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Abstract

To estimate a forest’s capability of capturing and storing
carbon from the air, modelers generally start with estimat-
ing gross primary productivity (GPP). While numerous GPP
models have been proposed, this study is among the first in
using knowledge of plant growth processes to guide machine
learning algorithms for estimating forest GPP with satel-
lite data. When trained and evaluated with flux tower mea-
surements from 47 sites, this approach can accurately esti-
mate monthly GPP with an R2 of 0.81 and RMSE of 1.52
gC/(m2d). To better evaluate the proposed model, a compara-
tive experiment against a recent study and an ablation exper-
iment have been conducted. The findings of this study pro-
vide a foundation for more robust global monitoring of plant
growth and carbon uptakes.

1 Introduction
Covering 30% of Earth’s total land areas, forests account
for 80% of Earth’s total plant biomass and 75% of terrestrial
gross primary production (GPP), which is the amount of car-
bon assimilated by vegetation through photosynthesis (Pan
et al. 2013). From 2009 to 2018, forests removed about 30%
equivalent of global annual fossil fuel emissions (Friedling-
stein et al. 2019). As forest provides a multitude of ecosys-
tem services to our society, many countries are working to-
ward preventing forest degradation, reversing forest cover
loss through sustainable forest management, and develop-
ing forest carbon offset projects (of Economic and Affairs
2021). Two keys to the success of these efforts are 1. Quan-
tifying impacts (e.g. increasing biomass and the amount of
carbon absorption) and 2. Ensuring the impacts are long-
lasting. In the case of forest carbon offset, international stan-
dards (Verra 2018) have been developed to quantify carbon
absorption. However, the verification methods are labor in-
tensive (Clean Development Mechanism 2011), and most
carbon projects lack robust plans to mitigate risks of natural
disturbance and climate change (Galik and Jackson 2009;
Anderegg et al. 2020; Badgley et al. 2022).

Satellite remote sensing holds promises to reduce the
costs of verifying and monitoring forest carbon offsets
projects at scale. Due to its ability to continuously and re-
currently capture images of the entire earth’s surface across
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the visible, infrared, and microwave spectrum, remote sens-
ing can measure or estimate various physical properties
of forests over time (Lechner, Foody, and Boyd 2020),
including forest carbon uptakes and stocks. The NASA
MOD17A2H(GF) product (Running and Zhao 2021), for ex-
ample, is widely used in scientific studies on the global and
regional carbon flux of GPP (Xiao et al. 2019). The prod-
uct employs a process-driven approach, specifically the light
use efficiency (LUE) model, to estimate GPP. However, its
algorithm has a large room for improvement: According to a
recent study (Huang et al. 2021), the data product is found to
contain significant uncertainties, partly due to uncertainties
in model parameters. That study proposed a Markov Chain
Monte Carlo approach to calibrate the parameters with mea-
surements from 58 sites, and the improved 8-day estimates
explained between 64 to 75% of the variance in measure-
ments (R2) across four forest types. A related problem with
LUE models is that the relationship between leaf biomass
(which is quantified with a proxy variable named Leaf Area
Index (LAI)) and GPP is one-directional. However, in real-
ity, a surplus or shortage of GPP could in turn induce leaf
growth and drop. When the model parameters are uncertain,
assuming the LAI-GPP as one-directional could generate in-
coherent results between GPP of the current time step and
LAI of the subsequent time step.

Machine learning, by employing a data-driven approach
to estimate GPP using satellite and field measurement data,
has the potential to overcome biases presented in process-
driven models. Dozens of models have been proposed in
the past decade (Joiner and Yoshida 2020; Wei et al. 2017;
Tramontana et al. 2016; Stocker et al. 2018), but their in-
terpretability remains a challenge. Inspired by recent re-
search in knowledge-guided machine learning and deep
learning (Willard et al. 2021; Liu et al. 2022; Karpatne,
Kannan, and Kumar 2022), we encode a part of the Physio-
logical Processes Predicting Growth model (3-PG) (Lands-
berg and Waring 1997), a process-driven model that has
been widely used in forest management (Gupta and Sharma
2019), on PyTorch machine learning framework, where
back-propagation is used to update model parameters that
have physical meanings. Our contributions are as follows.
(1) Our approach of integrating back-propagation into a sci-
entific process-driven model, is the first of its kind in mod-
eling carbon uptake. It could be further expanded to make
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Figure 1: Framework of our proposed model.

use of different emerging satellite data products (e.g. tree
counts, density, and height), to estimate carbon stock at
different spatial and temporal resolutions, and to acceler-
ate experimentation of alternative models of plant growth
processes. (2) Our estimates outperform the calibrated GPP
product (Huang et al. 2021) on metrics of R2 and RMSE
in evergreen needle-leaf and deciduous broad-leaf forests,
which cover approximately 74% of forests in the United
States (Friedl and Sulla-Menashe 2019). (3) Compare to the
LUE model used by NASA MOD17A2H(GF) product, 3-
PG is more theoretically robust. However due to its com-
plexity, the parameters are traditionally tuned manually. Our
research progress demonstrates the feasibility of automated
calibration using satellite and field observations, potentially
enabling 3-PG to be implemented globally at scale.

2 Materials and Methods
2.1 Dataset
A dataset of pre-processed field measurements and satel-
lite data, covering four forest types: evergreen needle-leaf
forest (ENF), evergreen broad-leaf forest (EBF), decidu-
ous broad-leaf forest (DBF), and mixed forest (MF) around
the world, has been prepared. The estimated forest age at
each site is extracted from the 1km global forest age dataset
circa 2010 (Besnard et al. 2021). Monthly field measure-
ments of incoming Shortwave radiation (SW IN F [W/m2],
converted to solar rad. [MJ/m2/d]), vapor pressure deficit
(VPD F [hPa], converted to VPD [mbar]), and air tem-
perature (TA F [°C], renamed as Tavg) are obtained from
the FLUXNET2015 Dataset (Pastorello et al. 2020). The
4-day Leaf Area Index (LAI) (MCD15A3H v6.1) satel-
lite data product (Myneni, Knyazikhin, and Park 2021) are
point-sampled with the NASA AppEEARS service (Team
2022). The data are further pre-processed according to Ap-
pendix A.1, resulting in 8,648 site-months of data across 98
sites. All aforementioned data have a CC-BY-4.0 license.

2.2 Method
Guided by 3-PG’s equations and designs on plant productiv-
ity and foliage carbon allocation processes (Landsberg and
Waring 1997), we encoded the GPP model in an RNN struc-

ture and use back-propagation to tune physically meaningful
parameters. The 3-PG’s equations are greatly simplified by
replacing the complex environmental stress modifiers and
removing the age dependency in 3-PG’s parameters, but we
kept the relationships among key variables intact (e.g. the
LAI-GPP bi-directional relationship). The back-propagation
process is further constrained through multi-tasks learning
and parameter regularization.

Knowledge Guided Machine Learning Layers. Unlike
conventional neural networks, where each layer computes
an output from a set of inputs and two sets of parameters
(e.g. weights for linear and activation functions), layers in
this model are encoded according to one of 3-PG’s equa-
tions (Appendix A.2). A majority of these are linear func-
tions, and a few are simplified from the original equations
found in 3-PG. While all layers take at least one input, some
layers may have no parameters. As guided by 3-PG’s de-
sign, the layers are connected, to first estimate monthly plant
productivity, including GPP and Net Primary Productivity
(NPP), then partition productivity to foliage changes, and fi-
nally convert the foliage biomass back to LAI (Fig. 1 and
Appendix A.3).

In addition to the core model, we experiment with two
modules, namely the canopy quantum efficiency (alpha)
modifier and the foliage changes correction modules, in
attempt to address some of our model’s theoretical weak
points. The design of the alpha modifier is analogous to that
of the MOD17A2HGF product (Running and Zhao 2021).
Its purpose is to reduce the rate of conversion from light to
chemical energy, when the plant’s environmental conditions
deviate from the optimal ranges. Meanwhile, we develop the
foliage changes correction module in an attempt to address
an overlooked process in the original 3-PG: the seasonal-
ity of leaf out and fall (Nölte, Yousefpour, and Hanewinkel
2020).

The number of inputs and parameters required by the
model varies by the designs of the model layers. The core
model takes four inputs and nine parameters. The inputs
are average tree trunk diameter at breast height (avDBH),
days in the month, solar radiation, and LAI of the month
(RS LAI). In this study, avDBH is assumed to be a con-
stant of 4.57cm; The parameters are specific leaf area at



Parameter Value Description

SLA0 5.63 m2/kg Specific leaf area at age 0
k 0.50 Extinction coefficient for absorption of

photosynthetically active radiation by canopy
alpha 0.06 Canopy quantum efficiency
y 0.47 Ratio of NPP to GPP
gammaFx 0.01 /month Maximum litterfall rate
pFS2 1.00 Foliage-stem partitioning ratio at diameter of 2 cm
pFS20 0.29 Foliage-stem partitioning ratio at diameter of 20 cm
pRn 0.25 Minimum fraction of NPP to roots
pRx 0.68 Maximum fraction of NPP to roots
VPDmin 6.50 mbar Minimum threshold for VPD modifiers
VPDmax 46.0 mbar Maximum threshold for VPD modifiers
Tmin 32.0 ◦C Minimum threshold for Tavg modifiers
Tmax 2.00 ◦C Maximum threshold for Tavg modifiers

Table 1: Initial values of 3PG-related parameters.

age 0 (SLA0), extinction coefficient for absorption of pho-
tosynthetically active radiation by canopy (k), alpha, ratio
of NPP to GPP (y), maximum litterfall rate (gammaFx),
foliage-stem partitioning ratio at diameter of 2 and 20 cm
(pFS2, pFS20), and minimum and maximum fraction of NPP
to roots (pRn, pRx). In addition, the alpha modifier module
introduces two extra inputs, VPD and Tavg, and four new pa-
rameters, which are the minimum and maximum threshold
for VPD and Tavg modifiers. Meanwhile, the foliage change
correction module is driven by the differences in LAI be-
tween the current and following month (Delta LAI); This
module does not require additional parameters.

Model Architecture. An RNN-like architecture is
adopted in this study, where a set of layers is recurrently
used to estimate monthly GPP. Unlike conventional RNN,
the hidden state is replaced with a “physical” state, which is
a subset of variables used and updated by the recurrent lay-
ers. In the current version, the model’s physical state only
consists of avDBH, but it can be expanded to include LAI
and other variables (e.g. foliage biomass). Because the only
state variable, avDBH, is set as constant, it may be mislead-
ing to define the current model as an RNN. Nonetheless,
the RNN architecture enables the model to conduct back-
propagation through time, in particular, the model can learn
from errors it made over a set period of time in a single for-
ward/backward pass, instead of learning from errors from
one time step at a time.

Training and Inference. The initial values of parame-
ters are defined by Table 1, and are updated through back-
propagation. The ADAM optimizer (Kingma and Ba 2014)
is selected for training, with a maximum epoch of 20,000
and a learning rate of 0.001. The process is automatically
terminated if training loss (average of 1 epoch) declines by
less than 0.001 for 10 consecutive iterations. During infer-
ence, the model is given the complete time series of inputs
to compute all monthly results at once; During training, the
time series data is subsetted with a sliding window, letting
the model learn from computing 12 months of estimates at
a time. All aforementioned hyper-parameters are arbitrarily
chosen, except the learning rate, which is selected based on

model performance from a preliminary evaluation.
Loss and Regularization. Although the primary objec-

tive of the current model is to estimate GPP, a multi-
objective loss (GPP and LAI) is implemented. One reason
is that LAI is important for future downstream tasks (e.g.
biomass estimation, since GPP that are not used for respi-
ration and growing leaves are generally used to grow tree
roots and trunk). Another reason is that we hope the model
can leverage the bi-directional GPP-LAI relationship to fine-
tune model parameters. Loss is computed as the sum of
the squared difference between GPP estimates and measure-
ment, and between LAI estimates and remote sensing LAI
of the following month. After computing the weighted sum
of GPP and LAI loss (both weight = 1), regularization loss,
as defined in Eq. 1, is added for each trained parameter.
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where Pi refers to previously updated value of parameter
i; Pmin

i and Pmax
i denote the user-defined minimum and

maximum parameter threshold.
Initial Values of Physical Meaningful Parameters. The

initial values of 3PG-related parameters are copied from the
E. globulus values in the 3PGPJS v2.7 model (Sands 2020).
As 3PG equations are simplified in this study, some ini-
tial parameter values (SLA0, gammaFx, pFS20, and pRx)
are arbitrarily modified. The initial values of VPD modi-
fier thresholds are copied from the ENF values of Table 2.2
Biome-Property-look-Up-Table (BPLUT) in MOD17 User’s
Guide (Running and Zhao 2021). The temperature thresh-
olds are arbitrarily defined because our model used average
temperature instead of minimum temperature (Running and
Zhao 2021) to define thresholds.

3 Experimental Results
Two experiments are conducted in this study using 40 CPUs,
and the results are reported in Tables 2 and 3, respectively.



Forest Type Number of Sites Used
(in ours / prev. studies) Length of Site-Months / Site-8-Days Core GPPMC-joint

R2↑ RMSE↓ R2↑ RMSE↓
ENF 28 (31) 672 / 2576 0.73 1.70 0.65 1.91
EBF 5 120 / 460 0.47 1.54 0.73 1.36
DBF 10 (16) 240 / 1104 0.76 2.27 0.73 2.34
MF 4 (6) 96 / 552 0.76 1.80 0.74 1.71

Table 2: Results (gC/(m2d)) comparing the proposed model with the calibrated LUE model (GPPMC-joint (Huang et al. 2021)).
(ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest.)

Models Overall (R2↑ / RMSE↓) ENF EBF DBF MF

Core 0.81/1.52 0.84/1.28 0.40/1.56 0.78/2.12 0.87/1.23
Core+alpha modifier 0.80/1.55 0.82/1.33 0.13/1.89 0.81/2.00 0.89/1.16
Core+foliage changes correction 0.81/1.50 0.83/1.28 0.40/1.57 0.80/2.03 0.87/1.24
Full 0.79/1.59 0.82/1.34 -0.05/2.07 0.80/2.02 0.88/1.20

Table 3: Results (gC/(m2d)) comparing four recurrent layers design. (ENF: evergreen needleleaf forest; EBF: evergreen
broadleaf forest; DBF: deciduous broadleaf forest; MF: mixed forest.)

The first experiment attempts to compare the performance
between the proposed core model and the calibrated LUE
model from (Huang et al. 2021). Meanwhile, the second ex-
periment evaluates the incremental improvement of imple-
menting the alpha modifier and the foliage changes correc-
tion modules. Following the experimental design of (Huang
et al. 2021), we use the same 58 forest sites from (Huang
et al. 2021) in our experiments, keep the final two years of
data from each site for model evaluation, and use the rest
for training. After data pre-processing, 7 sites (IT-SR2, US-
Me1, US-Wi9, IT-Isp, IT-PT1, JP-MBF, US-Wi3) have in-
sufficient data points (n¡9) for training; And during training,
the model fail to converge at 4 sites (US-Syv, BE-Bra, IT-
Ro2, US-WCr). Thus, only 47 sites are available for evalu-
ation. To quickly benchmark our model (monthly estimates,
trained site-specifically) against (Huang et al. 2021) (8-day
estimates, trained jointly by forest types), we implement two
post-processing procedures. Firstly, before inference, we av-
erage the trained parameters from the core model by forest
types; Secondly, We linearly interpolate the inference results
to daily time steps and aggregate them to 8-day averages. In
the second experiment, the model is evaluated as is without
post-processing.

Despite the unrefined post-processing approach, our
model out-perform or is on par with (Huang et al. 2021)
over ENF, DBF, and MF sites in the first experiment. The
result is encouraging, suggesting the model has the poten-
tial to improve the 8-day GPP estimates over most forests in
the Earth’s temperate region. Further investigation is needed
to improve our model over EBF. Perhaps the initial value of
parameters also needs to be specified by forest type, or per-
haps we over-simplified the model, overlooking important
processes that control photosynthesis and growth in EBF.

To our surprise, in the second experiment, the core model
outperforms the more complex ones in most cases. The two
exceptions occur in DBF and MF, but the improvement is
less than 0.03 and 0.12 in terms of R2 and RMSE. The result

suggests the additional modules might not be helpful when
parameters are trained specifically by the site. However, they
may still be helpful in the future when we attempt to gen-
eralize the model by training parameters by forest type. In
addition, implementing the foliage changes correction mod-
ule has significantly improved the agreement between LAI
(new) and LAI (RS) (Figure 1), with the overall R2 and
RMSE improving by 0.25 from 0.69 and 0.5 from 0.89, re-
spectively, in the core model. This improvement may be cru-
cial for further downstream tasks, such as estimating foliage
biomass and partitioning absorbed carbon to truck, root, and
foliage growth.

4 Discussion, Limitations, and Future Work
A real-world application of the NASA GPP product is to
be used, together with annual NPP product and vegetation
indices from other satellites, to compute a monthly forest
sequestration index, which empowers a carbon credit insur-
ance program in China. As our model performs well over
ENF, DBF, and MF, which constitute 75% of forests in
China (Friedl and Sulla-Menashe 2019), we will integrate
it into our insurance application. The proposed model is dis-
tinct from the conventional machine learning model in that
its design and physical meaningful parameters can be in-
terpreted by forestry experts. And like most deep learning
models, our model is incredibly flexible, enabling rapid ex-
perimentation and hybrid Physics-ML modeling. However,
the current model has several limitations. Firstly, it is con-
strained by the local minima problem of back-propagation,
thus the trained parameter value may not necessarily match
the expected “natural” value by experts. Secondly, the model
has not been tested for further downstream tasks (e.g.
biomass); Its potential to complement the labor-intensive
process of verifying and monitoring carbon credit projects
has yet to be realized. Here we sincerely invite like-minded
researchers to co-develop and co-evaluate this model and its
applications.
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