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Abstract
We investigate the problem of safe exploration and side-
effects avoidance in reinforcement learning agents. Specifi-
cally, the agents are deployed in certain kinds of factored en-
vironments and initialised with partial prior knowledge con-
cerning the factoring. We introduce a novel model of the re-
sulting agent–environment systems based on experimentation
in, e.g., the medical, agricultural, material, and economic sci-
ences, and how regulations in these domains limit both ex-
pected and unexpected adverse side-effects. We define a con-
strained optimisation problem for these systems as eventu-
ally maximising the expected return always subject to the
regulations, which are specified as constraints in a variant of
probabilistic computation tree logic. We introduce a model-
based reinforcement learning algorithm solving this problem
through runtime shielding, and we show that the learning pro-
cess is always safe according to the regulations with high
probability. We show that safety is traded off for slower con-
vergence for early time steps, but that the regret approaches
that of theoretically efficient procedures for late time steps.
We illustrate how similar regulations could work in recom-
mender engines through simulations, in which we experimen-
tally corroborate the theoretical results and show that our al-
gorithm outperforms the state-of-the-art.

1 Introduction
Reinforcement learning (RL) has seen considerable ad-
vances in applications such as games (Silver et al. 2017),
robotics (Andrychowicz et al. 2020), fine-tuning of language
models (OpenAI 2023), recommender engines, and the au-
tomation of science (Degrave et al. 2022). An RL agent
performs optimisation in an environment, which is initially
unknown and learned about through exploration. In games
and other kinds of simulations, there is a large body of
work that eventually achieves safety (Altman 1999; Ray,
Achiam, and Amodei 2019). However, there is (i) no re-
quirement for safety during exploration, and (ii) no prob-
lem with unexpected side-effects as they can be incorporated
in future simulations. As for (i)—safe exploration (Brunke
et al. 2021; Garcı́a and Fernández 2015)—current methods
either rely on the existence of faithful simulations (Mqirmi,
Belardinelli, and León 2021, e.g.) or on strong assump-
tions about the environment (Koller et al. 2018, e.g.). As
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for (ii)—side-effects avoidance (Saisubramanian, Zilber-
stein, and Kamar 2021)—current methods lack strong for-
mal gurantees (Turner, Ratzlaff, and Tadepalli 2020, e.g.).
Adverse side-effects on health or the environment pose risks
to safety in automated science, and side-effects such as mis-
information or polarisation pose risks in news recommender
engines; the assumptions of current methods are too strong
for such applications. Rapid advances in machine learning,
together with insufficient solutions, have even led some aca-
demics to warn of a global catastrophic risk (Bostrom 2014;
Russell 2019; El Mahdi et al. 2019).

Safe exploration and side-effects avoidance are impos-
sible without (at least partial) prior knowledge (Turchetta,
Berkenkamp, and Krause 2016). Strong guarantees for safe
exploration come from shielding, but they often require
the environment dynamics as prior knowledge (Könighofer
et al. 2022; Odriozola-Olalde, Zamalloa, and Arana-
Arexolaleiba 2023). Only requiring prior knowledge of
some structural elements of the environment is promis-
ing (Berkenkamp et al. 2017; Simão, Jansen, and Spaan
2021). Side-effects avoidance methods need to assume prior
knowledge of the decision rules of human overseers (Arm-
strong and Mindermann 2018). Approaches applied to the
automation of science, where experimentation may be used
as a synonym of exploration, and recommender engines are
lacking from the literature and motivate this work.

We make four key contributions:

1. We introduce a novel optimisation problem, which we
call pilot experimentation. Pilot experimentation is the
joint problem of safe exploration and side-effects avoid-
ance in a novel model, which we call a cellular Markov
decision process (cellular MDP). A constrained MDP is
combined with factored MDPs, whereby the concepts of
cells and regulators emerge. Cells model, e.g., different
people or separate regions of the environment. Regula-
tors model, e.g., regulatory agencies or moderators.

2. To solve the pilot experimentation problem, we introduce
an algorithm, PE-UCRL, which is an upper confidence
RL algorithm that contains a novel shielding subroutine.

3. We prove that PE-UCRL solves the pilot experimentation
problem with high probability.

4. We illustrate how similar regulations could work in rec-
ommender engines through simulations, in which we ex-



perimentally corroborate the theoretical results and show
that our algorithm outperforms the state-of-the-art.

The rest of the paper is organised as follows. we present
related work below and preliminaries in Section 2. We de-
fine pilot experimentation in Section 3 and PE-UCRL in Sec-
tion 4. We present theoretical results in Section 5 and exper-
imental results in Section 6. We conclude in Section 7.

Related work. Safe exploration is concerned with safety
during exploration in the real world. An early approach was
ergodicity-preservation, i.e., regularising the reward func-
tion such that the RL agent is always able to return to the
initial state (Martı́nez, Alenyà, and Torras 2015; Moldovan
and Abbeel 2012). Such methods require much prior knowl-
edge, which lead to approaches relying on the smoothness
of the environment (Berkenkamp et al. 2017; Koller et al.
2018; Turchetta, Berkenkamp, and Krause 2016), where
only the corresponding Lipschitz-constants are required as
prior knowledge. Such methods are applicable to robotics,
but for many other domains, the Lipschitz-bounds get pro-
hibitively tight. The approach most similar to ours is to as-
sume factored MDPs and constrain the RL agent to limit
how much it alters (if at all) certain variables (Simão, Jansen,
and Spaan 2021; Farquhar, Carey, and Everitt 2022).

Side-effects avoidance is concerned with unexpected ad-
verse side-effects and has also been studied under the rubrics
of low-impact methods and value alignment (Christiano
et al. 2017; Hoang 2019; Kori, Glocker, and Toni 2022;
Lindner et al. 2021; Saunders et al. 2018). An example is
cooperative inverse RL: An RL agent is modelled as assist-
ing its human user by learning about the reward function
of the user (Hadfield-Menell et al. 2016, 2017; Shah et al.
2019). Instead of an RL agent–user teams, our work con-
cerns RL agents learning human values via existing regula-
tory institutions. Closest to our work are methods where the
impact on the environment regularises the reward (Krakovna
et al. 2019; Turner, Ratzlaff, and Tadepalli 2020).

2 Preliminaries
In this section, we fix the notation. First, we describe the
MDP model and extensions, second, the RL problem, and
third, probabilistic computation tree logic (PCTL).

An RL agent interacting with an environment can be mod-
elled as an MDP (Puterman 1994). An MDP M is a tuple

M := (S, sinit,A, P,R) (1)

where: S is a finite set denoting the state space. sinit is a dis-
tinguished state denoting the initial state. A is a finite set de-
noting the action space. For any set X, let Distr(X) denote
the set of probability distributions over X. P : S × A →
Distr(S) is a probability function denoting the transition
function. We write P (s′ | s,a) for the probability of the cur-
rent state being s′ given that the RL agent took action a in
the last state s. Note that not all actions in A are necessarily
available in every state. Precisely,

∑
s′∈S P (s

′ | s,a) = 0 if
action a is not available in state s, and

∑
s′∈S P (s

′ | s,a) =
1 if a is available in s. The set of all available action in s
is denoted by A(s). R : S × A × S → [0, 1] denotes the

reward function. We write r = R(s,a, s′) for the reward
following a transition (s,a, s′). We use boldface for lists
and sets (but not tuples). (The reason for denoting states and
actions as lists is explained below.)

Extensions of the MDP model include (i) constrained
MDPs (Altman 1999) and (ii) factored MDPs (Boutilier,
Dearden, and Goldszmidt 1995). (i) A constrained MDP
contains an additional element C : S → X. If X = Rd,
where d ∈ N, C is called a cost function. If X=2AP, where
AP is a finite set denoting atomic propositions, C is called
a labelling function. A constraint is a proposition, i.e. a sym-
bol sequence that takes a truth value. The symbols can either
be values c ∈ X or operators. (ii) In a factored MDP, P can
be factorised such that P=

∏
i∈[n] Pi, where [n]:={1, ..., n},

and n ∈ N is a fixed number. This requires assuming that the
state and action spaces have certain structures. We simplify
factored MDPs from the literature and consider the structure
where S =×i∈[n] Si and A =×i∈[n] Ai (states and actions
are lists). Then, P (s′ | s,a) =

∏
i∈[n] Pi(s

′
i | s, ai), where

s ∈ S, s′i ∈ Si, and ai ∈ Ai.
In RL problems, it is assumed that the developer of the

RL agent knows the identities of some of the elements in the
MDP but not others. A common division is

Known: S, sinit,A. Unknown: P,R. (2)

However, sometimes, R is known, and, at other times,
P is known instead. The unknown elements are what the
RL agent should learn. A deterministic policy is a func-
tion π : S → A, where a = π(s) means that the RL agent
takes action a in state s. Policies are updated through learn-
ing, and, therefore, an RL agent can be seen as a sequence
of policies. We denote the policy at time t ∈ N by πt. Note
that πt is a random variable. (Depending on the randomly
generated history of states and actions, πt can take different
values.) Continuing, we write superscript t to denote ran-
dom variables associated with time t also for other variables,
e.g. states st, actions at, and rewards rt. The unconstrained
RL problem is to find a sequence of policies π = πt for
all t ∈ N in order to

eventually
maximise

1

T
Eπ

[
T∑

τ=0

rτ

∣∣∣∣∣M, s0=sinit

]
initially given
Equation (2)

The symbol Eπ denotes the expectation under policy π.
T ∈ N is the time horizon. In episodic RL, T is finite (Os-
band and Roy 2017). In the context of safe exploration (for
learning outside of simulations), we consider average RL,
where T →∞.

Constraints in MDPs can be expressed in PCTL (Ciesin-
ski and Größer 2004). PCTL contains propositional logic op-
erators, e.g. ¬ and ∧, and derived operators derived, e.g. ∨
and⇒. In addition, PCTL includes temporal operators, such
as ⃝ and a quantifier [·]≤q . The expression ⃝ϕ is read as
‘in the next state, ϕ’, and [ϕ]≤q is read as ’ϕ has a probabil-
ity ≤ q’. The syntax is given by the Backus–Naur form

ϕ ::= ap | ψ | (¬ϕ) | (ϕ ∧ ϕ) | [ψ]≤q, ψ ::=⃝ϕ, (3)

where ap ∈ AP and q ∈ [0, 1]. Let M be a set containing
different MDPs M̃ ∈M, which only differ in terms of their



corresponding transition functions P̃ . (We use ∼ to denote
that X̃ may or may not be the true X .) Let |=π be the satis-
faction relation under policy π. The semantics are below.

M, s |=π ap iff ap ∈ AP(s) (4)
M, s |=π ¬ϕ iff M, s ̸|=π ϕ

M, s |=π ϕ ∧ ψ iff M, s |=π ϕ and M, s |=π ψ

M, s |=π [ϕ]≤q iff P[M, (sτ )∞τ=0 |=π ϕ | s] ≤ q
M, (sτ )∞τ=0 |=π ⃝ϕ iff M, s1 |=π ϕ

Note that P refers to the probability under the worst-case
choice of P̃ and that AP(s) ∈ 2AP is the set of true atomic
propositions in s. AP(s) is precisely defined in Section 3.

3 Pilot Experimentation Problem
In this section, we introduce the cellular MDP model. First,
we describe its novel elements, cells and regulators, and mo-
tivate and illustrate them with examples from medical re-
search, agricultural science, and recommender engines. Sec-
ond, we define a cellular MDP as a tuple. Then, we motivate
and define assumptions on partial prior knowledge. With the
model and the assumptions, we define a novel constrained
RL problem: pilot experimentation.

MDP model. In a cellular MDP, the environment is com-
posed of cells. Cells are special cases of variables in fac-
tored MDPs. Cells are like variables in factored MDPs in
that: (i) There is a fixed number n ∈ N of cells. (ii) Each
cell i ∈ [n] is associated with a factored state space Si

and a factored action space Ai, which we call the intra-
cellular state space and intracellular action space, respec-
tively. Cells are different in that: (iii) The factored transi-
tions are independent of intracellular states in other cells,
i.e. Pi(· | si, ai) is independent of Pj(· | sj , aj). Further-
more, Pi = Pj =: P#, where we call P# the intracellular
transition function. (Different transition dynamics in differ-
ent cells can be modelled by augmenting the intracellular
state spaces.) (iv) Cells are classified as belonging to one
or more classes from a set of cell classes G. In medical
research, cells can model potential participants in a medi-
cal trial. Then, (iii) models that an experimental treatment
given to one participant does not affect another participant
who receives a different treatment. In (iv), examples of im-
portant classes to include in G are whether a potential par-
ticipant has consented to participate in the trial, or whether
they are pregnant. In agricultural science, cells can model
different regions separated by land–water boundaries, large
distances, or artificial laboratory structures such as in meso-
cosms. In recommender engines, cells can model users. For
further details on examples, see Appendix A.

Also unlike variables in factored MDPs, cells are asso-
ciated with regulators. A regulator can label a state as un-
safe or safe; we say that the regulator reports an adverse
side effect or no adverse side-effects, respectively. Regu-
lators work like cost functions or labelling functions and
side-effects work like costs or labels in constrained MDPs
in that: (v) If C denotes the regulators, there is an X such
that C:S→X, and c∈X is the side-effects. Regulators are

different in that: (vi) Each regulator is associated with a
cell. X = Distr{safe, unsafe, silent}n×n, which means
that C can be seen as a list [C1, ...,Cn], where Ci is the
regulator associated with cell i. Let, e.g., n = 2, then
[safe, unsafe] ∼ C1(· | [s1, s2]) means that the regulator
in cell 1 is safe but reports adverse side-effects in cell 2.
(vii) The outcome silent is special in the sense that noth-
ing can be deduced about the safety of the intracellular state
on this information alone. Furthermore, the absence of a
regulator in a cell i can be modelled by letting Ci(s) =
Distr{silent}n for all s ∈ S. In medical research, a regu-
lator can model a regulatory agency or a single individual
working within a regulatory agency. In the latter case, every
regulator is a potential participant (vi), but not every poten-
tial participant is a regulator (vii). In agricultural science, it
would be appropriate to only model regulatory agencies. In
recommender engines, regulators can model moderators.

With cells and regulators define, we can summarise the
definition of the cellular MDP as follows. A graphical rep-
resentation is available in Appendix B.

Definition 1 (Cellular MDP). A cellular MDP CM is a tuple

CM := (n,S1, ...,Sn, s
init,A, P#, R,C,G, L),

where: n ∈ N denotes the number of cells. S1, ...,Sn

are finite sets denoting the intracellular state spaces. Let-
ting S = ×i∈[n] Si, sinit and R are defined as in Equa-
tion (1). So is A but with the additional assumption that
there exists a finite set A# such that A(s) ⊆×i∈[n] A#

for all s ∈ S. A# denotes the intracellular action space.
P# : S# × A# → Distr(S#), where S# :=

⋃
i∈[n] Si,

denotes the intracellular transition function. C is a matrix
probability distribution, where each element is defined by

Cij : Si × Sj → Distr{safe, unsafe, silent}.

The function C denotes the regulators and its outcomes are
called side-effects. G(∋ all) is a finite set denoting the cell
classes. L : [n] → 2G (all ∈ L(i) for all i ∈ [n]) denotes
the cell classes.

Partial prior knowledge. In contrast to Equation (2), the
division between what the developers know and do not know
is as follows.

Known:n,S1,...,Sn,s
init,A,R,G,L. Unknown:P#,C. (5)

It is easy to extend to cases where R is unknown, but, for
ease of presentation, it is assumed to be known. Despite
the identities of P# and C being unknown, there is partial
prior knowledge about them, that can be represented as con-
straints, which we call physical constraints. First, the de-
veloper knows which intracellular states and actions are as-
sociated with which independent cell. In medical research,
a medical firm would know which participants are given
which treatments, and it is similar within agricultural sci-
ence. In recommender engines, the developer could track
which users are given which recommendations. Second, the
regulators do not disagree whether a consequence is safe or
unsafe (a strong assumption), and the developer knows this.



Definition 2 (Physical Constraints). The first physical con-
straint is cellular independence. Under cellular indepen-
dence, there exist P ,P# such that, for all s,s′∈S and a∈A,

P (s′ | s,a) =
∏

i∈[n] P#(s
′
i | si, ai).

The second physical constraint is consistent regulators. Un-
der consistent regulators, for all s ∈ S and h, i, j ∈ [n], both
of the following hold.

P[unsafe ∼ Chi(· | sh, si) | safe ∼ Chj(· | sh, sj)] = 0

P[safe ∼ Chi(· | sh, si) | unsafe ∼ Chj(· | sh, sj)] = 0

In contrast to physical constraints, regulatory constraints
are not dictated by how the world works but can be de-
cided by society. Complete safety cannot be guaranteed
while simultaneously allowing for learning. Therefore, reg-
ulatory constraints in medical research and agricultural sci-
ence work by first allowing small experiments and gradu-
ally scaling these up. Regulations in recommender engines
are less developed and are to a large extent based on self-
regulation. In contrast, regulations in medical research are
highly developed. For example, Friedman et al. (2015) in-
clude: First entering three participants into the clinical trial.
Wait and observe if adverse side-effects occur and, in that
case, potentially end the trial. Exclude, e.g., pregnant per-
sons from trials. For further details, see Appendix A. We
note three important parameters: (i) how long to wait to ob-
serve adverse side-effects such as toxicity, (ii) the number
of participants, and (iii) whether the participants belong to
certain classes. We formalise the parameters using a variant
of PCTL, which we call pilot experimentation PCTL (PE-
PCTL). (i) does not require any modification of PCTL, but
it is helpful to define the operator

⃝≤τ :=
∧

σ∈[τ ]⃝σ where⃝σ+1 :=⃝⃝σ,⃝1 :=⃝

where τ is how long to wait. To formalise (ii) and (iii), we
introduce the symbol №g ≥ j, where g ∈ 2G and j ∈ [n].
j denotes the bound on the number of cells allowed to ex-
perience adverse side-effects. g denotes the cell classes this
applies to.
Definition 3 (Regulatory Constraints). PE-PCTL is PCTL,
where ap in Equation (3) is replaced by №g ≥ j and Equa-
tion (4) is replaced by

M, s |=π №g ≥ j iff
∑
i∈[n]

I[g ∈ L(i)]I[isUnsafe(si)] ≥ j

where isUnsafe(si) ≡ true iff
∏

h∈[n] Chi(unsafe|s′h) > 0

for all s′ ∈ {s′ ∈ S : s′i = si}. If Φ is a formula in PE-
PCTL, then it is a regulatory constraint.

The final piece of prior knowledge is that the devel-
oper knows the identity of a distinguished policy πinit de-
noting the initial policy. Furthermore, the developer knows
that πinit is safe, although πinit may be very far from opti-
mal. It is a common assumption in safe exploration (Biyik
et al. 2019; Koller et al. 2018; Roderick, Nagarajan, and
Kolter 2021, e.g.). For example, πinit could be a founda-
tion model acquired through supervised learning. In the ex-
amples of medical research or agricultural science, there are
usually default treatments known to be safe.

Definition 4 (Safe Initial Policy). The initial policy is πinit.
Let S∞ be the set of states that are reachable from sinit un-
der πinit. For all s∈S∞ and i,j∈[n], Cij(unsafe|si,sj)=0.

Safe exploration and side-effects avoidance. A safe ex-
ploration problem is a constrained reinforcement learning
problem of eventually maximising reward while always sat-
isfying the safety constraints. The pilot experimentation
problem is a safe exploration problem applicable in cellular
MDPs with the prior knowledge above. Unlike other safe ex-
ploration problems, it also covers side-effects not originally
specified.
Definition 5 (Pilot Experimentation Problem). Let pk be an
object containing the prior knowledge in Equation (5) and
definitions 2 and 4, and let Φ be a regulatory constraint. Find
a sequence of policies π = πt for all t ∈ N in order to

eventually
maximise lim

T→∞

1

T
Eπ

[
T∑

τ=0

rτ

∣∣∣∣∣ CM , s0 = sinit

]
always

subject to {CM }, s
init |=π Φ

initially given
pk

4 Shielded RL Algorithm
In this section, we introduce a procedure for solving the pilot
experimentation problem. First, we adapt upper confidence
RL algorithms to cellular MDPs to get a baseline algorithm.
Then, we adapt the baseline algorithm further by making
it avoid adverse side-effects and shielding violations to the
regulatory constraints.

CELLULAR UCRL. Upper confidence RL algorithms,
such as UCRL2 (Jaksch, Ortner, and Auer 2010) and KL-
UCRL (Filippi, Cappé, and Garivier 2010), can be directly
applied to cellular MDPs. Direct application does, however,
result in inefficient learning: The RL agent ignores the cel-
lular independence in Definition 2 from the prior knowl-
edge pk and, therefore, fails to do a certain form of transfer
learning. We call it cellular transfer learning, and it consists
in observing an intracellular transition in one cell and us-
ing that to learn about intracellular transitions in other cells.
Upper confidence RL algorithms can be split into two alter-
nating phases: the on-policy phase, where the RL agent in-
teracts with the environment, and the off-policy phase, where
it computes the policy update. Cellular transfer learning can
be enabled by modifying each phase. In the on-policy phase,
we modify switchPhase , the condition when to switch to
the off-policy phase. In the off-policy phase, we modify the
calculation of the confidence set CM. Continuing, we pick
UCRL2 as the specific algorithm we build upon, and in com-
parison with UCRL2

CM ⊆ CMUCRL2, switchPhase ⇐ switchPhaseUCRL2.

We call the resulting algorithm CELLULAR UCRL, and de-
tails are available in Appendix C.

Pilot Experimentation UCRL (PE-UCRL). A problem
with CELLULAR UCRL is that it ignores side-effects. We
modify both the on-policy and off-policy phases and call the
resulting algorithm PE-UCRL. In the on-policy phase, we



Algorithm 1: PE-SHIELD

Input: last behaviour policy πΦ, target policy π+, confi-
dence set CM, last state s, prior knowledge pk
Output: updated behaviour policy πΦ[k]

J← 0 if first call to algorithm
cells ← [pk .n] ▷ pk .X denotes X contained in pk
πΦ[k]← πΦ[k − 1]
while |cells| ≥ 1 do

sample i from cells , remove i from cells
jumble ← [(πΦ

i [k − 1] = pk .πinit
i ) ∧ (si ∈ pk .sinit)]

Ji ← Ji + 1 if jumble

jumble ← jumble ∧

{
true w.p. 1

max{1,Ji}
false otherwise

if jumble then ▷ jumbling speeds up convergence
πi ← πinit

i
else

πΦ
i [k]←π

+
i ,verified←VERIFY(πΦ[k],CM,s,pk)

πΦ
i [k]← πΦ

i [k − 1] if ¬verified

add a subroutine ACTION-PRUNING, to solve the following
problem: Given a cellular MDP CM , find a pruned cellu-
lar MDP CM−. CM− is identical apart from the transition
function P−, which, for all s, s′ ∈ S and ∈A(s), satisfies

P−(s′|s,a)≥0iff Cij (unsafe|s′i, s′j)=0for all i,j∈[n] (6)

ACTION-PRUNING relies on the assumption of consistent
regulators from Defintion 2. It is applied to each C̃M ∈ CM
yielding the pruned confidence set CM− ⊆ CM, which
is used for planning instead. If a new pruning is performed
by ACTION-PRUNING, then PE-UCRL proceeds to the plan-
ning part of the on-policy phase even if not switchPhase .

In the off-policy phase, reward-shaping is used to ensure
that PE-UCRL explores potential side-effects sufficiently.
Let I(s)=1 if only silent has been observed for state s
and =0 otherwise. Let N [k](s,a) be the number of times
that state–action pair (s,a) has been visited before the kth
on-policy phase (and δ ∈ ]0, 1[ is a constant). (Continuing,
we denote X after the kth on-policy phase by X[k].) The
reward-shaping is defined by

R(s,a,s′):=R(s,a,s′)+I(s)
√

7 log(2|S||A|t[k]/δ)
2max{1,N [k](s,a)} (7)

The final modification is the addition of a subroutine PE-
SHIELD to the end of the planning part of the off-policy
phase. PE-SHIELD is a shield that outputs a policy πΦ[k] that
satisfies the regulatory constraints Φ. As input, PE-SHIELD
takes πΦ[k− 1], the behaviour policy from the previous on-
policy phase, and π+, the target policy calculated through
extended value iteration. The idea behind PE-SHIELD is to
iterate over cells i ∈ [n] and gradually replace πΦ[k − 1]
with π+ as long as Φ is satisfied according to a probabilis-
tic model-checker VERIFY. The details are shown in Algo-
rithm 1. In VERIFY, all states in S∞ from Definition 4 are
assumed to be safe. Otherwise, VERIFY works as any other
probabilistic model-checker, e.g. Algorithm V in Pugelli et
al. (2013). Algorithm V has a time complexity polynomial

in O(|S|2|A|), which is not worse than the planning part
of UCRL2. PE-UCRL is our proposition to solve the pilot
experimentation problem and corroborating evidence is pre-
sented in the following sections.

5 Safety and Convergence Analyses
In this section, we analyse PE-UCRL theoretically. First, we
prove that it is always safe in the sense that it always satisfies
the regulatory constraints. Under additional assumptions, we
prove that it converges to the optimal policy.

Safety. PE-UCRL solves the safety part of the pilot exper-
imentation problem without any additional assumptions.
Theorem 1 (Safety). With probability ≥ 1 − δ, PE-
UCRL satisfies Φ from Definition 5. Its time complexity be-
tween every time step in the off-policy phase is polynomial
in O(n|S|2|A|). Its time complexity between every time step
in the on-policy phase is in O(n2 +maxi∈[n] |Si|).

For proof, see Appendix D. Theorem 1 shows that the
time complexity for the off-policy phase is comparable to
other upper confidence RL algorithms for small n. How-
ever, The time complexity for the on-policy phase may be
high. Below, we make an easily satisfied assumption, under
which the time complexity is greatly reduced.
Definition 6 (State Transience Invariance). A cellular MDP
is state transient invariant if, for any s# ∈ s ∈ S and
a# ∈ a ∈ A(s), there exists s′# ∈ s′ ∈ S# such that
P (s′#|s#, a#) > 0 and Cij(unsafe | s′i, s′#) = 0.

Corollary 1.1. Assume: The cellular MDP is state tran-
sience invariant. Then, the time complexity of PE-UCRL be-
tween every time step in the on-policy phase is in O(n2).

Convergence. PE-UCRL solves the convergence part of
the pilot experimentation, but, as in all convergence theo-
rems for RL algorithms, strong assumptions are necessary.
Before we state the assumptions, we introduce a novel form
of regret analysis suitable for safe exploration problems.
Classical regret analysis assumes that the available prior
knowledge takes the form in Equation (2), whereas we as-
sume the more general object pk from Definition 5. Assume,
e.g., that pk .n = 1 and pk .Φ = [⃝№all ≥ 1] ≤ 1. Then,
no algorithm can get sublinear regret, i.e., no algorithm con-
verges. This example illustrates a trade-off between expres-
sivity and explorability. Expressivity is the set of possible
physical and regulatory constraints contained in the prior
knowledge. Explorability is the number of states the agent
can safely explore at any time. Note that our definition of ex-
plorability is different from learnability (Yang, Littman, and
Carbin 2022). Because of the trade-off, our regret analysis
considers algorithm–prior pairs instead of algorithms alone.
Definition 7 (Regret). Let CM− be the pruned true cellular
MDP CM from Equation (6). Let π⋆ be the optimal policy
from Definition 5. The regret is defined by

Regret
(ALG,prior)

(T ):=Eπ⋆

[
T∑

τ=0

rτ

∣∣∣∣∣ CM−, s0 = sinit

]
−

T∑
τ=0

rτ,

where ALG is an algorithm and prior is prior knowledge.



The literature on safe exploration has focused on limit-
ing expected adverse side-effects, whereas the side-effects
avoidance literature has focused on the unexpected. We say
that adverse side-effects are unexpected if prior = pk . We
say that adverse side-effects are expected if prior = pk+C,
where pk+C is an object equal to pk except that it, in ad-
dition, contains reported side-effects. We assume that side-
effects are expected for the intermediary results and gener-
alise to unexpected adverse effects for the final theorem.

The first assumption uses a standard quantity in conver-
gence analyses of RL algorithms: the diameter of an MDP.
We adapt it to cellular MDPs by defining it as

D := max
s,s′∈S

min
π:S→A

Eπ[θ(s, s
′) | CM ],

where θ : S×S→ Distr(N) is a random function. θ(s, s′) is
defined as the minimum number of time steps ∆ it takes to
reach state s′ = st+∆ from state s = st for any time t. The
diameter can be used for the following standard assumption.
Definition 8 (Communicating Cellular MDP.). A cellular
MDP is communicating if D <∞.

Intermediary result 1. Assume: The cellular MDP is state
transient invariant and communicating. Then, there exists a
term ohpk+C(T ) equal to the difference in regret between
PE-UCRL and UCRL2. For details, see Lemma 1 in Ap-
pendix D. Since ohpk+C(T ) ≥ 0, we can view it as an
overhead, which is the price for stronger safety guarantees.
ohpk+C(T ) is constant if pk+C.n = 1 and pk+C.Φ =
[⃝№all ≤ 1] ≥ 1. That means the overhead is not sublinear
and convergence cannot be guaranteed. We define suitable
constraints on prior knowledge below.
Definition 9 (Explorability–Expressivity Trade-Off). Prior
knowledge prior strikes a suitable trade-off between ex-
plorability and expressivity if two conditions are met: The
regulatory constraints belong in an explorable fragment of
PE-PCTL, and the reward function is monotonically increas-
ing. The regulatory constraints Φ belong in an explorable
fragment of PE-PCTL if Φ implies that, for all s ∈ S
and j ∈ [n], there exist t ∈ N and i ∈ [n] such that

Cij(safe | si, sj) > 0 if st = s.

For all i ∈ [n], let Ri : Si → [0, 1]. Let f : [0, 1]n → [0, 1].
The reward function R is monotonically increasing if

R = f(R) such that f(R(s′)) ≥ f(R(s)),

where Ri(s
′
i) ≥ Ri(si) for all i ∈ [n], and Ri(s

′
i) > Ri(si)

for some i ∈ [n]

Intermediary result 2. Assume: The cellular MDP is state
transient invariant and communicating. pk+C strikes a suit-
able trade-off between explorability and expressivity. Then,
ohpk+C(T ) approaches a constant as T → ∞. For details,
see Lemma 2 in Appendix D. Quantitative bounds for differ-
ent regulations within the explorable fragment of PE-PCTL
require different proofs and are left for future work.

Assuming prior knowledge of side-effects does not solve
the pilot experimentation problem. However, without as-
sumptions about the regulators, the cellular MDP could be
such that they are always silent, and convergence is impos-
sible. Below, we prove convergence after assuming that all
side-effects can eventually be reported by some regulator.

Figure 1: Reward and side-effects incidence over time. Av-
erages and standard deviations for ≥ 20 samples are shown.
Algorithm names abbreviate algorithm–regulations pairs.

Definition 10 (Complete Reporting). Reporting is complete
if, for all s# ∈ S#, there exist s′# ∈ S# and i, j ∈ [n] such
that Cij({safe, unsafe} | s′#, s#) > 0.

Theorem 2 (Convergence). Assume: The cellular MDP
is state transient invariant and communicating. The prior
knowledge pk strikes a suitable trade-off between ex-
plorability and expressivity. Reporting is complete. Then,
with probability ≥ 1− δ, for large T ∈ N,

Regret
(PE-UCRL,pk)

(T ) ∈ Õ(D|S|
√
T |A|)

For proof, see Appendix D. In summary, PE-UCRL is
guaranteed to converge in some environments, thereby, solv-
ing the pilot experimentation problem.

6 Implementation and Experimental Results
In this section, we introduce implementations of environ-
ments that can be modelled as cellular MDPs. Then, we
summarise four benchmark algorithms. Finally, we present
the results comparing PE-UCRL with the benchmark algo-
rithms in the environments.

Environments. Environment suites for testing RL algo-
rithms for both safe exploration (Ray, Achiam, and Amodei
2019) and side-effects avoidance (Wainwright and Ecker-
sley 2020) have been proposed. It is problematic, for our
purposes, that they cannot be exactly modelled as cellular
MDPs. Therefore, we introduce two novel environments.



Note that many existing implementations approximate cellu-
lar MDPs and that making PE-UCRL work for approximate
cellular MDPs is an important area for future work.

Similarly to previously proposed environments (Krueger,
Maharaj, and Leike 2020, e.g.), both of our environments
model polarisation in recommender engines (caused by mis-
informative content and other kinds of manipulative con-
tent). Note that there is little consensus on whether recom-
mender engines have a large impact on polarisation (Ribeiro
et al. 2020), but, in our environments, we assume the affir-
mative hypothesis for illustrative purposes. We refer to the
environments as the reset variant and the deadlock variant.

Reset variant. In this toy example, there are three cells
corresponding to a regular user, a child, and a moderator.
The content recommendation actions of the recommender
engine agent can push users towards more or less extreme
views. The most extreme content is both the most rewarding
and most likely to be reported as unsafe by the moderator.
The reset assumption is satisfied: Any policy will eventually
reset the system to the initial state. The reset assumption is
reasonable in complex systems when there is some process
trying to maintain homeostasis, e.g., schools and established
news agencies countering polarising misinformation. Con-
vergence can be guaranteed in the reset variant.

Deadlock variant. The only difference is that the most ex-
treme intracellular state of polarisation is so extreme that the
user can never be deradicalised, i.e., the user gets stuck in a
deadlock intracellular state. Therefore, convergence cannot
be guaranteed by any algorithm—only safety can be.

Further details are available in Appendix E.

Comparisons. Merely comparing algorithms in safe ex-
ploration would result in unfair comparisons as prior knowl-
edge might differ, cf. Section 5. In the experiments, prior
knowledge only differs in terms of regulatory constraints, so
we compare algorithm–regulations pairs.

(PE-UCRL, [⃝ ⃝ (№all ≥ 1)]≤0.5) is the algorithm–
regulations pair representing our proposed solution. Verifi-
cation uses PRISM (Kwiatkowska et al. 2020), and, in par-
ticular, its interval MDP engine1. The symbol № is imple-
mented as a variable №g for each g ∈ G.

Baselines. We designed two, which we compare against:
(CELLULAR UCRL, n/a) can be seen as an ablation of PE-

UCRL without ACTION-PRUNING and PE-SHIELD. Further
ablations are available in Appendix F.

(NATION-LIKE, update w.p. 0.2 every 50 time steps) is a
more sophisticated baseline. However, it lacks formal guar-
antees. For details, see Appendix C.

State-of-the-art. We restrict our comparisons to solutions
that can achieve safety in discrete non-episodic MDPs:

(AUP, 10 auxiliary functions and coefficient = 1), where
AUP is short for attainable utility preservation (Turner, Rat-
zlaff, and Tadepalli 2020), is a method from the literature
on avoiding side-effects. In brief, it introduces a regulariser
with a coefficient = 1. The regulariser works by solv-
ing a multi-objective optimisation problem over the reward
function and 10 auxiliary reward functions, which are sam-

1https://github.com/davexparker/prism/tree/imc2

pled randomly. We apply the regulariser to SIDE-EFFECTS-
AVOIDING UCRL.

(ALWAYSSAFE/PSO, delicate variables i:L(i)=children)
is the implementation in cellular MDPs for two different
algorithms: AlwaysSafe (Simão, Jansen, and Spaan 2021)
and (Farquhar, Carey, and Everitt 2022). The reason that
they (surprisingly) coincide for cellular MDPs is the cellu-
lar independence assumption from Definition 2. These are
methods from the literature on safe exploration. Delicate
variables are cells that the RL agent must not alter.

Further details are available in Appendix C.

Results. In the experiments, we evaluated the algorithm–
regulations pairs on two metrics: reward and side-effects in-
cidence for each time step. Side-effects incidence is defined
as the fraction of cells that are in an unsafe intracellular state
at any one time (regardless of whether the regulators are
reporting them). How the reward and the side-effects inci-
dence change over time is shown in Figure 1.

The experiments corroborate theorems 1 and 2, i.e., (PE-
UCRL, [⃝ ⃝ (№all ≥ 1)]≤0.5) is safe and converges.
In the deadlock variant, the side-effects incidence for (PE-
UCRL, [⃝ ⃝ (№all ≥ 1)]≤0.5) does not decrease, but it
is always at an acceptable level. The side-effects are also
bounded for the state-of-the-art algorithm–regulations pairs.
Both baselines approach maximal levels of side-effects over
time, although not equally quickly. In the reset variant,
the side-effects incidence for (PE-UCRL, [⃝ ⃝ (№all ≥
1)]≤0.5) is low initially, and over time it decreases even fur-
ther. In contrast, the baselines get high levels of side-effects.
The state-of-the-art algorithm–regulations pairs have ac-
ceptable levels of side-effects but do not approach the opti-
mal reward. Convergence can only be guaranteed in the reset
variant, and (PE-UCRL, [⃝⃝ (№all ≥ 1)]≤0.5) is the only
algorithm–regulations pair that converges.

Limitations are that convergence is slower and that
the reset assumption helps the algorithms. In the re-
set environment, (PE-UCRL, [⃝ ⃝ (№all ≥ 1)]≤0.5)
performs worse than (ALWAYSSAFE/PSO, delicate vari-
ables i:L(i)=children) for the early time steps. Further-
more, the reset assumption helps PE-UCRL by letting it see
the transitions necessary to update the non-exploratory in-
tracellular policies many times. However, we hypothesise
that if ergodicity-preserving regularisation (Moldovan and
Abbeel 2012) was added to PE-UCRL, then it would not
matter if the environment satisfied the reset assumption or
not. Exploring this hypothesis is beyond the scope of this
paper though.

Additional results are available in Appendix F.

7 Conclusions
In summary, we proposed a novel model, the cellular MDP
and a novel algorithm, PE-UCRL. We showed that for cellu-
lar MDPs, it is possible to strike a suitable trade-off between
exploration and exploitation, which ensures that PE-UCRL
is safe and converges. We corroborated the theoretical re-
sults with experiments and show that PE-UCRL outperforms
state-of-the-art algorithms in cellular MDPs.



Future work includes scaling PE-UCRL by, e.g., using
neural approximations for learning representations, abstrac-
tions for verification, and ergodicity-preserving regularisa-
tion for exploration. We currently investigate weakening the
assumptions on the regulators by considering scenarios in
which they disagree or are manipulated by the RL agent.
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