
InceptionSR: Recursive Symbolic Regression for Equation Synthesis

Edward Gu1, Simon Alford1, Omar Costilla-Reyes2, Miles Cranmer3, Kevin Ellis1

1Cornell University
2Massachusetts Institute of Technology

3University of Cambridge
elg227@cornell.edu, sca63@cornell.edu, costilla@mit.edu, mc2473@cam.ac.uk, kellis@cornell.edu

Abstract

Symbolic regression (SR) algorithms generate equations that
fit a dataset. We propose a symbolic regression variant which
we call InceptionSR. Motivated by gradient boosting, our al-
gorithm iteratively runs a base SR algorithm, freezes partial
equations, and seeds the next round of SR using those frozen
equations as features. Our algorithm can also be viewed as a
simple form of “library learning”, a technique common in the
related field of program synthesis. We evaluate our algorithm
on toy problems as well as a real world scientific discovery
problem of generating equations to predict planetary instabil-
ity. Results show that our method consistently improves SR
performance, and may also generate more interpretable equa-
tions. Keywords: symbolic regression; equation discovery;
library learning, recursion; boosting

Introduction
The discovery of mathematical equations that describe phys-
ical phenomena has been foundational to scientific progress.
While neural networks and other machine learning ap-
proaches have achieved impressive predictive performance
across many domains, they often lack interpretability and
fail to provide scientific insights in the form of closed-form
mathematical expressions. Symbolic regression (SR) algo-
rithms address this limitation by automatically discovering
interpretable equations from data, offering a promising ap-
proach for scientific discovery that combines the automation
of machine learning with the interpretability of analytical
expressions. The field of symbolic regression has seen sig-
nificant advances since its inception in the 1970s, with meth-
ods ranging from evolutionary algorithms to neural network-
based approaches (Udrescu and Tegmark 2020; Schmidt and
Lipson 2009; Makke and Chawla 2023; Fong, Wongso, and
Motani 2023). PySR, a recent open-source symbolic regres-
sion system, has emerged as a powerful tool for equation dis-
covery in scientific applications (Cranmer 2023). PySR em-
ploys a multi-objective optimization approach, simultane-
ously minimizing prediction error and equation complexity
while maintaining a Pareto front of candidate expressions.
This allows scientists to explore the trade-off between pre-
dictive accuracy and interpretability - a crucial consideration

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in scientific applications where understanding the underly-
ing relationships is as important as predictive performance.

In this paper, we propose InceptionSR, a symbolic re-
gression algorithm that builds upon PySR by incorporating
ideas from gradient boosting and library learning. Motivated
by the observation that complex equations often contain
reusable subexpressions, our algorithm iteratively runs sym-
bolic regression, freezes promising partial equations, and
uses these frozen expressions as features in subsequent itera-
tions. This approach shares similarities with gradient boost-
ing (Friedman 2001), where successive models are trained
on residuals, but differs in that we maintain interpretability
by working with symbolic expressions rather than black-box
predictors. Our method can also be viewed as a form of auto-
mated library learning, where useful mathematical building
blocks are discovered and reused throughout the search pro-
cess (Ellis et al. 2020; Bowers et al. 2023).

We evaluate InceptionSR on both a synthetic dataset, re-
discovering Heron’s formula, and a challenging real-world
problem: predicting the instability time of planetary sys-
tems. The dynamics of multi-planet systems represent a
complex n-body problem that has resisted analytical char-
acterization for systems involving more than two planets
(Tamayo et al. 2020; Petit, Laskar, and Boué 2018; Petit
et al. 2020). While recent work (Cranmer et al. 2021) has
shown success using neural networks to predict planetary
instability, these models remain black boxes that offer lim-
ited scientific insight. By applying InceptionSR to this prob-
lem, we aim to discover interpretable equations that not only
predict instability but also advance our understanding of the
underlying physical mechanisms.

Our work demonstrates that recursive symbolic regression
can consistently outperform vanilla PySR in terms of both
prediction accuracy and equation interpretability. By break-
ing down complex relationships into simpler, reusable com-
ponents, InceptionSR makes progress toward automated sci-
entific discovery that yields not just predictive models, but
mathematical insights that can inform theory development.

Our work makes the following two contributions:
1. We introduce InceptionSR, a recursive symbolic regres-

sion algorithm which outperforms traditional approaches
by iteratively discovering and reusing subexpressions.

2. We show that InceptionSR’s core principle of expression
reuse may be applied with other methods of library learn-

ing (Stitch), creating powerful hybrid symbolic regres-
sion methods for equation synthesis.

Related Work
Symbolic regression. Research into methods for symbolic
regression — discovering of equations that fit data — goes
back to the 1970’s, with increasing popularity and applica-
bility over time (Gerwin 1974; Udrescu and Tegmark 2020;
Langley 1977; Schmidt and Lipson 2009). Symbolic regres-
sion algorithms often use evolutionary search, but more re-
cently, a wide variety of techniques have been used. (Cran-
mer et al. 2020) extract physical laws from a neural net-
work trained on the data. (Rivero, Fernandez-Blanco, and
Pazos 2022) deterministically grows expressions to fit data,
avoiding the need for evolutionary search. (Holt, Qian, and
van der Schaar 2023) uses deep generative modeling to
discover equations. (Fong, Wongso, and Motani 2023) im-
proves robustness of equations by alternating fitness func-
tions used in evolutionary search over succcessive genera-
tions. For a review of using symbolic regression, see (Makke
and Chawla 2023).

We build our algorithm using PySR as a starting block
(Cranmer 2023). PySR is a popular open source symbolic
regression algorithm that uses an evolutionary algorithm to
discover equations. In principle, our approach can interface
with any symbolic regression algorithm that outputs a Pareto
frontier of the best equation at each complexity.

Gradient boosting and library learning. Our proposed
algorithm shares similarities to the technique of gradient
boosting (Friedman 2001). InceptionSR also takes inspira-
tion from an area of research closely related to symbolic re-
gression: program synthesis, searching or otherwise synthe-
sizing programs that satisfy a specification (Gulwani, Polo-
zov, and Singh 2017). In particular, we take inspiration from
the technique of library learning, where a synthesized pro-
gram is constructed out of a library of interpretable subpro-
grams discovered during search (Ellis et al. 2020; Bowers
et al. 2023; Grayeli et al. 2024).

Gradient boosting for symbolic regression. (Sipper and
Moore 2021) shares some similarities to the present work.
In it, the authors propose using gradient boosting directly
for symbolic regression, using a symbolic regression algo-
rithm as the weak learner. Our algorithm instead reruns sym-
bolic regression for multiple iterations by providing previ-
ous rounds’ discovered equations as frozen feature inputs
to the next round. This allows greater flexibility in how the
residuals are defined and how previous equations are used in
the next round’s prediction. By comparing the performance
of equations at equal levels of complexity, our method also
provides a fair comparison. (Sipper and Moore 2021), in
contrast, achieve higher performance through boosting by
increasing the final complexity of the discovered equations
compared to no boosting.

Predicting planetary instability. Our work continues re-
search of prior work building models to predict the insta-
bility of planetary systems (Tamayo et al. 2020; Cranmer
et al. 2021). These prior works seek to shed light on the long
studied problem (Chambers, Wetherill, and Boss 1996; Pe-
tit et al. 2020; Obertas, Van Laerhoven, and Tamayo 2017)

of understanding dynamics behind the evolution of plane-
tary systems by building machine learning models that pre-
dict the instability of a system given features of the plan-
etary system configuration as inputs. By applying symbolic
regression to this problem, we hope to discover equations for
predicting instability which are more interpretable than ma-
chine learning models, potentially leading to new insights
into the area of research. (Alford et al., in prep.) discover
equations for predicting instability by distilling a modified
form of the neural network from (Cranmer et al. 2021).

Methods
InceptionSR Algorithm

Our approach leverages a black-box symbolic regression
system that produces a Pareto frontier of equations that op-
timally trades off between expression size (complexity) and
data fit. PySR is a multi-population evolutionary algorithm
that learns optimal mathematical equations approximating
the relationship between a dataset of features and a target. It
uses an evolve-simplify-optimize loop in order to discover
expressions containing unknown scalar constants. This loop
is comprised of the evolve phase, where multiple rounds
of tournament selection, mutations, and crossovers are per-
formed; the simplify phase, where algebraic simplification
rules are applied to reduce expression complexity; and the
optimize phase, which optimizes numerical constants and
parameters with respect to the loss function. It is important
to note that complexity in PySR is defined as “the number
of nodes in an expression tree, regardless of each node’s
content” (Cranmer 2023). The design of PySR considers
the challenges of symbolic regression in scientific discovery
problems, which makes it an ideal candidate for our algo-
rithm.

There are several key differences between vanilla PySR
and InceptionSR. Firstly, vanilla PySR is a single-pass learn-
ing algorithm where all expressions are discovered in one
evolutionary process, whereas InceptionSR is a multi-pass
learning algorithm where each pass discovers new relation-
ships using previously discovered patterns. This is similar
to how human scientists build new theories upon estab-
lished mathematical relationships between variables. Sec-
ondly, vanilla PySR maintains a fixed feature space during
the evolutionary process, whereas InceptionSR has a dy-
namic feature space that incorporates derived features, suc-
cessful expressions from prior runs, alongside the original
features. Thirdly, vanilla PySR searches through all possi-
ble expressions that may be constructed from the original
features and operators, as opposed to InceptionSR which
uses a hierarchical search space where each subsequent run
searches through an augmented space that includes compos-
ite functions. Lastly, only a single complexity measure based
on expression tree size is used for vanilla PySR, while Incep-
tionSR allows for the complexity of input features into PySR
to be modified. Reused equations from previous runs main-
tain their original complexities, allowing the algorithm to
build upon simpler building blocks while controlling overall
expression complexity. We hypothesize that unlike Incep-
tionSR, no matter how long vanilla PySR is run for, it will

Algorithm 1: InceptionSR

0: function INCEPTIONSR(X , y, prevModel, targetComplexities)
0: Initialize feature space and tracking variables
0: Load equations from previous model
0: Select equations matching target complexities from previous model
0: for all selected equation do
0: Evaluate equation on current features
0: Augment feature matrix with new feature and its complexity
0: end for
0: Train new symbolic regression model on augmented feature space
0: return model
0: end function=0

not be able to discover key subexpressions to reuse that make
the generated equations most accurate in modeling the data.

We experiment with different sets of equations to reuse,
including: top k elbow (k number of equations from the
Pareto frontier may be included), maximum complexity
(only the highest complexity equation is included, which is
around complexity 30), and all (the entire Pareto frontier is
included). When we reuse the entire Pareto frontier, we give
PySR complete autonomy in figuring out the best subexpres-
sions to use in the new equations. The automated selection
process for topk equations is that we choose k number of
equations that have the steepest ’elbow’ in its Pareto frontier.
Generally these are equations with low complexity, contain-
ing only 1 to 3 variables and a similar number of constants
or coefficients, and compared to other equations they have
a relatively steep drop-off in loss from the next lesser com-
plexity equation. These low-complexity equations are more
interpretable and are thus reused as a feature for the next it-
eration of PySR. Another option of equation selection would
be to have a domain expert select physically feasible equa-
tions they are able to interpret, allowing for more intelligent
subexpression selection.

Mathematical Interpretation
Feature Space Construction Vanilla PySR operates on a
static feature space X ∈ RN×D, where N is the number of
samples and D is the dimensionality of the input space. The
algorithm searches for functions f : RD → R within this
fixed dimensional space.

In contrast, InceptionSR dynamically expands the feature
space through iterative augmentation. At iteration k, the fea-
ture space becomes:

Xk = [X|Φ(X)] ∈ RN×(D+K) (1)

where Φ(X) = [ϕ1(X), ϕ2(X), ..., ϕK(X)] represents the
evaluation of K selected equations from previous iterations.

Complexity Measure Formulation Vanilla PySR em-
ploys a straightforward complexity measure based on ex-
pression tree size:

C(E) = |VE |+ |OE | (2)

where |VE | is the number of variables/constants and |OE | is
the number of operators in expression E.

Meanwhile, InceptionSR introduces a hierarchical com-
plexity measure:

Cres(E) =

D∑
i=1

wi +

K∑
j=1

C(ϕj) (3)

where wi = 1 for original features and C(ϕj) is the com-
plexity of reused equation ϕj .

Search Space Topology The search space in Vanilla PySR
forms a connected graph G = (V,E) where vertices V rep-
resent expressions and edges E represent valid mutations or
crossovers. The diameter of this graph is bounded by the
maximum allowed expression size.

On the other hand, InceptionSR creates a layered search
space hierarchy {Gk}Kk=1 where:

Gk = (Vk, Ek) ⊃ Gk−1 (4)

Each layer k incorporates some or all expressions from pre-
vious layers as atomic operations, effectively creating short-
cuts in the search space.

Fitness Function Construction Vanilla PySR uses a stan-
dard regularized fitness function:

F (E) = L(E(X), y) + λC(E) (5)

where L is a loss function and λ balances accuracy vs com-
plexity.

However, InceptionSR employs a component-wise fitness
function:

Fres(E) = L(E(Xk), y) +
∑
i

wiC(componenti(E)) (6)

where wi = 1 for original input features, and for reused ex-
pressions, wi equals the complexity of the expression when
it was first discovered. This formulation explicitly accounts
for the hierarchical nature of reused expressions by main-
taining their original complexity costs through weighted
component-wise penalties, ensuring that the total complex-
ity accurately reflects both the new operations and the com-
plexity of any reused subexpressions.

Population Dynamics Vanilla PySR maintains indepen-
dent populations {Pi}

np

i=1 evolving in parallel with occa-
sional migration. The evolution follows a Markov chain

Figure 1: Overview of equation distillation approach from (Alford et al., in prep.). We experiment replacing the use of PySR in
the second stage of equation distillation with our InceptionSR algorithm.

where the transition probabilities depend only on the current
state.

InceptionSR introduces conditional dependencies be-
tween successive runs through the augmented feature space.
The population dynamics can be described by a conditional
probability:

P (Ek|Φk−1) = P (Ek|Xk) · P (Xk|Φk−1) (7)

where Φk−1 represents the set of equations selected from
previous iterations.

Migration Mechanism Vanilla PySR uses a simple mi-
gration probability between its parallel populations:

P (migrate) =
{
αh for Hall of Fame
αm for Population Memory

(8)

where the Hall of Fame maintains the Pareto frontier of best-
performing equations across all runs, and Population Mem-
ory preserves diversity by sharing promising solutions be-
tween parallel populations.

InceptionSR extends this migration mechanism with
equation tracking:

P (migrate, ϕ) = P (migrate) · P (ϕ|C(ϕ)) (9)

where P (ϕ|C(ϕ)) represents the probability of selecting
equation ϕ based on its complexity, allowing the algorithm
to preferentially migrate equations that balance performance
and complexity.

Predicting Instability of Planetary Systems
To show the potential for our algorithm to assist in sci-
entific discovery on a real-world problem, we apply it to
the problem of generating equations that predict the time
to instability of a planetary system, a long studied prob-
lem (Chambers, Wetherill, and Boss 1996; Petit et al. 2020;
Obertas, Van Laerhoven, and Tamayo 2017). As a general
N-body problem, predicting the dynamics of a planetary sys-
tem is fundamentally chaotic and unpredictable. While ana-
lytic characterization is known for two-planet systems (Pe-
tit, Laskar, and Boué 2018; Hadden and Lithwick 2018), the
general case of three or more planets is not fully understood
(Petit et al. 2020). To shed light on the problem, (Tamayo

et al. 2020; Cranmer et al. 2021) build machine learning
models to predict instability of a planetary system. Build-
ing off these works, concurrent work (Alford et al., in prep.)
learns equations by distilling a neural network trained to pre-
dict instability time based on the architecture of the model
from (Cranmer et al. 2021). As part of their approach, they
use PySR to find equations that imitate a neural network that
predicts the instability time given a set of input features. We
experiment with replacing the PySR symbolic regression al-
gorithm as used in their approach with our recursive SR al-
gorithm, and evaluate the extent to which our method can
improve the performance and interpretability of the found
equations.

Let us briefly overview the techniques of (Alford et al.,
in prep.) for discovering equations for predicting instabil-
ity. They start with a neural network trained on a dataset of
simulations to predict the instability time of a planetary sys-
tem. The neural network takes as input the orbital elements
of the planetary system over 100 timesteps taken across the
first 104 orbits of the simulation, and predicts a instability
time of the system. Then they distill equations for predict-
ing instability from this neural network. The distillation ap-
proach first simplifies the neural network architecture and
applies regularization and sparsification to the network to
extract a transformed set of input features. These features
are sparse linear combinations of the original orbital ele-
ment input features. Second, the approach distills the neu-
ral network trained to predict instability given the mean and
standard deviation of these transformed features across the
input timesteps, using PySR to imitate the neural network
with equations. The inputs to PySR are a set of 20 means
and variances of the transformed feature set, and the targets
are the instability time predicted by the neural network. The
binary operators provided to PySR are +, ∗, ÷, −, and ex-
ponent. The only unary operator included is the sin function,
which they deem to be sufficient for this problem. For all
training, we use one GPU. See Figure 1 for an overview of
their approach.

PySR + Stitch
One of our motivations for our InceptionSR algorithm is the
idea that freezing and reusing initially discovered equations

Table 1: Average Pareto Frontier MSE for PySR and InceptionSR

Total Hours PySR InceptionSR (All) InceptionSR (Max Complex) InceptionSR (Top 5 Elbow)

1 1.764 ± 0.027 - - -
2 1.729 ± 0.016 1.691 ± 0.044 1.681 ± 0.045 1.698 ± 0.039

Table 2: % Improvement Compared to PySR (1 Hour)

Method Improvement (%)

PySR (2 Hours) 1.98 ± 0.02
InceptionSR (All) 4.14 ± 0.11
InceptionSR (Max Complex) 4.71 ± 0.13
InceptionSR (Top 5 Elbow) 3.74 ± 0.09

works as a form of “library learning”, where en route to dis-
covering a best-performing equation, we assemble a library
of smaller, more interpretable subexpressions out of which
the best-performing equation is composed. However, Incep-
tionSR only selects subexpressions which are good approx-
imations of the downstream task. We are also curious as to
whether a more sophisticated library, where subexpressions
that are reused multiple times in a single equation, or that
occur multiple complexities across the Pareto frontier of re-
sults, are used as building blocks for the next round of SR.
To this end, we experiment integrating Stitch, a Python pack-
age for library learning, into our SR algorithm (Bowers et al.
2023). Stitch takes as input a set of lambda calculus pro-
grams, and outputs one or more functions chosen to reduce
the description length of the set of programs when rewritten
with the functions. After running one iteration of search, we
pass the Pareto frontier of discovered equations into Stitch,
with some processing to convert equation representation into
lambda expressions. Then we look at the resulting abstrac-
tions discovered, and manually convert them into the most
similar corresponding expression. Then we provide that ex-
pression as a feature for the next round of symbolic regres-
sion.

Results
Predicting Planetary Instability
In Table 1, we compare the performance of vanilla PySR
against three variants of InceptionSR by reporting their
Mean Squared Error (MSE) on the training set of the plan-
etary instability prediction problem. For each run of PySR
and InceptionSR, the losses of equations across the entire
Pareto frontier are averaged. To ensure fairness in comparing
InceptionSR with PySR, we control for equation complex-
ity and total computational runtime, since both higher com-
plexity and longer runtime improve performance. It is fair
to compare the results of running InceptionSR with running
PySR for the same amount of total time, which is why we
compare two hours of PySR runtime with two hours of In-
ceptionSR runtime. The two hours of InceptionSR runtime is
broken into one hour of the first iteration of PySR followed
by one hour of the second iteration of PySR with equation

reuse. Because InceptionSR involves at least two iterations
of running vanilla PySR (so that subexpressions have the
chance of being reused), there are no values for running In-
ceptionSR for one hour. The choice of running each iteration
of PySR for one hour comes from the original PySR paper
(Cranmer 2023). The maximum complexity equation that
may be generated in the Pareto frontier is capped to com-
plexity 30 for a total runtime of one hour, complexity 60 for
a total runtime of two hours, and complexity 90 for a total
runtime of three hours. We double the amount of complexity
for each subsequent hour of runtime to observe how reusing
previous high-complexity equations would affect the perfor-
mance of equations in subsequent iterations.

We find that all 3 InceptionSR variants modestly but con-
sistently outperform running PySR in the same amount of
time (shown in Table 1). Table 2 demonstrates that all Incep-
tionSR variants achieve greater percentage improvements
over 1-hour PySR runs than simply running PySR for an
additional hour. This suggests that InceptionSR’s recursive
approach is more effective than extending PySR’s compu-
tation time. In Figure 2, we plot the MSE against equation
complexity for the average Pareto frontier across 5 seeds of
running PySR for 2 hours compared to running InceptionSR,
reusing the entire Pareto frontier, for the same amount of
time. At almost all complexities, InceptionSR achieves a su-
perior MSE. Similarly in Figure 3, InceptionSR that reuses
the 5 equations with the steepest loss drop-off (Top 5 El-
bow) outperforms PySR at nearly all complexities as well.
For all 5 seeds, the lowest complexity equation reused was 3
and the highest complexity equation reused was 17. Figure 4
shows that when InceptionSR incorporates the complexity-
30 equation as a building block, its performance notably di-
verges from vanilla PySR. At precisely the complexity level
where this equation is introduced, InceptionSR begins to
achieve lower loss values than PySR for equations of equiv-
alent complexity.

Table 3 compares the MSE of the highest complexity
equation from the previous iteration (equation with com-
plexity 30 ± 1), between PySR and InceptionSR variants. It
is interesting to note that the longer PySR is run, the worse
the MSE becomes for this equation. The results from all In-
ceptionSR variants outperforms that of PySR, with reusing
the Top 5 Elbow equations performing the best. As expected,
when the highest complexity equation was reused, the low-
est average MSE was achieved. This is because the highest
complexity equation would have the lowest loss out of the
whole Pareto frontier, and whenever it was reused in Pareto
frontier of InceptionSR, it would dramatically reduce loss.
This improvement is evident in Table 4, where all iterations
of InceptionSR show a significant reduction in loss after in-
corporating the complexity-30 equations as building blocks.

Table 3: MSE Equation Complexity 30 Comparison

Time (Hours) PySR InceptionSR (All) InceptionSR (Max Complexity) InceptionSR (Top 5 Elbow)

1 1.725±0.044 - - -
2 1.746±0.040 1.711±0.043 1.719±0.042 1.692±0.038

Table 4: InceptionSR Max Complexity

Complexity Equation Loss

27 y0 = ((4.57/(s140.13)) + (0.22 ∗ (((−1.22 ∗ ((sin(m1)− s13) + s16))−m1) 1.824
−(sin(m19) + (m19 + s15)))))− s1

32 y1 = prev − s5 1.701
30 prev = (((6.39− ((1.66m1) + s19))− (0.02 ∗ (−2.39/(s14 + (0.06 ∗ s7)))))

−sin((m19− ((m13 + 0.36) ∗ s3)) ∗ 0.18)) + 0.42

31 y0 = ((((6.98− sin(s14−0.31))− ((s1 + (((m1 +m19) + 0.83) ∗ 0.28)) 1.825
+s1))− (sin(s7) + ((s19− 0.42)/0.52)))− 0.32)− s5

32 y1 = prev − 1.00 1.647
30 prev = ((((s14− (s7 ∗ (−0.06/0.84)))−0.34) + 4.35) ∗ 1.07)−

((1.84m1)0.81))− sin(0.14 ∗ (((m19/0.61)−m13)− 1.29))

Table 4 shows two different seeds where y0 represents the
last pareto front equation without subexpression reuse, y1
shows how the subexpression ’prev’ is reused in the subse-
quent equation, and the ’prev’ equation displays the reused
subexpression itself. The complexity and loss for each equa-
tion are provided. Each y1 equation that reuses the previous
iteration’s expression achieves a lower loss than its predeces-
sor y0, demonstrating the effectiveness of reusing discovered
expressions. Higher complexity equations after y1 all build
upon their respective reused expression, further decreasing
the loss. This suggests that recursively applying PySR first
discovers a simpler relationship between features, and sub-
sequently uses this discovery to find the rest of the equation.

Although one might expect that an expanded feature space
would slow down evolutionary symbolic regression, we ob-
serve that reused subexpressions actually provide a more re-
fined basis for equation construction. This enriched start-
ing point leads to more efficient synthesis of high-quality
equations whenever these subexpressions are incorporated.
These results suggest that InceptionSR’s recursive approach
to equation discovery discovers better equations for predict-
ing the instability of 3-body planetary systems, whenever
previous subexpressions are reused, compared to vanilla
PySR in the same amount of time.

Heron’s Formula Rediscovery

We also explored a modified version of InceptionSR, where,
instead of recursively reusing PySR, we include the library-
learning method Stitch in between PySR runs, in order to aid
in the discovery and reuse of key subexpressions (Bowers
et al. 2023). We validate this method on Heron’s formula,
which expresses the area of a triangle in terms of the lengths
of its sides (a, b, c).

Figure 2: PySR vs InceptionSR All Complexities Reuse

Figure 3: PySR vs InceptionSR Complexity 30 Reuse

Figure 4: PySR vs InceptionSR Top 5 Elbow Complexities
Reuse

A =
√
s(s− a)(s− b)(s− c) (10)

s =
a+ b+ c

2
(11)

We created a synthetic dataset of 10,000 data points from
random values of input features a, b, and c. Each data point
had a target label of area A, computed from the values of
the input features. Running a symbolic regression algorithm
may achieve lower losses, but the generated equations them-
selves may not appear reminiscent of the form of Heron’s
formula. The goal is to find a variant of the subexpression
s, which represents the semiperimeter of the triangle, and to
reuse it multiple times correctly in an equation.

Running PySR for multiple hours was unsuccessful in dis-
covering a subexpression close to s, and therefore we never
reused any variation of a summation between a, b, and c,
in any equation in the Pareto frontier. Recursively running
PySR, where all equations are reused in subsequent itera-
tions, for multiple hours also failed to discover the functional
form of Heron’s formula. However, directly running PySR
for 1 hour produces equations that contain a + b + c as a
component in the overall equation. By applying Stitch to the
Pareto frontier generated by PySR, we successfully identi-
fied the function f(x) = x−(a+b+c), which encapsulates
the crucial subexpression underlying Heron’s formula. Al-
though the exact output of Stitch cannot be included as an
operator in the next iteration of PySR, we use the output of
Stitch as an oracle and extract the feature −a−b−c to reuse
as s. Subsequently, the second iteration of PySR (1 hour)
recognized the importance of s and reused it three times in
all equations on the Pareto frontier after complexity 20. Here
is one such equation synthesized (coefficients removed):

A =
s

a
− a− abc

s
+ s+ 1 (12)

PySR demonstrates particular effectiveness in discovering
summative relationships, suggesting that logarithmic trans-
formation of Heron’s formula could better facilitate its dis-
covery. Furthermore, simplifying the search space by elim-

inating division operations and numerical coefficients could
also be helpful. While our approach did not fully recon-
struct Heron’s formula, we demonstrated that integrating li-
brary learning methods enables the identification and strate-
gic reuse of critical subexpressions from symbolically re-
gressed equations. This integration enables the systematic
reuse of important mathematical components, an ability that
existing symbolic regression methods struggle with. We be-
lieve that longer runtimes and utilizing more powerful sym-
bolic regression methods would lead to a more accurate
Heron’s formula rediscovery.

Conclusion
We have shown the efficacy of recursively running sym-
bolic regression in order to discover equations that bet-
ter model input data. Through the planets instability prob-
lem, we demonstrate that InceptionSR enables the use of
a superior basis for synthesizing equations, through the re-
incorporation of subexpressions from the previous iteration
of regression. Recursively incorporating the output equa-
tions of each iteration of symbolic regression into the fea-
ture space of the next iteration of symbolic regression, is
reminiscent of gradient boosting and more powerful than
continuously running symbolic regression for longer dura-
tions. As a library learning method, we have demonstrated
that combining PySR with Stitch is potentially an effective
way to discover key subexpressions that may be reused mul-
tiple times within a larger equation, such as the variable s in
Heron’s formula.

Future Work Due to the flexibility of InceptionSR, we
may recursively use any other symbolic regression method
(e.g. AI Feynman) in place of PySR, in order to recursively
search through the space of possible equations in a more in-
formed way. It is also interesting to see how hybrid symbolic
regression and library learning methods may be used in tan-
dem to iteratively refine a useful library of mathematical re-
lations between features in a dataset. Elements in such a li-
brary can be used to compose higher-complexity equations
to model more complicated phenomenon. We want to vali-
date our approach on existing benchmarks such as SRBench,
as well as predict equations in other scientific domains.
Future work on the planets instability prediction problem
would involve running more iterations of InceptionSR and
comparing those results with vanilla PySR. Having a physi-
cist interpret the physical meaning behind the synthesized
equations at each iteration is crucial for advancing scientific
theory, and leveraging LLMs for equation interpretation is a
promising direction as well.

References
Bowers, M.; Olausson, T. X.; Wong, L.; Grand, G.; Tenen-
baum, J. B.; Ellis, K.; and Solar-Lezama, A. 2023. Top-
Down Synthesis for Library Learning. Proceedings of the
ACM on Programming Languages, 7(POPL): 1182–1213.

Chambers, J.; Wetherill, G.; and Boss, A. 1996. The stability
of multi-planet systems. Icarus, 119(2): 261–268.

Cranmer, M. 2023. Interpretable Machine Learn-
ing for Science with PySR and SymbolicRegression.jl.
arXiv:2305.01582.
Cranmer, M.; Tamayo, D.; Rein, H.; Battaglia, P.; Hadden,
S.; Armitage, P. J.; Ho, S.; and Spergel, D. N. 2021. A
Bayesian neural network predicts the dissolution of compact
planetary systems. Proceedings of the National Academy of
Sciences, 118(40): e2026053118.
Cranmer, M. D.; Sanchez-Gonzalez, A.; Battaglia, P. W.;
Xu, R.; Cranmer, K.; Spergel, D. N.; and Ho, S. 2020. Dis-
covering Symbolic Models from Deep Learning with Induc-
tive Biases. CoRR, abs/2006.11287.
Ellis, K.; Wong, C.; Nye, M.; Sable-Meyer, M.; Cary, L.;
Morales, L.; Hewitt, L.; Solar-Lezama, A.; and Tenen-
baum, J. B. 2020. DreamCoder: Growing generalizable, in-
terpretable knowledge with wake-sleep Bayesian program
learning. arXiv:2006.08381.
Fong, K. S.; Wongso, S.; and Motani, M. 2023. Evolution-
ary Symbolic Regression: Mechanisms from the Perspec-
tives of Morphology and Adaptability. In Proceedings of
the Companion Conference on Genetic and Evolutionary
Computation, GECCO ’23 Companion, 21–22. New York,
NY, USA: Association for Computing Machinery. ISBN
9798400701207.
Friedman, J. H. 2001. Greedy function approximation: a
gradient boosting machine. Annals of statistics, 1189–1232.
Gerwin, D. 1974. Information processing, data inferences,
and scientific generalization. Behavioral Science, 19(5):
314–325.
Grayeli, A.; Sehgal, A.; Costilla-Reyes, O.; Cranmer, M.;
and Chaudhuri, S. 2024. Symbolic Regression with a
Learned Concept Library. arXiv:2409.09359.
Gulwani, S.; Polozov, A.; and Singh, R. 2017. Program Syn-
thesis, volume 4. NOW.
Hadden, S.; and Lithwick, Y. 2018. A criterion for the onset
of chaos in systems of two eccentric planets. The Astronom-
ical Journal, 156(3): 95.
Holt, S.; Qian, Z.; and van der Schaar, M. 2023. Deep Gen-
erative Symbolic Regression. arXiv:2401.00282.
Langley, P. W. 1977. BACON: a production system that dis-
covers empirical laws. In Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence - Volume
1, IJCAI’77, 344. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc.
Makke, N.; and Chawla, S. 2023. Interpretable Sci-
entific Discovery with Symbolic Regression: A Review.
arXiv:2211.10873.
Obertas, A.; Van Laerhoven, C.; and Tamayo, D. 2017. The
stability of tightly-packed, evenly-spaced systems of Earth-
mass planets orbiting a Sun-like star. Icarus, 293: 52–58.
Petit, A. C.; Laskar, J.; and Boué, G. 2018. Hill stability in
the AMD framework. Astronomy & Astrophysics, 617: A93.
Petit, A. C.; Pichierri, G.; Davies, M. B.; and Johansen, A.
2020. The path to instability in compact multi-planetary sys-
tems. Astronomy & Astrophysics, 641: A176.

Rivero, D.; Fernandez-Blanco, E.; and Pazos, A. 2022.
DoME: A deterministic technique for equation development
and Symbolic Regression. Expert Systems with Applica-
tions, 198: 116712.
Schmidt, M.; and Lipson, H. 2009. Distilling Free-Form
Natural Laws from Experimental Data. Science, 324(5923):
81–85.
Sipper, M.; and Moore, J. H. 2021. Symbolic-regression
boosting. Genetic Programming and Evolvable Machines,
22(3): 357–381.
Tamayo, D.; Cranmer, M.; Hadden, S.; Rein, H.; Battaglia,
P.; Obertas, A.; Armitage, P. J.; Ho, S.; Spergel, D. N.;
Gilbertson, C.; Hussain, N.; Silburt, A.; Jontof-Hutter, D.;
and Menou, K. 2020. Predicting the long-term stability of
compact multiplanet systems. Proceedings of the National
Academy of Sciences, 117(31): 18194–18205.
Udrescu, S.-M.; and Tegmark, M. 2020. AI Feynman: A
physics-inspired method for symbolic regression. Science
Advances, 6(16): eaay2631.

