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Abstract

This paper introduces a novel and scalable framework for un-
certainty estimation and separation with applications in data
driven modeling in science and engineering tasks where reli-
able uncertainty quantification is critical. Leveraging an en-
semble of quantile regression (E-QR) models, our approach
enhances aleatoric uncertainty estimation while preserving
the quality of epistemic uncertainty, surpassing competing
methods, such as Deep Ensembles (DE) and Monte Carlo
(MC) dropout. To address challenges in separating uncer-
tainty types, we propose an algorithm that iteratively im-
proves separation through progressive sampling in regions of
high uncertainty. Our framework is scalable to large datasets
and demonstrates superior performance on synthetic bench-
marks, offering a robust tool for uncertainty quantification in
data-driven applications.

1 Introduction
In recent years, uncertainty estimation has become an es-
sential aspect of machine learning, especially for applica-
tions that demand high reliability in decision-making, such
as autonomous driving (Kendall and Gal 2017), and medical
diagnosis (Lambrou, Papadopoulos, and Gammerman 2010;
Yang et al. 2009). Accurate uncertainty estimation not only
supports better model interpretability but also helps identify
areas where models are likely to make errors, ensuring safety
in high-stakes environments.

Uncertainty in machine learning is typically categorized
into two types: aleatoric uncertainty, which originates from
inherent noise or variability in the data, and epistemic uncer-
tainty, which stems from limitations in the model’s knowl-
edge and can potentially be reduced with additional data
(Hüllermeier and Waegeman 2021). Separating these two
types of uncertainty is essential in applications like Bayesian
optimization (Frazier 2018; Hernández-Lobato et al. 2017;
Shahriari et al. 2015; Ansari et al. 2023), inverse design (Wi-
jaya et al. 2024; Ansari et al. 2022), and active learning (Ren
et al. 2021; Settles 2009; Kirsch, Van Amersfoort, and Gal
2019; Gal, Islam, and Ghahramani 2017), where understand-
ing the nature of uncertainty influences strategic decisions.

For instance, in Bayesian optimization (BO) (Frazier
2018; Hernández-Lobato et al. 2017; Shahriari et al. 2015;
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Ansari et al. 2023) and active learning (Ren et al. 2021; Set-
tles 2009; Kirsch, Van Amersfoort, and Gal 2019; Gal, Is-
lam, and Ghahramani 2017), focusing on epistemic uncer-
tainty directs computational resources toward regions where
additional data could improve model performance. In engi-
neering, inverse design is a critical task aimed at identify-
ing design parameters that achieve a desired performance.
Accurate characterization of uncertainty—both its magni-
tude and type— is essential for this process, as it enables
the identification of designs that are not only optimized for
performance but also robust and reliable under real-world
conditions (Wijaya et al. 2024; Ansari et al. 2022).

While various methods exist for modeling uncertainty,
most classical BO approaches relying on Guassian processes
as surrogate models cannot effectively scale with increas-
ing dataset size which is a common theme in engineering
problems (Wang et al. 2016; Hernández-Lobato and Adams
2015; Snoek, Larochelle, and Adams 2012). For this reason
there has been a lot of efforts in replacing GPs with Bayesian
neural networks (Neal et al. 2011; Chen, Fox, and Guestrin
2014; Lakshminarayanan, Pritzel, and Blundell 2016; Gal
and Ghahramani 2016a; Lee et al. 2017; Wilson et al. 2016).
However Ansari et al. (2023) showed that most of these
BNNs also do not scale very well with the size of the dataset.
Among the techniques capable of handling large-scale data
are Deep Ensembles (DE) (Lakshminarayanan, Pritzel, and
Blundell 2017) and Monte Carlo (MC) dropout (Gal and
Ghahramani 2016b). While the former can provide some de-
gree of uncertainty separation MC dropout only predicts the
epistemic uncertainty. However, even DE faces limitations
in both aspects of uncertainty estimation quality:

• Localization of uncertainty: The first task in uncer-
tainty estimation is identifying regions within the input
space that may lead to unreliable predictions, regardless
of the type of uncertainty. Effective localization aids in
detecting areas where model predictions might not re-
main faithful to reality.

• Separation of uncertainties: The next task involves dis-
tinguishing between aleatoric and epistemic uncertainty
across the input domain. This distinction is particularly
valuable in applications such as Bayesian optimization
and active learning, where it is beneficial to avoid ex-
ploring regions dominated by irreducible aleatoric noise.



We demonstrate that under certain conditions, existing
methods can misidentify uncertainty types and provide in-
accurate predictions. To address these issues, we introduce
Algorithm 1 designed to enhance accuracy and reliability in
uncertainty separation.

In Section 4, we apply DE and E-QR to both a toy
problem and a synthetic mechanical problem to illustrate
the challenges associated with uncertainty separation. We
further demonstrate how Algorithm 1 effectively addresses
these challenges, highlighting its advantages in accurately
separating and quantifying uncertainty.

2 Related work and background
Uncertainty estimation in machine learning, particularly in
deep learning models, has gained significant attention due
to its importance in reliable decision-making. Separating
epistemic and aleatoric uncertainty is critical in many ap-
plications. Deep Ensembles (DE), introduced by Lakshmi-
narayanan, Pritzel, and Blundell (2017), provides uncer-
tainty estimates by averaging predictions from indepen-
dently trained neural networks. While DE can estimate both
epistemic and aleatoric uncertainty, it sometimes fails to sep-
arate them effectively.

Monte Carlo (MC) dropout approximates Bayesian neural
networks by applying dropout during training and inference
(Gal and Ghahramani 2016b).

Quantile regression has emerged as a promising approach
for uncertainty estimation, predicting the upper and lower
quantiles of the target distribution instead of point esti-
mates (Koenker and Bassett 1978). To ensemble such mod-
els, Fakoor et al. (2023) proposed a paradigm focused on
aleatoric uncertainty capture but did not address epistemic
uncertainty separation. Tagasovska and Lopez-Paz (2018)
leveraged quantile regression ensembles to model epistemic
uncertainty in high-dimensional spaces, while Hoel, Wolff,
and Laine (2023) applied it to reinforcement learning in
autonomous driving, demonstrating robustness in safety-
critical scenarios. Additionally, Mallick, Balaprakash, and
Macfarlane (2022) showcased its scalability and accuracy in
separating uncertainties in spatiotemporal problems.

DE and Ensemble Quantile Regression (E-QR) are supe-
rior to MC dropout for epistemic uncertainty estimation, as
both train independent models with varying parameters, un-
like MC dropout, which uses stochastic variations of a sin-
gle model (Gal and Ghahramani 2016a; Lakshminarayanan,
Pritzel, and Blundell 2016; Koenker and Hallock 2001).
While DE uses sub-networks trained with Negative Log
Likelihood (NLL) loss to model aleatoric uncertainty, E-QR
leverages pinball loss to predict quantiles (Romano, Patter-
son, and Candes 2019).

E-QR is simpler and more stable to train than DE. Pin-
ball loss is less sensitive to initialization and learning rate
compared to NLL loss, which is prone to gradient instabili-
ties and overfitting on small datasets (Moustakides and Ba-
sioti 2019; Streit and Luginbuhl 1994). DE requires a two-
step process—optimizing primary predictions (µ) followed
by training uncertainty (σ) heads with NLL loss—doubling
its computational effort compared to E-QR, which learns
quantile predictions in a single step (Zhang 2020; Ansari
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Figure 1: On the left figure, we observe how the lack of
data in a region with aleatoric uncertainty causes each sub-
network to fit the noise differently, as they only access small
subsets of the data. This overfitting results in the false re-
porting of epistemic uncertainty where none exists. On the
right figure, we see that in regions lacking sufficient data,
the fits for aleatoric uncertainty become unreliable, leading
to incorrect report of aleatoric uncertainty.

et al. 2022). Moreover, E-QR provides superior aleatoric
uncertainty predictions by directly modeling quantile inter-
vals, avoiding parametric assumptions required in DE (Bar-
ron 2019).

3 Methodology
In Section 3.2, we discuss the shortcomings of scalable
Bayesian Neural Networks (BNNs) in uncertainty sepa-
ration and demonstrate how Algorithm 1 can be used to
achieve robust uncertainty separation.

3.1 Challenges in uncertainty separation
Leakage of aleatoric uncertainty into epistemic uncer-
tainty

Although epistemic uncertainty is intended to capture
only uncertainty due to limited knowledge, in practice, it
may inadvertently include aleatoric uncertainty when data is
insufficient. This occurs because each subnetwork in an en-
semble model is trained on a subsample of the data. If these
subsamples are too small, subnetworks may overfit to their
specific data rather than generalizing between data points, as
expected with an L2 loss function. As a result, aleatoric un-
certainty can “leak” into the epistemic uncertainty estimates.
This phenomenon is common in both Deep Ensembles and
Ensemble Quantile Regression methods.

Leakage of epistemic uncertainty in aleatoric uncer-
tainty.

All models studied here rely on fitting mechanisms to
model aleatoric uncertainty. DE uses the Negative Log Like-
lihood (NLL) loss, while E-QR employs the pinball loss
to fit upper and lower quantiles. As a result, the accuracy
of these predictions depends heavily on the availability of
high-quality and sufficient data. In regions with high epis-
temic uncertainty, the fit of aleatoric uncertainty estimates
can become arbitrarily. This issue is exacerbated by the use
of bagging in sub-networks, where only a subsample of data
is visible to models attempting to learn aleatoric uncertainty.

Knowing that the root cause of both problems is the lack
of data, we propose a progressive sampling strategy in the
next section. This strategy focuses on regions where uncer-
tainty is detected, but the type of uncertainty (aleatoric or



Figure 2: Multi joint robotic arm with a moving base and 4
rotating joints. The goal is to train a model that can predict
the 2D position of the tip of the arm.

epistemic) remains unclear. By progressively acquiring ad-
ditional data in these regions, the model can refine its pre-
dictions and better separate the two types of uncertainty.

3.2 Reliable separation of epistemic and aleatoric
uncertainty

To reliably separate aleatoric and epistemic uncertainties,
we first identify regions where uncertainty is suspected and
create a comprehensive uncertainty map by normalizing and
combining all available uncertainty maps. In cases with mul-
tiple outputs, we focus on the common regions across each
output’s uncertainty map, as these shared uncertainties are
more likely to originate from the data rather than local mis-
fitings specific to individual outputs.

Once this common uncertainty map is established, we
gather additional data in the uncertain regions and retrain the
models. Iteratively repeating this process diminishes regions
of epistemic uncertainty while areas of aleatoric uncertainty
remain unchanged. By performing a logical XOR operation
between the final uncertainty map and the initial one, we can
isolate the initial epistemic uncertainty present in our initial
dataset. Algorithm 1 presents the complete procedure.

4 Evaluation
4.1 Experiment setup
Toy In this experiment, we aim to fit the function
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We introduce 4 specific regions in the input space two on
the top lacking data, and two on the bottom polluted with
irreducible random noise modeled as N (0, 0.3) (Figure 3).

Multi-joint robot In this problem, a robotic arm with four
rotatable joints and an adjustable base position on the wall
(x ∈ R5) is considered. The goal is to predict the final 2D
position of the arm’s tip (y ∈ R2) given its joint angles
(Ardizzone et al. 2019). To evaluate uncertainty separation,
we conduct an experiment where the behavior of one joint
is excluded from the dataset to test whether our model can
recover the missing information and determine the type of
uncertainty.

4.2 Aleatoric uncertainty leak into epistemic
uncertainty prediction

Figure 3 illustrates the aleatoric and epistemic uncertainty
calculated by the E-QR model for both outputs for the toy

Algorithm 1: Uncertainty separation.
Input
(X,Y )0 // Initial data set

Q // Number of iterations of the main algorithm

O // Number of outputs

Φ // Native Forward Process, e.g., a simulation

T // Threshold value for Binarizing the uncertainty

map

Output
UE , DUE , PUE // Position and value of the separated

epistemic regions.

UA, DUA , PUA // Position and value of the separated

aleatoric regions.

begin
dataset← (X0, Y0)

f0
BNN

train⇐== dataset // Train the BNN surrogate.

UA, UE ← f0
BNN // calculate the uncertainties from

the surrogate.

minUE ,maxUE ,minUA,maxUA ← MIN-MAX(UE , UA)

// Extracting the min-max of the uncertainties to

be used for scaling.

for i← 1 to Q do
for j ← 1 to O do

UE , UA ← Normalizer(minUE ,maxUE ,minUA,maxUA)

// Scaling and normalizing both total

uncertainty and epistemic uncertainty

calculated from the original dataset.

Uj
total = UE + UA // Adding both normalized

uncertainties to make sure all the

uncertain regions are captured.

Utotal
total = Utotal

total × Uj
total // Multiplying all the

total uncertainty maps for all outputs to

make sure we only keep the ones that are

mutual.

(X,Y )i ← Binarize(Utotal
total , T ) // Binarizing the

uncertainty map to create a mask for

extracting the next batch of data (X,Y )i.

dataset← (X,Y )i // Append new data to the old.

fi
BNN

train⇐== dataset // Train the BNN surrogate.

Ui
A, Ui

E ← fi
BNN // calculate the uncertainties

from the surrogate.

end
end

UA, DUA, PUA ← Utotal
total // After sufficient number of

iterations the total uncertainty map only contains

aleatoric uncertainty.

UA, DUA, PUA ← Utotal
total ⊕ U0

total // By comparing the

final total uncertainty with the initial one we

can determine the epistemic uncertain regions of

the initial data.

end
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Figure 3: In the top figure, from left to right, we present
the original training data, the model’s predictions, and the
aleatoric and epistemic uncertainty maps. The first row cor-
responds to the first output, while the second row corre-
sponds to the second output of the model. The epistemic
uncertainty map highlights four regions: two caused by a
lack of data and two influenced by the leak of random noise.
To achieve accurate separation, we apply Algorithm 1. Af-
ter two iterations, only the regions with aleatoric uncertainty
remain in the uncertainty map, confirming that the vanished
uncertain areas were indeed epistemic. Note that the white
dots are due to the low density of the training samples.

experiment. Notably, aleatoric uncertainty appears to leak
into the epistemic uncertainty plot.

Using Algorithm 1, we can generate an uncertainty map.
By iteratively focusing on uncertain regions and selectively
filling them with additional data, the true aleatoric uncer-
tainty regions recovers accurately in one iteration.

4.3 Epistemic uncertainty leak into aleatoric
uncertainty prediction

In Figure 4, the robotic arm is not augmented with aleatoric
noise; however, the behavior of one joint is excluded from
the dataset over a range of angles. This setup induces epis-
temic uncertainty, as the model lacks information about the
excluded range. While we expect the model to predict only
epistemic uncertainty, the figure shows a leakage of epis-
temic uncertainty into the aleatoric uncertainty predictions.

Algorithm 1 addresses this issue, identifying the uncer-
tainty as epistemic after four iterations. By adding data to
the uncertain regions, the uncertainty is completely resolved,
confirming that it was indeed epistemic.

5 Conclusion
This work introduces a novel framework for uncertainty sep-
aration using Ensemble Quantile Regression (E-QR), ad-
dressing the challenges of uncertainty leakage that lead
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Figure 4: This experiment highlights the leakage of epis-
temic uncertainty into aleatoric uncertainty. The plot illus-
trates the cross-section of two out of four rotating joints
and their effect on the 2D position of the tip. From left to
right, we present the original training data, the model’s pre-
dictions, and the aleatoric and epistemic uncertainty maps.
Since no random noise is injected into this problem, we ex-
pect to observe only epistemic uncertainty. However, the
aleatoric uncertainty map incorrectly reflects leaked epis-
temic uncertainty. Applying Algorithm 1 for four iterations
resolves this issue, as the uncertainty vanishes when the un-
certain regions are filled with additional data, confirming
that the observed uncertainty was indeed epistemic.

existing methods to erroneous separations. By leveraging
E-QR and Algorithm 1, we achieve robust separation of
aleatoric and epistemic uncertainties while mitigating leak-
age issues. The proposed method is computationally effi-
cient, scalable to large datasets, and validated through ex-
periments on synthetic benchmarks. These results establish
our framework as a reliable tool for uncertainty separation
in scientific and engineering applications.
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