s architecture, we adopt a hybrid approach that
combines an MPNN-based GNN with a Transformer en-
coder (Rong et al. 2020; Wu et al. 2021). Figure 6 illustrates
the architecture of the RL agent for solving MILP prob-
lems. In our study, the MPNN-based GNN captures local
information specific to each decision variable. Meanwhile,
the Transformer encoder utilizes the captured local informa-
tion, along with additional MILP features, as inputs to learn
global information across all variables. We encode the fol-
lowing features as inputs to the GNN: the objective value
objt, the coefficients of the objective function c, the con-
straint coefficients A, the right-hand side of the constraints
b, the solution values xt, and the bound features bnd lim
for the variables’ lower and upper bounds.



Figure 6: The architecture of the GNN for the Actor-Critic
agent solving MILP.

The MPNN-based GNN aims to capture local information
for each decision variable. In an MILP graph, local informa-
tion can include whether the constraints involving a given
decision variable are satisfied. To learn feasibility relation-
ship between variables and constraints, we use xt, b, and
A as the features for variable nodes, constraint nodes, and
edges, respectively. Input feature scaling is necessary to en-
sure stable training. We apply equilibration scaling (Tom-
lin 1975) to scale A. Equilibration scaling relies on the
principle that multiplying each constraint by a non-negative
scalar does not change the optimization results of the orig-
inal MILP instance. We scale A to the range [−1, 1] by di-
viding each constraint by its own largest absolute coefficient.
For xt and b, whose bounds are difficult to define and thus
challenging to scale, we employ a periodic activation-based
module, called Periodic Embedding (PE), to embed scalar
values into vectors. PE has been shown to improve the per-
formance of DL models in tasks involving numerical feature
processing (Gorishniy, Rubachev, and Babenko 2022), such
as house price prediction (Pace and Barry 1997) and income
prediction (Kohavi et al. 1996). PE is formulated as follows:

Periodic(x) = concat[sin(v), cos(v)],

v = [2πc1x, . . . , 2πckx] .
(10)

where x is a scalar value, and ci is trainable parameters. The
constraint-wise scaled A serves as the weighted edge be-
tween variable and constraint nodes in the MILP graph. The
graph passes through L layers of bipartite GCN, after which
the resulting node embeddings h

(L)
v,t are fed into the Trans-

former encoder as inputs.
We utilize the Transformer encoder to enable the RL agent

to capture global information about MILP problems. Global
information in an MILP graph may include relationships
among decision variables connected through multiple con-
straints, as well as the feasibility and optimality of the solu-
tion. As shown in Figure 6, the transformer encoder takes a

phase token [PHA], PE-encoded (Eq. 10) objt, ft, and h̃
(L)
v,t

as input. The vector h̃(L)
v,t = [h

(L)
v,t , h

(0)
v,t , (c|AT ), bnd lim]

represents the embeddings for decision variables, where
[. . . ] denotes the concatenation operation and (c|AT ) is the
coefficient matrix containing structural information of the
graph. bnd lim is a binary feature set to 1 if the variable lies
on the boundary of its lower or upper bound, and 0 other-
wise. For example, if the values of two variables xj and xk

are 0 and 5 with a lower bound of 0, respectively. In this case,
the bnd lim for xj and xk would be 1 and 0, respectively.

The [PHA] token indicates the phase in which the agent is
currently operating. As mentioned in Section 3.1, the goals
and reward systems differ between the two phases, so the re-
ward for an agent’s action can vary depending on the phase.
If the agent is unaware of the current phase, it may take
wrong actions that are unsuitable for the situation. For ex-
ample, in phase2, the agent might take wrong actions by
staying outside the interval rather than striving to find bet-
ter feasible solutions within the interval, even though it has
already found a feasible solution in phase1 (shown as the
green△ in Figure 5). To prevent such behavior, we introduce
the [PHA] token to inform the agent of the current phase.

The Transformer encoder leverages the attention mech-
anism to learn relationships among decision variables and
between variables and constraints. The encoder’s output,
h
(L+N)
v,t , serves as the input to the Actor layer, which gen-

erates At. The Critic layer uses the final embeddings for
[PHA], objt, and ft as inputs to estimate the reward result-
ing from the action At. The reason for taking ft and objt
in the Critic layer is that rewards are given based on the im-
provements/deteriorations of feasibility and the discovery of
better obj values. Since the reward system is divided into
phase1 and phase2 depending on whether the first feasible
solution has been found, the Critic and Actor layers are also
separated for each phase. All layers, except for the Critic and
Actor layer, share parameters across the two phases.

3.3 Solution Search Strategy
Our solution search strategy of the agent is inspired by the
concept of local search, a widely used heuristic algorithm.
Local search aims to explore the neighborhood of the cur-
rent solution to find a good solution for the MILP problem
(Hillier and Lieberman 2015). While local search does not
guarantee solving the given problem in polynomial time,
empirical evidence suggests that it is effective at quickly
finding good solutions (Bertsimas and Tsitsiklis 1997). Al-
gorithm 1 provides the pseudo-code for the proposed search
algorithm. This algorithm leverages a GNN-based agent pa-
rameterized by θ to guide the search process and aims to find
the optimal (or near-optimal) solution.

This algorithm is designed to iteratively search for the op-
timal solution of a given instance M by exploring the neigh-
borhood of the best solution found so far during the infer-
ence phase. The solution search process proceeds as follows:
From the LP-relaxation of instance M , the initial solution
x0 and the objective value objr, which serves as the lower
bound, are obtained (Line 1). Since the values of decision
variables obtained from LP-relaxation are continuous, x0 is



Algorithm 1: Solution Search Algorithm
Input: Problem instance M , Local region size ∆
Parameter: Agent parameters θ
Output: Best feasible solution xb

1: Obtain an initial solution x0 and a lower bound objr
2: t← 0
3: objb ←∞
4: xb ← x0
5: while time limit not reached do
6: Observe the current observation St from M
7: Select a set of actions At using π(At | St; θ)
8: Obtain the neighbor xt+1 by applying At to xt
9: objt+1 ← cT xt+1

10: if xt+1 is feasible and objt+1 < objb then
11: objb ← objt+1

12: xb ← xt+1

13: else if any element of |xb − xt+1| > ∆
or objt+1 /∈ (objr, objb) then

14: xt+1 ← xb

15: end if
16: t← t+ 1
17: end while
18: return xb

rounded to remove decimal points, which often results in
an infeasible solution. The iteration counter t is initialized
to 0, the best objective value objb is initialized to infinity
(∞), and the best solution xb is set to the initial solution
x0 (Lines 2-4). The algorithm repeats the following solution
search steps until a predefined time limit is reached (Lines
5-17): The agent selects actions At that are likely to yield
higher rewards in the current situation (Lines 6-7). Based on
At, the next solution xt+1 and its objective value objt+1 are
obtained (Lines 8-9). If xt+1 is feasible and objt+1 is better
(i.e., lower) than objb, then objb and xb are updated to the
new objt+1 and xt+1, respectively (Lines 10-12). Updating
xb implies that the center of the local region is also updated.
If xt+1 falls outside the local region or the target search in-
terval, it is moved back to the center of the local region (i.e.,
xb) (Lines 13-15). After completing a search step, t is incre-
mented by 1 (Line 16). When the predefined time limit is
reached, the algorithm terminates and returns xb (Line 18).

Parameter Distribution
c randint[−10, 1]
A randint[1, 10] with density ρ = 0.1
b Aξ + ϵ, where

ξi ∼ randint[1, 10],∀i = 1, . . . , n and
ϵj ∼ randint[1, 10],∀j = 1, . . . ,m

I {x | x ∈ N, 1 ≤ x ≤ n}
li 0,∀i = 1, . . . , n
ui ∞,∀i = 1, . . . , n

Table 1: Parameters for MILP instance generation.

4 Experiments
4.1 Experimental Setup
Dataset Collection We generated MILP instances by ref-
erencing the method for random instance generation de-
scribed in (Qi, Wang, and Shen 2021). Table 1 summarizes
the parameters used for instance generation. Considering
that the ratio of non-zero coefficients ρ in typical LP prob-
lems is less than 5% (Hillier and Lieberman 2015), we set a
higher density of 10% to promote more interactions between
variables in constraints. In this study, we assume a special
case of MILP problems where all decision variables are non-
binary integers (integer, for short) to focus on handling inte-
ger variables. According to the default settings of the SOTA
optimizer Gurobi, the lower bound li and upper bound ui for
decision variables are set to 0 and∞, respectively. Datasets
are named in the format Dn∗m, where n and m are the num-
ber of decision variables and constraints, respectively. We
use two datasets for our experiments: D9∗18, which has the
same size as the largest dataset used in the prior research
(Qi, Wang, and Shen 2021), and D100∗50, which is approx-
imately 30 times larger than D9∗18. Training data is gener-
ated on-the-fly whenever the agent completes training on an
instance. In contrast, for the testing phase, we use 100 pre-
generated instances for each dataset.

Compared Methods We evaluated the performance of the
proposed method by comparing it with Gurobi known as a
SOTA commercial optimizer. In addition, to verify the ef-
fectiveness of the Transformer encoder, we compared sev-
eral variations of the RL agent’s architecture. The first vari-
ation is a Multi-Layer Perceptron (MLP), a basic architec-
ture composed of multiple fully connected layers. MLP has
a simple structure and is suitable for typical data process-
ing. The second variation is a Convolutional Neural Net-
work (CNN), an architecture designed to effectively extract
local features of the data. CNN is well-suited for structured
data like images, and in our experiments, each channel in
the CNN corresponds to a decision variable. The MLP and
CNN architectures replace the Transformer encoder in Fig-
ure 6 and are trained alongside the MPNN-based bipartite
GCN, which we call M MLP and M CNN, respectively.
M MLP and M CNN use the same input data as the pro-
posed method and have independent Critic/Actor layers for
phase1 and phase2 likewise. We extended the Actor-Critic
algorithm implemented in PyTorch (Kostrikov 2018) to suit
MILP problems. All ML variations were trained using the
same algorithm, with 500 and 5,000 parameter updates for
the D9∗18 and D100∗50 datasets, respectively. For compar-
ison, each method solves minimization problems for each
instance within 100 seconds.

Metrics To evaluate the compared methods from the per-
spective of feasibility, we introduce two metrics: Feasible
Rate (FR) and First Feasible Solution Time (FFST). FR rep-
resents the ratio of test instances where a method success-
fully found a feasible solution. FFST measures the amount
of time (in seconds) that the method takes to obtain the
first feasible solution. Additionally, to evaluate the solution
quality of the methods, we use the metric Relative Primal



Gap (RP Gap). RP Gap quantifies the difference between
the best objective value found by the method and the best ob-
jective value obtained across all methods (Gasse et al. 2022).
RP Gap is calculated as follows:

RP Gap =
|objb − obj∗|
|obj∗|

∗ 100 (11)

where objb is the best objective value found by the evaluated
method, and obj∗ is the best across all compared methods.
RP Gap indicates how close objb is to obj∗.

Dataset Method Metric
FR↑ FFST↓ RP Gap↓

D9∗18

Gurobi 100/100 < 1 0
M MLP 100/100 0.05 4.45
M CNN 100/100 0.05 1.90

Ours 100/100 0.07 0

D100∗50

Gurobi 100/100 < 1 0.01
M MLP 100/100 0.06 1.60
M CNN 100/100 0.07 1.96

Ours 100/100 0.06 1.33

Table 2: Performance comparison with compared methods
in terms of Feasible Rate (FR), First Feasible Solution Time
(FFST), and Relative Primal Gap (RP Gap).

4.2 Main Results
Table 2 shows the performance of the compared methods.
The proposed model and its variants (M MLP and M CNN)
successfully found feasible solutions for all instances in both
datasets. It indicates that the RL approach, which learns the
improvement/deterioration of constraints based on rewards,
is capable of capturing the relationships between variables
and constraints. Since sub-second timing is not reported in
Gurobi logs, precise comparisons are challenging. However,
all methods found the first feasible solution under 1 sec-
ond on average. In the D9∗18 dataset, M MLP and M CNN
reached RP Gaps of 4.45% and 1.90%, respectively, while
the proposed model and Gurobi achieved 0% RP Gap by
finding the optimal solution. The proposed model not only
finds feasible solutions but also reaches the optimal solution.

For the larger D100∗50 dataset, the proposed model
achieved a near-optimal solution with an RP Gap of 1.33%.
The proposed model and its variants are based on a lo-
cal search strategy, which does not guarantee reaching the
global optimum. This limitation likely contributed to the dif-
ficulty in finding the optimal solution for the larger search
space of D100∗50. Nevertheless, the proposed model out-
performed M MLP (1.60%) and M CNN (1.96%) in terms
of RP Gap. This result suggests that the use of the Trans-
former encoder enabled the effective learning of complex
relationships between variables connected across multiple
constraints. While M CNN outperformed M MLP in terms
of RP Gap on the D9∗18 dataset, its performance degraded
on the D100∗50 dataset. Since the order or position of vari-
ables in an MILP matrix holds no specific meaning, CNNs’
ability to extract local features may not be fully leveraged in
larger datasets with many decision variables.

5 Related Work
Bengio, Lodi, and Prouvost have categorized ML techniques
for solving CO problems into three groups. The first group,
Learning to Configure Algorithms, leverages ML to opti-
mize the configuration of specific techniques in traditional
MILP solvers. For instance, ML can improve solving speed
by deciding whether to execute specific operations, such as
decomposition (Kruber, Lübbecke, and Parmentier 2017).
The second group, Machine Learning Alongside Optimiza-
tion Algorithms, involves traditional solvers invoking ML re-
peatedly during the optimization process to support impor-
tant decisions, such as selecting the next search region (Lodi
and Zarpellon 2017). The third group, End-to-End Learn-
ing, involves ML directly learning and predicting solutions.
This group includes ML-based primal heuristics (Gasse et al.
2019; Nair et al. 2020; Yoon 2022; Han et al. 2023; Cantürk
et al. 2024), as well as our method. Existing ML-based pri-
mal heuristics output only partial solutions and face chal-
lenges in handling non-binary integer variables. Moreover,
they rely on supervised learning, which requires high costs
for collecting labeled training data. In contrast, our RL-
based method does not require labeled data. A previous RL-
based study on MILP focuses on heuristics for quickly find-
ing the first feasible solution (Qi, Wang, and Shen 2021) and
does not address the search for optimal solutions. To the best
of our knowledge, our study is the first to propose an ML-
based method that incrementally finds better complete fea-
sible solutions.

6 Conclusion
In this study, we proposed a novel RL-based MILP solver ca-
pable of generating complete feasible solutions, unlike pre-
vious approaches that delegate sub-problems to traditional
solvers. We designed an RL system that enables the agent
to capture the relationships between decision variables and
constraints while learning to solve MILP problems. The re-
ward functions are tailored for two distinct phases: before
and after finding the first feasible solution. To effectively
capture relationships among decision variables, we proposed
a Transformer-based GNN architecture for the RL agent.
Our experiments demonstrated that the Transformer-based
GNN outperformed other variants in terms of RP Gap. The
trained agent achieved optimal solutions for small datasets
and near-optimal solutions with roughly 1% of RP Gap
for larger datasets. This study proposes a novel RL-based
MILP solver, which establishes a foundation for ML-driven
approaches that eliminate reliance on traditional solvers.
This work focused on an MILP problem where all vari-
ables are integers while future research can extend the pro-
posed method to handle continuous variables as well. In ad-
dition, the local search strategy faces challenges in reaching
the global optimal solution due to its restricted search re-
gion. To overcome this limitation, further research on search
strategies for MILP is necessary. Building on our study as
a cornerstone, future work could explore ML approaches
that quickly search for high-quality solutions for large-scale
problems, where traditional solvers may struggle due to their
exponential time complexity.
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