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Abstract

We introduce BIOTROVE, the largest publicly accessible
dataset designed to advance Al applications in biodiversity. Cu-
rated from the iNaturalist platform and vetted to include only
research-grade data, BIOTROVE contains 161.9 million im-
ages, offering unprecedented scale and diversity from three pri-
mary kingdoms: Animalia ("animals”), Fungi ("fungi”), and
Plantae (”plants”), spanning approximately 366.6K species.
Each image is annotated with scientific names, taxonomic
hierarchies, and common names, providing rich metadata to
support accurate Al model development across diverse species
and ecosystems.

We demonstrate the value of BIOTROVE by releasing a suite
of CLIP models trained using a subset of 40 million captioned
images, known as BIOTROVE-TRAIN. This subset focuses
on seven categories within the dataset that are underrepre-
sented in standard image recognition models, selected for their
critical role in biodiversity and agriculture: Aves (birds”),
Arachnida ("spiders/ticks/mites”), Insecta ("insects”), Plantae
(plants”), Fungi ("fungi”), Mollusca (’snails”), and Reptilia
("snakes/lizards”). To support rigorous assessment, we intro-
duce several new benchmarks and report model accuracy for
zero-shot learning across life stages, rare species, confounding
species, and multiple taxonomic levels.

We anticipate that BIOTROVE will spur the development of
Al models capable of supporting digital tools for pest control,
crop monitoring, biodiversity assessment, and environmen-
tal conservation. These advancements are crucial for ensur-
ing food security, preserving ecosystems, and mitigating the
impacts of climate change. BIOTROVE is publicly available,
easily accessible, and ready for immediate use.

Introduction

Al advances are poised to play a crucial role in biodiversity
conservation, ecology management, and agriculture. Already,
Al tools have been shown to enable automated species iden-
tification, monitoring of ecological changes, and optimiza-
tion of crop management (Shivaprakash et al. 2022; Chiu
et al. 2020). However, standard Al approaches for biodiver-
sity applications persistently face major challenges. Training
datasets are labor-intensive and costly to create; they cover
only a narrow set of visual concepts; standard vision mod-
els excel at single tasks but require extensive retraining for
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new tasks; models often struggle with generalizing to unseen
labels and new environments, limiting their effectiveness in
real-world applications (Roy et al. 2024; Giildenring and
Nalpantidis 2021). Models that perform well on benchmarks
often fail in the wild (Geirhos et al. 2018; Alcorn et al. 2019).
Standard computer vision datasets (ImageNet and its suc-
cessors) have significant limitations, including incorrectly
labeled images, geographical and cultural biases, and over-
lapping or ill-defined labels, all of which impair the develop-
ment of high-performant AI models (Luccioni and Rolnick
2023). Consequently, there is a critical need for large, diverse,
accurately annotated datasets that are specific to biodiversity,
ecology, and agricultural research (Miiller et al. 2023; Lu
et al. 2022).

In response to this need, several datasets have been in-
troduced. Perhaps the most well-known (raw) pool of bio-
diversity images on the Web is iNaturalist (Van Horn et al.
2018), from which several curated datasets have been sourced,
among them being iNat2021 (Unger et al. 2021) with 2.7M
images of over 10,000 species of plants, animals, and fungi.
However, insects (which comprise a very large fraction of ex-
tant species) are under-represented in this dataset. IP102 (Wu
et al. 2019), Insecta (Feuer et al. 2024), and the more re-
cent BIOSCAN-1M (Gharaee et al. 2024), are alternative
datasets that focus on the Insecta Class. Perhaps the latest
advance in such research is TREEOFLIFE-10M (Stevens
et al. 2023), which is currently the state-of-the-art dataset of
text-annotated biological images, comprising 10M images
with approximately 450K unique taxonomic classes.

In this paper, we contribute to advancing biodiversity Al
research by curating and releasing BIOTROVE, a dataset
comprising 161.9 million captioned images across approx-
imately 366.6K species. This dataset surpasses all previ-
ous collections in both scale and diversity, representing
the largest publicly available, “Al-ready” dataset of curated
biodiversity images. Each image in BIOTROVE is paired
with language data and spans a diverse range of taxonomic
groups, including Reptilia (reptiles), Plantae (plants), Mol-
lusca (mollusks), Mammalia (mammals), Insecta (insects),
Fungi (fungi), Aves (birds), Arachnida (arachnids), Animalia
(animals), Amphibia (amphibians), and Actinopterygii (ray-
finned fish). The dataset spans global regions, supporting
robust training across diverse environmental contexts. Repre-
sentative examples are shown in Figure 1.
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Western Honey Bee common yarrow Mallard Garden Snail
Apis mellifera Achillea millefolium Anas platyrhynchos Cornu aspersum
365706 157223 356035 59698
Asian Lady Beetle Red Clover House Sparrow Brown-lipped Snail
Harmonia axyridis Trifolium pratense Passer domesticus Cepaea nemoralis
345042 137305 333700 43206
Monarch Butterfly white clover Great Blue Heron Leopard Slug
Danaus plexippus Trifolium repens Ardea herodias Limax maximus
285328 157190 317191 42300
Common Eastern Bumblebee Jack-by-the-hedge Canada Goose Roman Snail
Bombus impatiens Alliaria petiolata Branta canadensis Helix pomatia
197993 134993 312803 30679
Seven-spotted Ladybird Beetle Prunella vulgaris Red-tailed Hawk Pacific Banana Slug
Coccinella septempunctata Common Selfheal Buteo jamaicensis Ariolimax columbianus

Coprinus comatus Xylaria hypoxylon Anthopleura xanthogrammica

Figure 1: Top Seven Phyla in the BIOTROVE Dataset. This figure displays the seven most frequently occurring phyla within
BIOTROVE, which is curated to include data exclusively from the three primary kingdoms: Animalia, Plantae, and Fungi. For
each phylum, the five most common species are shown, including their scientific names, common names, and the number of
images per species. The phyla are ordered by species diversity, with the most diverse phylum on the right and the least diverse on

the Ieft.

Each image in BIOTROVE originates from the iNatural-
ist community science platform (Van Horn et al. 2018) and
is annotated with detailed metadata, including the common
name, scientific name, and complete taxonomic hierarchy.
This curated metadata provides research-grade high-quality
text annotations that enhance Al model training. Additionally,
we open-source a data management pipeline, BIOTROVE-
PROCESS, to facilitate interaction with BIOTROVE metadata.
With BIOTROVE-PROCESS, researchers can efficiently filter
and balance data by selecting specific taxonomic categories,
adjusting for taxonomy level, and managing species distribu-
tion to reduce skewness. This enables users to create custom
subsets that align with their research goals while maintaining
consistency in species representation.

To showcase the capabilities of BIOTROVE, we intro-
duce two technical contributions. First, we train and re-

lease BIOTROVE-CLIP, a suite of vision-language founda-
tion models, using a subset, BIOTROVE-TRAIN, consisting
of approximately 40M images from BIOTROVE and repre-
senting around 33K species. This subset, constructed with
BIOTROVE-PROCESS, includes diverse taxa, specifically fo-
cusing on birds (Aves), spiders/ticks/mites (Arachnida), in-
sects (Insecta), plants (Plantae), fungi (Fungi), snails (Mol-
lusca), and snakes/lizards (Reptilia). These taxonomic classes
were selected to capture a broad range of species—outside
of charismatic megafauna—that critically impact biodiver-
sity. The models exhibit robust generalization capabilities,
demonstrating high zero-shot and few-shot performance on
unseen taxa when using either common or scientific names.
We anticipate that BIOTROVE-CLIP will serve as a valuable
foundation for biodiversity-related applications and can be
further fine-tuned for specific research needs.



Second, we rigorously quantify the performance of our
foundation models on five existing fine-grained image classi-
fication benchmarks, as well as on three newly curated test
datasets. We find that BIOTROVE-CLIP models comfortably
achieve the state-of-the-art in certain settings, while both the
original (OpenAl) CLIP model as well as BIOCLIP (Stevens
et al. 2023) excel in certain other settings. We analyze these
findings in further detail below, but overall we hope that our
dataset can be used by the Al community as a testbed for fur-
ther algorithmic and scaling research in fine-grained image
recognition.

The remainder of this paper is organized as follows. Sec-
tion introduces the BIOTROVE dataset, the dataset’s salient
characteristics, and a comparison with previous work. Sec-
tion details our curation methodology. Section introduces
our newly proposed test datasets and their characteristics.
Section details our new BIOTROVE-CLIP models and their
benchmark performance relative to previous work. Section
concludes with a discussion of limitations and potential future
directions.

The BioTrove Dataset

Characteristics. BIOTROVE comprises over 161.9 million
images spanning 372,966 species. This dataset is an order of
magnitude larger than existing biodiversity datasets, such as
the state-of-the-art TREEOFLIFE-10M dataset, which it sur-
passes in scale by a factor of nearly 13.5x while maintaining
comparable species diversity. Figure 1 shows representative
image samples, while Figure 2 displays the distribution of
samples across the seven major categories with the most fre-
quently observed species. Additionally, Figure 3 illustrates
the range of phyla, taxonomic classes, orders, and families
represented in the dataset.

BIOTROVE includes only research-grade data and publicly
accessible licensed content for research purposes from iNatu-
ralist, which designates observations as research-grade once
they meet strict validation criteria. To qualify, two or more
experienced iNaturalist community members—naturalists,
biologists, or citizen scientists—must agree on the species
identification. Additionally, the observation must meet other
requirements, such as a clear photograph and precise geolo-
cation data. Recent experiments have shown that iNaturalist’s
Research Grade observations achieve approximately 97% ac-
curacy, underscoring the reliability of this community-based
validation process (iNaturalist 2023). Furthermore, iNatu-
ralist continuously enhances data quality by refining valida-
tor criteria and implementing new data quality assessment
measures, ensuring BIOTROVE remains a robust dataset for
scientific use.

Each image sample in BIOTROVE is enriched with detailed,
curated metadata that facilitates efficient filtering by species
count and taxonomic information. The metadata includes
common names, scientific names, and hierarchical taxonomic
data, which enhances the usability of the dataset for Al model
training. For the complete list of metadata fields, see Table 1.

Along with the dataset, we also release our data curation
tooling pipeline: BIOTROVE-PROCESS, which enables users
to easily access and manipulate the dataset. This pipeline al-
lows researchers to select specific categories across different

Table 1: Annotations provided in the BioTrove Dataset.

Text Type Description

Common Name Vernacular name (e.g., Western
honey bee)

Scientific Name Genus and species (e.g., Apis
mellifera)

Taxonomic Name Flattened taxonomy concatenated
into a single string
Specific level in the hierarchy (e.g.,

subspecies, species)

Taxonomic Rank

taxonomic levels, visualize data distributions, and effectively
manage class imbalance according to their needs. It facili-
tates the downloading of specific images by their URLs and
provides image-text pairs as well as user-defined chunks to
support various Al applications. BIOTROVE-PROCESS thus
enables users to define custom subsets of BIOTROVE with
ease, making the dataset fully Al-ready and reducing barriers
to follow-up research in biodiversity-focused Al

Dual-language text descriptions. We adopt both common
and scientific names since Latin is a low-resource language,
and current Al models do not perform well on scientific
names alone in a zero-shot manner. We found that a well-
structured text description that integrates common names, sci-
entific names, and detailed taxonomic hierarchies facilitates
the learning of relationships between Latin and English terms,
thereby improving the models’ applicability in scientific con-
texts (De Langhe, De Clercq, and Hoste 2024; Sprugnoli,
Moretti, and Passarotti 2020; Wijayanti et al. 2023). More-
over, incorporating the taxonomic hierarchy enables models
to more effectively associate visual data with taxonomic ter-
minology (Mars 2022; Chen et al. 2021). This matches the
guidelines suggested by BIOCLIP (Stevens et al. 2023) to
enhance model performance and generalization.

Privacy Measures: The images of BIOTROVE were
sourced from the iNaturalist Open Dataset, whose metadata
included Personally Identifiable Information (PII). This in-
cluded information about observers, such as their usernames
and sometimes their real names if they have chosen to share
that information publicly. We removed all such fields to en-
sure that no PII is present in the metadata associated with
BIOTROVE samples, ensuring the privacy of all contribu-
tors. License: During curation, we took care to include only
images from iNaturalist Open Data, which are all licensed
under either the CCO, or CC-BY, or CC—-BY—-NC licenses.
This ensures that all our images are available for public re-
search purposes. Offensive Content: Some of our URLs may
point to images that users could find disturbing or harmful,
such as photos of dead or dismembered animals. We retained
these types of images since they sometimes can provide valu-
able scientific data about wildlife, including information on
predation events, roadkill, and other occurrences relevant to
conservation and biodiversity studies. Although iNaturalist
relies on user contributions and community moderation to
maintain the quality and appropriateness of the data, we ac-
knowledge that the vast and diverse nature of the data means
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Figure 2: Distribution of the BioTrove dataset. (a) Size of the top seven Phyla in the BioTrove dataset. (b) Species counts for
the top seven Phyla. (c) The 40 highest occurring species in entire BioTrove dataset.

that some offensive or inappropriate content might be present.

Our closest comparisons are with BIOSCAN-1M (which
appeared in NeurIPS 2023 Datasets and Benchmarks) and
TREEOFLIFE-10M (which will appear in CVPR 2024).
B10SCcAN-1M focuses solely on the Insecta Class and pro-
vides scientific names, taxonomic ranks, as well as DNA
barcodes. The TREEOFLIFE-10M dataset comprises 10.4
million images, integrating data from iNat2021 (Unger et al.
2021), BIOSCAN-1M, and a fresh set of image samples
sourced from the Encyclopedia of Life (EOL). It also sup-
ports dual-language labels and detailed taxonomic hierarchies
and was used to train the BIOCLIP vision-language model.
See Table 2 for essential differences.

Data Collection and Curation Methodology

Challenges with iNaturalist Open Data. All of
BIOTROVE is sourced from the iNaturalist Open Data
community science platform, which (in all) comprises
over 280M biodiversity-relevant observations shared by

users. However, there are still significant gaps in usability
for Al research. The photos and metadata, although easily
downloadable, are provided in four separate metadata sheets
that are not ready to use. Taxa information is encoded as
numerical IDs, requiring additional API calls and non-trivial
lookups to convert these into common or scientific names.
The multiple metadata sheets structure is fragmented
across four separate files—photos, taxa, observations, and
observers—adding complexity to data integration. Managing
data balance and filtering out species with too few images
can lead to biases toward common (charismatic) species and
an imbalanced training process.

Curation of BIOTROVE. The iNaturalist Open Dataset
comprises a collection of 284.2 million images stored on an
AWS S3 bucket as of 2024-09-27, with associated meta-
data provided across four separate CSV files (photos,
observations, taxa, and observers). Details on
each of these files are presented in Section in the Appendix.
Although these files contain a wealth of valuable information,
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Figure 3: Treemap diagram of the BioTrove dataset, starting from Kingdom. The nested boxes represent phyla, (taxonomic)
classes, orders, and families. Box size represents the relative number of samples.



they are structured for rapid retrieval rather than Al-readiness.
To address this, we curate the metadata into a streamlined,
Al-optimized format.

We populate an SQL database with each CSV file as an in-
dividual SQL table, then create an aggregated table by joining
photos, observations, and taxa on their relational
columns, discarding irrelevant columns. In this aggregate
table, we add a new column populated with the Amazon S3
URL and generate individual columns for taxonomic king-
dom, phylum, class, order, family, genus, and species.

BI1OTROVE includes only research-grade images from the
Animalia, Plantae, and Fungi kingdoms, filtering out other
domains to maintain a clear biodiversity focus. To achieve
this filtering, we apply strict taxonomic criteria, ensuring
only these three kingdoms are represented. The iNaturalist
metadata files lack common names, so we reconstruct this
information by cross-referencing species names from the
iNaturalist Taxonomy DarwinCore Archive, updated monthly.
This enriched metadata, including common names, is then
appended to the SQL table.

Data Filtering and Preprocessing. As outlined,
BIOTROVE includes structured metadata that is both
comprehensive and easy to work with, featuring full
taxonomic information and direct URLs to image files. To
further support accessibility, we release an accompanying
software pipeline that allows users to filter specific categories,
visualize data distributions, and manage dataset imbalances
effectively. These tools make it simple for researchers to
interact with BIOTROVE, creating tailored subsets based
on their specific needs. The iNaturalist data, sourced from
citizen science contributions, has inherent variability in
species representation, with some species documented
extensively and others less so. To address this, our tools
enable user-defined filters to exclude species with fewer than
a set number of images and to cap image counts per species,
thus supporting more balanced model training.

To further mitigate dataset imbalances (detailed in our
experiments section), we use a semi-global shuffling strat-
egy in which the data is organized into chunked tar files.
These files are shuffled, divided into smaller groups, and then
merged into larger batches to ensure a balanced species dis-
tribution within each batch. This method enhances dataset
integrity, helping to prevent the overrepresentation of any
single species across the batches.

Models and Benchmarks

We now showcase and demonstrate the utility of the
BIOTROVE dataset by creating and benchmarking BIOTRO-
VECLIP, a new suite of vision-language foundation models
for biodiversity.

BioTrove-Train

BIOTROVE-TRAIN is a curated subset comprising approxi-
mately 40M samples and 33K species, focused specifically
on seven taxonomic categories: Aves, Arachnida, Insecta,
Plantae, Fungi, Mollusca, and Reptilia. As discussed previ-
ously, the BIOTROVE dataset is accompanied by a flexible
pipeline that enables users to apply customized filtering to

select specific categories or subsets based on research needs,
thereby allowing researchers to generate their own training
datasets. For BIOTROVE-TRAIN, these seven categories were
pre-selected due to their significant impact on biodiversity
and agricultural ecosystems, as well as their relative under-
representation in standard image recognition models. Unlike
megafauna, which are typically well-represented in exist-
ing models, these categories address unique challenges in
biodiversity-focused Al

This subset comprises data posted on iNaturalist prior to
2024-01-27. We applied strict filtering criteria to ensure high-
quality data, excluding species with fewer than 30 images
and capping the maximum number of images per species
at 50,000. To maintain balance, we employed a semi-global
shuffling method, organizing the data into mini-batches of
approximately 50,000 samples. From these, 95% were ran-
domly selected for training and validation, while the remain-
ing 5% were reserved for testing. Detailed statistics can be
found in Table 3.

New Benchmarks

We created three new benchmark datasets, all of which are
non-overlapping curated subsets of the BIOTROVE dataset.
These benchmarks focus on fine-grained image classifica-
tion within the seven taxonomic categories: Aves, Arachnida,
Insecta, Plantae, Fungi, Mollusca, and Reptilia. All bench-
marks presented here are independent and strictly within
these seven categories, without overlapping with each other
or with the BIOTROVE-TRAIN subset. Additionally, we re-
port results on several established benchmarks from the liter-
ature (see Table 4).

BioTrove-Balanced. To ensure balanced species representa-
tion across the seven key taxonomic categories, we curate the
B1OTROVE-BALANCED benchmark. Each category includes
up to 500 species, with 50 images per species, resulting in
a total of 112,209 images. This balanced dataset provides
a consistent foundation for model performance evaluations.
The exact species counts for each category are detailed in
Table 7 (see Appendix).

BioTrove-Unseen. To assess the ability of models to general-
ize to previously unseen species within the seven categories,
we curated the BIOTROVE-UNSEEN benchmark. This dataset
includes species from BIOTROVE-TRAIN with fewer than 30
instances, ensuring they were unseen during training. Each
species is represented by at least 10 images, with a total of
11,983 images. This benchmark tests the models’ robustness
on rare species not encountered during training.
BioTrove-LifeStages. The BIOTROVE-LIFESTAGES bench-
mark evaluates the model’s ability to recognize species across
different developmental stages, focusing on insect species
that exhibit significant visual variations throughout their life
cycle. This dataset contains 20 labels representing four life
stages (egg, larva, pupa, and adult) for five distinct insect
species. The data was collected via the observation export
feature on the iNaturalist platform between February 1, 2024,
and May 20, 2024, ensuring no overlap with the training
dataset. This benchmark allows for comprehensive evalua-
tions of model performance across various life stages (see
Figure 4).
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Figure 4: (a) Example images from BioTrove-Unseen. (b) BIOTROVE-LIFE-STAGES with 20 class labels: four life stages (egg,

larva, pupa, and adult) for five distinct insect species.

BioTrove-CLIP: New vision-language foundation
models for biodiversity

We use BIOTROVE-TRAIN to train new CLIP-style foun-
dation models and then evaluate them on zero-shot image
classification tasks. Following the implementation of Stevens
et al. (2023), we utilize a ViT-B/16 architecture initialized
from the OpenAl CLIP weights (Radford et al. 2021b), and
train for 40 epochs. We also train a ViT-L/14 model from
the MetaCLIP (Xu et al. 2024) checkpoint for 12 epochs and
a ViT-B/16 from the BioCLIP checkpoint for 8 epochs. All
training hyperparameters are included in the Appendix (Sec-
tion ). We compare with OpenAI’s ViT-B/16 CLIP model, the
BioCLIP ViT-B/16 checkpoint, and MetaCLIP-CC ViT-L/14.
We will publicly release all code needed to reproduce our
results after the anonymity period ends.

Experimental Results

Metrics. We evaluate model performance using top-1 zero-
shot accuracy across all benchmark datasets. For datasets
containing taxonomic information, we report accuracy based
on scientific names, ensuring fine-grained classification. For
datasets that lack explicit taxonomic details, we use the cate-
gory labels as defined by the original benchmark authors. We
compute an aggregate performance metric, which represents
the weighted average accuracy over all unique class labels
across the benchmark suite. This aggregate metric provides
an overall view of model performance across diverse tasks.

To account for statistical variability, we include 95% con-
fidence intervals for all reported metrics, calculated using the
binomial proportion confidence interval method (denoted by
+). This provides a robust understanding of the performance
and reliability of our results. As suggested during the review
process, we incorporated this statistical analysis to strengthen
the evaluation of our models.

Overview of results. In Table 5, we report the results
of our core benchmark suite. At a high level, we observe
that BIOTROVE-CLIP variants achieve the best accuracy
averaged over benchmarks. In particular, they perform ex-
tremely well on BIOTROVE-BALANCED (a remarkable 91.1
top-1 accuracy over 2250+ class labels). BIOTROVE-CLIP
also does very well on the Fungi dataset (even though the
Fungi class is not central to BIOTROVE-TRAIN), and the
DeepWeeds dataset. Therefore, BIOTROVE-CLIP exhibits
strong generalization capabilities across diverse datasets.

We also observe that BIOCLIP performs very well on
BIOTROVE-UNSEEN and BIOCLIP-RARE. The reasons
might be that BIOCLIP has seen approximately 450K
species, and there might be nontrivial overlap with the species
set in BIOTROVE-UNSEEN. On the other hand, it could be
that BIOTROVE-CLIP suffers from forgetting issues while
training on BioTrove-Train. For BioCLIP-Rare, the dataset is
a subset from EOL which BioCLIP did not see before, but
TreeofLife contains the majority of the EOL dataset.

Limitations. We also evaluated all models on the chal-
lenging CONFOUNDING-SPECIES benchmark introduced in



(Chiranjeevi et al. 2023), but find that all models perform at
or below random chance and do not report results here; this
could be an interesting avenue for follow-up work.

In Table 8 in the Appendix, we report model performance
at different levels of the taxonomic hierarchy. Generally, we
find that models trained on web-scraped data perform better
with common names, whereas models trained on specialist
datasets perform better when using scientific names. Addi-
tionally, models trained on web-scraped data excel at classi-
fying at the highest taxonomic level (kingdom), while models
begin to benefit from specialist datasets like BioTrove-Train
and Tree-of-Life-10M at the lower taxonomic levels (order
and species). From a practical standpoint, this is not problem-
atic: BIOTROVE-CLIP is highly accurate at the species level,
and higher-level taxa can be deterministically derived from
lower ones.

Addressing these limitations will further enhance the ap-
plicability of models like BIOTROVE-CLIP in real-world
biodiversity monitoring tasks.

Concluding Discussion

We introduce BIOTROVE, the largest publicly accessible
dataset designed to advance Al for biodiversity applications.
This dataset, curated from the iNaturalist community science
platform, includes 161.9 million images, surpassing existing
datasets in scale by an order of magnitude. We anticipate
that BIOTROVE will enable the development of Al models
that can enable various digital tools ranging from pest con-
trol strategies, crop monitoring, and worldwide biodiversity
assessment and environmental conservation.

We also believe that BIOTROVE can be used as a unique
testbed for measuring progress on fine-grained image recog-
nition. The success of BIOTROVE-CLIP on BIOTROVE-
UNSEEN underscores the importance of scaling up per-
category sample size, or vertical scaling (Feuer and Hegde
2023), in achieving high accuracy on long-tailed extreme-
imbalance classification. However, BIOCLIP continues to
exhibit superior performance on several datasets, and we
believe that this is because TREEOFLIFE-10M contains an
order-of-magnitude more classes (species) than BIOTROVE-
TRAIN. We invite the Al community to create new subsets
of BIOTROVE with varying degrees of balance and species
diversity and use our tooling to measure model performance
against current benchmarks.
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Table 2: Comparison of BioTrove with existing biodiversity datasets.

Feature BioTrove TreeOfLife BioScan
Size 161.9 million images 10.4 million images 1.1 million images
Diversity 366.6K species 454.1K species 8.3K
Dual laqgque (common | Dual laqgugge (common (ssclig;llg égnfaﬁgs)
. and scientific names), and scientific names), . i
Labels Provided taxonomic ranks (family

detailed taxonomic
hierarchies

detailed taxonomic
hierarchies

to species), DNA
barcodes

Data Source

iNaturalist Open Dataset

iNaturalist, Encyclopedia
of Life (EOL),
BIOSCAN-1M

Specimens from Malaise
traps, DNA barcodes
matched to BOLD

Key
Features

Ready-to-use pipeline,
reduce class imbalance,
high-quality annotations,
supports
BIOTROVE-CLIP

Rich hierarchical
representations,
comprehensive metadata,
supports BIOCLIP

Focus on insects,
high-resolution images,
detailed taxonomic
annotation, DNA codes




Table 3: Training data sources used in BIOTROVE-TRAIN
and Diversity in Different Taxonomy Levels. We integrate

taxonomic labels into the images.

Dataset

Description

Tmages Unique

Dataset combines a subset of
TREEOFLIFE- . . .
10M iNaturalist, Encyclopedia of
Life (EOL), BIOSCAN-1M.
BIOTROVE-  One subset of BioTrove with
TRAIN size 40M.

Classes
10.4M 454,103

39.9M 33,364

Level Uniques
kingdom 3
phylum 14
class 50
order 311
family 1692
genus 11506
species

33364




Table 4: Existing benchmark datasets; our novel datasets are described separately in Sec. .

Name Description Examples  Classes  Labels
E Birds 525 Scraped dataset of bird images from web search (Piosenka 2023). 89 885 525 Taxonomic
= . . . .
< . . Subset of species in the IUCN Red List categories: Near Threatened .
BioCLIP-Rare through Extinct in the Wild (iucnredlist.org). 12000 400 Taxonomic
LL% Fungi Expert-labeled images of Danish fungi (Picek et al. 2022). 1000 25 Scientific
Weed images collected in situ from eight rangelands across northern Aus-
]
E DeepWeeds tralia (Olsen et al. 2019). 17509 9 Common
. . Dataset evaluating models on challenging visually similar species pairs .
E Confounding Species (Chiranjeevi et al. 2023). 100 10 Mixed
Insects-2 Mixed common and scientific name classification for insect pests (Wu et al. 4080 102 Mixed

2019).

Table 5: BIOTROVE-CLIP performance on various benchmarks. The top three rows are pre-trained checkpoints: OpenAI-B
refers to OpenAI’s ViT-B-16 model, BioCLIP-B refers to the BioCLIP ViT-B-16 model, and MetaCLIP-L refers to the MetaCLIP-
cc ViT-L-14 model. The bottom three rows are BIOTROVE-CLIP models fine-tuned on different checkpoints: BT-Clip-O (from
OpenAlI-B), BT-Clip-B (from BioCLIP-B), and BT-Clip-M (from MetaCLIP-L). Benchmark abbreviations: BTU (Biotrove-
Unseen, n=300), BTB (Biotrove-Balanced, n=2253), BCR (BioCLIP-Rare, n=400), F (Fungi, n=25), 12 (Insects-2, n=102), B
(Birds-525, n=525), LS (Life-Stages, n=20), and DW (DeepWeeds, n=9). 95% confidence intervals (+) are included.

Model BTU BTB BCR F 12 B LS DW Weighted Avg.
OpenAl-B 129 +06 73015 10.9x056 11.5+198 10.2 093 50.0+033 56.5 397 10.3 +045 14.7
BioCLIP-B  68.2 +083 62.2 +028 30.2 082 45.1 £308 20.8 +125 68.7 030 18.0+3.07 19.9 +0.59 58.5
MetaCLIP-L 249 +077 154 021 20.5+072 24.6 £267 16.1 +1.13 70.1 +030 64.3+383 14.7 052 25.0
BT-CLIP-O 47.1+089 91.1+017 229 075 43.2 £307 16.5+1.14 47.8 033 28.0+359 17.0 £0.56 70.8
BT-CLIP-B 53.8:089 82.2+022 23.7+076 53.9 +309 16.9 +1.15 57.1 +032 15.0+286 18.4+057 67.2

BT-CLIP-M 443 +08 91.1=:017 21.8 £074 54.7 £309 5.1 +068 42.5+032 26.3+352 49.9 +0.74 69.5




Background on CLIP and zero-shot classification

Unlike traditional vision models, CLIP jointly trains an image
encoder and a text encoder to predict the correct pairings of a
batch of (image, text) examples, leveraging natural language
supervision to enhance generalization (Radford et al. 2021b).
CLIP’s approach allows it to learn from a wide variety of im-
ages and their associated textual descriptions, making it more
flexible and general compared to standard vision models.
This flexibility is crucial for in various domains, including
biodiversity monitoring and agriculture. For instance, CLIP
models analyze digital plant specimen images, aiding in pre-
processing and filtering for further analysis for agriculture
purposes (Kommineni et al. 2023; Li et al. 2023). As for
biodiversity, WildCLIP and KI-CLIP facilitate wildlife obser-
vation and monitoring with high accuracy and effectiveness
in data-sparse settings (Gabeff et al. 2024; Mou et al. 2023).
These examples underscore the importance of developing
and utilizing comprehensive datasets to fully leverage the
capabilities of CLIP models in advancing biodiversity and
agricultural research.

The value of taxonomic information

Taxonomic classification, the hierarchical arrangement of
organisms into categories based on shared characteristics,
is foundational in biological sciences. Taxonomy underpins
various scientific, ecological, and agricultural applications. It
allows for precise identification and classification of species,
which is fundamental for understanding biodiversity and mon-
itoring ecosystems. For instance, accurate species identifica-
tion can aid in tracking invasive species, as noted in studies
such as (Silvestro et al. 2022). In agriculture, detailed taxo-
nomic information helps in identifying pests and beneficial
species, thereby improving pest control strategies and crop
management; supports ecological research by providing in-
sights into species interactions, distribution patterns, and
evolutionary relationships (Gharaee et al. 2024); and is essen-
tial for policy-making and conservation planning (Sen et al.
2021).

Scientific versus common names

Although we identify the importance and need to include
taxonomic information in the dataset for biodiversity, one po-
tential challenge is the fact that this information is mostly in
Latin for which text embedding models often exhibit subopti-
mal performance due to its status as a low-resource language
(Stringham and Izbicki 2020). Nonetheless, Latin remains
indispensable as it is the standard for representing scientific
names and taxonomic classifications. We therefore integrate
common names, scientific names, and detailed taxonomic
hierarchies. We believe that such an “all-encompassing” ap-
proach facilitates the learning of relationships between Latin
and English terms, thereby improving the models’ applicabil-
ity in scientific contexts (De Langhe, De Clercq, and Hoste
2024; Sprugnoli, Moretti, and Passarotti 2020; Wijayanti et al.
2023). Furthermore, incorporating taxonomic data into the
training process significantly enhances the multimodal capa-
bilities of the models, enabling them to associate visual data
with taxonomic terminology (Mars 2022; Chen et al. 2021).

iNaturalist, iNaturalist Open Data

iNaturalist is an online social network for sharing biodiver-
sity information and learning about nature. It serves as a
crowdsourced species identification system and organism oc-
currence recording tool. Users from around the world upload
images, making the continuously updated dataset valuable for
Al applications in biodiversity and research. Each photo in-
cludes detailed metadata: copyright status, location, uploader,
time, and taxonomic classification. This diversity in image
sources makes iNaturalist an excellent dataset for training
Al models intended for real-world applications (Unger et al.
2021; Niemiller, Davis, and Niemiller 2021; Di Cecco et al.
2021; Chiavassa and Kraft 2024). Despite its vast and diverse
data, iNaturalist is not directly optimized for Al researchers:
arranging this data for use in AI models like CLIP is not
straightforward. Each photo has its own page on the iNatu-
ralist website, making it difficult to download images along
with all the necessary information in a streamlined manner.

The iNaturalist Open Dataset aims to address some of these
challenges. It is one of the world’s largest public datasets of
photos of living organisms, structured as a ”bucket” of images
stored using Amazon Web Service’s Simple Storage Service
(S3). The dataset includes multiple resized versions of each
photo, allowing users to download the size most useful to
their research.

Additionally, the dataset provides four tab-separated
CSV files representing observations, observers, photos, and
taxa_id. These files are generated monthly, capturing a
snapshot of the continually changing iNaturalist data. The
images in the iNaturalist Open Dataset are licensed under
either CCO, CC-BY, or CC-BY-NC and are open for pub-
lic research. Photos with a CCO license can be attributed as
”[observer name or login], no rights reserved (CC0)”. Photos
with other Creative Commons licenses can be attributed as
”© [observer name or login], some rights reserved ([license
abbreviation])”.

iNaturalist Details

Each image in the iNaturalist Open Dataset can be associated
with its appropriate metadata through a group of four meta-
data CSV files, representing photos, observations, taxa, and
observers.

The photos metadata file contain nine distinct columns
of metadata information of each photo. Of these columns,
only photo_id and observation_-uuid are relevant for us.
The value of photo_id is a identifier number used to
access individual photos, the photo’s iNaturalist page
can be found by constructing a URL in this format:
https://www.inaturalist.org/photos/[photo_id]. The value of
observation_uuid indicates which observation the photo is
associated with, it is used to map the photos metadata to the
observations metadata.

An observation represents one user submission of a species
encounter to the iNaturalist website. One observation can
have multiple photos of the same species but never multiple
species. The observation metedata file contains eight distinct
columns of metadata information on each observation. The
columns relevant to us are observation_uuid, quality grade,



and taxon_id. Each observation is given a unique number
identifier indicated by its observation_uuid. iNaturalist has
its own system to determining the quality of an observation
and its associated photos, quality_grade represents this and
can range from ”Casual”, "Research Grade”, or ”"Needs ID”.
The value taxon_id indicates the species is represented in the
observation, it is used to map the observations metadata to
the taxa metadata.

The taxa metadata file contains information about each
specific taxon in iNaturalist, it has has six distinct metadata
columns. The columns relevant to us are taxon_id, name,
ancestry, and active. Each specific taxon in iNaturalist has a
unique identifier number associated with it, this is its taxon_id.
This taxon_id will map to the scientific name of the taxon
which is represented in the name metadata column. Each
taxon also has associated with it a taxonomic ancestry, this
is represented as a string of taxon_ids concatenated together
with "\ like so "48460/1/47115/47584/1051154”. The active
column indicated whether the taxon is currently in use in
iNaturalist.

The observer metadata file comtains information about
each user within the iNaturalist site. For the purpose of ma-
chine learning research none of its three metadata columns
are relevant.

While the iNaturalist Open Dataset metadata files provide
a plethora of interesting information, its structure makes it
inherently cumbersome to use for research. To solve this, we
aggregate and process the iNaturalist metadata into a concise
and streamlined format for easy query and usage.

First, the respective CSV files are used to populate a SQL
database with each CSV file as its own SQL table. A new
aggregate SQL table is created that joins the photos, obser-
vations, and taxa tables on its relational columns. Only the
metadata columns we deemed relevant are kept and the extra-
neous non-useful metadata columns are discarded.

One of the difficulties working with the base iNaturalist
metadata files is that it does not contain the image URL,
information that is critical in image downloads. We include a
new column in the aggregated metadata table that explicitly
links to the Amazon S3 URL in which the image is hosted.

The BIOTROVE metadata file used for model training
contains the metadata columns phylum, class, order, fam-
ily, genus, species, scientific_name, common_name for the
seven BioTrove categories Aves, Arachnida, Insecta, Plantae,
Fungi, Mollusca, and Reptilia. To ensure that only images
and metadata from the seven BioTrove categories appear in
our final dataset we use the taxa table to find the taxon in our
categories then use it in a SQL query on the ancestry column
of our aggregated metadata table.

The taxonomic rank columns are also found utilizing the
ancestry metadata column. A difficulty in working with the
ancestry metadata is present in that there is not a clear indica-
tion of what taxonomic rank a taxon id represents the ancestry
string. This problem is exacerbated due to the presence of
taxonomic ranks and dsub ranks whose presence is variable
across different species. As such, a custom function is applied
to each row to dynamically find the rank of each taxon id
in the ancestry and then appropriately populate the taxon id
to a metadata column of that rank. This process results in

all taxonomies rank represented as metadata columns; only
phyllum, class, order, family, genus and species are kept in
the BioTrove metadata file.

The scientific name of a species is found using the name
metadata column of our aggregated metadata table. The com-
mon name of a species is also useful metadata information.
Unfortunately, the iNaturalist Open Data metadata files do
not contain the common name information of a species. To
address this, we curate a lookup table of the common names
in our dataset. This is obtained from the iNaturalist Tax-
onomy DarwinCore Archive, Having obtained the common
names for each species, we append it to the BioTrove-specific
metadata.

Composition of BIOTROVE and Related Datasets

In Table 6, we compare BIOTROVE with existing large-scale
biodiversity datasets. BIOTROVE comprises 161.9 million
research-grade images, representing approximately 372,966
species, and significantly surpasses other datasets in terms of
both diversity and scale.

Composition of BioTrove-Train
See Figure 5 and Table 7.

BioTrove-CLIP training details

We use BIOTROVE-TRAIN to train new CLIP-style foun-
dation models, and then evaluate them on zero-shot image
classification tasks. Following the implementation of Stevens
et al. (2023), we utilize a ViT-B/16 architecture initialized
from the OpenAl pretrained weights for our main model, and
train for 40 epochs.

In addition, we also train a ViT-L/14 model from the Meta-
CLIP (Xu et al. 2024) checkpoint for 12 epochs, and a ViT-
B/16 from the BioCLIP checkpoint for 8 epochs. We select
the AdamW optimizer from Loshchilov and Hutter (2019)
along with a cosine learning rate scheduler, as this has previ-
ously been shown to perform well for CLIP pretraining (Rad-
ford et al. 2021a). We conduct twenty rounds of hyperpa-
rameter optimization using Ray Tune (Liaw et al. 2018) to
determine the optimal learning rate, 51, 82 and weight decay
settings.

We train our models for a combined 10 days on 8xH100
nodes in bfloat16 precision (Kalamkar et al. 2019) with gra-
dient checkpointing, computing loss with local features, and
utilizing static graph optimization for DDP.

Additional BioTrove-CLIP results

In Table 8, we report model performance at different levels
of the taxonomic hierarchy. Generally, we find that models
trained on web-scraped data perform better with common
names, whereas models trained on specialist datasets perform
better when using scientific names. Additionally, models
trained on web-scraped data excel at classifying at the highest
taxonomic level (kingdom), while models begin to benefit
from specialist datasets like BioTrove-Train and Tree-of-Life-
10M at the lower taxonomic levels (order and species).
However, BIOTROVE-CLIP shows a performance decline
at taxonomic levels below the species level. This is likely



Table 6: Comparison of BIOTROVE with other biodiversity datasets.

iNaturalist iNaturalist GBIF
Dataset BIOTROVE Wildlife Insights TreeOfLife BioScan 2017 (Van Horn 2019 (iNaturalist | Backbone (Facility
et al. 2018) 2019a,b) 2023)
148.8 million
Size 161.9 million images images (52.6M 10.4M images 1.1M images 675,170 images 13.1M images 7.5M records
wildlife images)
Diversity 366.6K species 3,682 species 454.1K species 8.3K species 5,089 species 166.8K species Millions of species
L . . L Scientific names, Common/scientific | Common/scientific
Common/scientific Species, location, | Common/scientific . . . .
Labels . . ; taxonomic ranks names, taxonomic | names, taxonomic Species names,
. names, taxonomic timestamps, names, taxonomic o 5 . -
Provided " . . . . . (family-species), ranks ranks OTU identifiers
hierarchies behavioral tags hierarchies . .
DNA barcodes (genus-species) (genus-species)
. . ’ . N ea ] Malaise trap Catalogue of Life,
Data Source | ALt Open Camera traps, | iNawralist, EOL, specimens, iNaturalist iNaturalist iBOL, UNITE,
atase SEnSOrs oScan- DNA-barcodes WoRMS, etc.
AI—rf:ady plp_elme, Automated Rich hierarchical Ipsect—focusgd, Imbalanced classes, | Large-scale species Comprehensive
Key high-quality . high-resolution, . taxonomy,
. processing, Al data, metadata, . fine-grained data, growth from :
Features annotations, supports | oo T | supports BIOCLIP taxonomic data, taxonom: 2017 cross-referencing
BioTROVE-CLIP | P g PP DNA codes Y datasets
Al-Ready Yes Yes Yes Yes No No No

Table 7: Number of Unique Species in Each Category in
BioTrove-Balanced.

Category Number of Unique Species
Kingdom: Fungi 281
Kingdom: Plantae 500
Phylum: Mollusca 147
Class: Insecta 500
Class: Arachnida 136
Class: Reptilia 189
Class: Aves 500

because our training metadata structure allows for classifi-
cations solely by referring to species information. From a
practical standpoint, this is not problematic for the species in
our test set since BIOTROVE-CLIP is highly accurate at the
species level, and higher-level taxa can be deterministically
derived from the lower ones.

Furthermore, the OpenCLIP and MetaCLIP baselines out-
perform BIOTROVE-CLIP on the life stages benchmark. This
highlights the importance of retaining the general linguistic
capabilities of the pretrained CLIP models for hybrid tasks.

Table 8: Performance Comparison Across Benchmarks: This
table compares the performance of BC-INAT21 (trained
solely on the iNaturalist 2021 dataset) and BT-CLIP (trained
from the BIOCLIP checkpoint, originally trained on the
TREEOFLIFE dataset). Metrics include Top-1 Accuracy and
Top-5 Accuracy.

Benchmark BC-iNat21 Top-1 BC-iNat21 Top-5 BT-Clip Top-1 BT-Clip Top-5
BIOTROVE UNSEEN 0.2100 0.3470 0.5380 0.8220
Fungi 0.4420 0.7550 0.5390 0.7590
LIFE-STAGES 0.2867 0.8617 0.1500 0.8600
DEEPWEEDS 0.2057 0.6897 0.1840 0.5740
Insects-2 0.0103 0.0483 0.1690 0.5710
Birds-525 0.5030 0.6330 0.5710 0.7540
BIOCLIP-RARE 0.1490 0.2790 0.2370 0.7600
BIOTROVE BALANCED 0.5020 0.6450 0.5180 0.6610

Additional BioTrove-CLIP Comparative Analysis

We conducted a comparative evaluation of the top-1 and top-5
zero-shot accuracy of the BIOCLIP model, which was trained
exclusively on the iNaturalist 2021 (iNat21) dataset, and the
BIOTROVE-CLIP model, initialized from BIOCLIP check-
points originally trained on the TREEOFLIFE dataset. The
comparison highlights the performance differences across
various benchmarks, as presented in Table 9.

Our analysis shows that models trained on the BIOTROVE
dataset consistently outperform those trained solely on
iNat21, particularly in benchmarks such as BIOTROVE-
UNSEEN, Fungi, and Insects-2. While certain benchmarks
like LIFE-STAGES and DEEPWEEDS show moderate differ-
ences, the results emphasize the advantages of training on
BIOTROVE, leading to enhanced model accuracy and robust-
ness.

The following table provides detailed performance metrics
for both models across various benchmarks, comparing their
top-1 and top-5 accuracy scores with associated confidence
intervals.

As demonstrated, the model trained on BIOTROVE exhibits
superior performance in most categories, particularly when
evaluated on rare and unseen species, underscoring the im-
portance of diverse and large-scale datasets like BIOTROVE
for enhancing biodiversity Al models.
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Figure 5: BioTrove-Train Dataset Analysis: a) Consistent category distribution across BioTrove-Train and BioTrove-116M
datasets. b) Species exhibit a long-tailed distribution. c¢) Impact of local vs. semi-global shuffling on species representation within
training minibatches.

Table 9: Performance Comparison Across Benchmarks: This table compares the performance of BC-INAT21 (trained solely
on the iNaturalist 2021 dataset) and BT-CLIP (trained from the BIOCLIP checkpoint, originally trained on the TREEOFLIFE
dataset). Metrics include Top-1 Accuracy and Top-5 Accuracy. BC-INAT21 refers to BioCLIP (iNat21), and BT-CLIP refers to
BioTrove-CLIP (BioCLIP checkpoint from TreeOfLife).

Benchmark BC-iNat21 BC-iNat21 BT-Clip Top-1 BT-Clip Top-5
Top-1 Acc. Top-5 Acc. Acc. Acc.
BIOTROVE-UNSEEN 0.2100 0.3470 0.5380 0.8220
Fungi 0.4420 0.7550 0.5390 0.7590
LIFE-STAGES 0.2867 0.8617 0.1500 0.8600
DEEPWEEDS 0.2057 0.6897 0.1840 0.5740
Insects-2 0.0103 0.0483 0.1690 0.5710
Birds-525 0.5030 0.6330 0.5710 0.7540
B10CLIP-RARE 0.1490 0.2790 0.2370 0.7600

BIOTROVE BALANCED 0.5020 0.6450 0.5180 0.6610




