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Abstract

A decision maker is deciding between an active action (e.g.,
purchase a house, invest certain stock) and a passive action.
The payoff of the active action depends on the buyer’s private
type and also an unknown state of nature. An information
seller can design experiments to reveal information about the
realized state to the decision maker, and would like to maxi-
mize profit from selling such information. We fully character-
ize, in closed-form, the revenue-optimal information selling
mechanism for the seller.

After eliciting the buyer’s type, the optimal mechanism
charges the buyer an upfront payment and then simply re-
veals whether the realized state passed a certain threshold or
not. The optimal mechanism features both price discrimina-
tion and information discrimination. The special buyer type
who is a priori indifferent between the active and passive ac-
tion benefits the most from participating the mechanism.

Introduction

In numerous situations, a decision maker wishes to take an
active move but is uncertain about its outcome and payoff.
Such active moves range from financial decisions of invest-
ing a stock or startup to daily-life decisions of purchasing a
house or a used car, from macro-level enterprise decisions
of developing a new product to micro-level decisions of ap-
proving a loan applicant or displaying online ads to a partic-
ular Internet user. In all these situations, the decision maker’s
payoff for the active move relies on uncertain information
regarding, e.g., potential of the invested company, quality
of the house, popularity of the new product, credit of the
loan applicant, etc. Certainly, the decision maker typically
also has a passive backup option of not making the move, in
which case he obtains a safe utility without any risk. To de-
cide between the active and the passive action, the decision
maker can turn to an information seller who can access more
accurate information about the uncertainties and thus help
to better estimate the payoff for his action. Given the value
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of the seller’s information to the decision maker, the seller
can make a profit from how much the information helped to
improve utilities of the decision maker, i.e., the information
buyer.

This paper studies how a monopolistic information seller
(she) can design an optimal pricing mechanism to sell her
information to an information buyer (he). The buyer (a de-
cision maker) needs to take one of two actions. The active
action results in a payoff v(q, t) where ¢ captures the buyer’s
private fype and the state of nature ¢ summarizes the payoff-
relevant uncertainty unknown to the buyer. The passive ac-
tion for the buyer always results in the same utility, nor-
malized to 0, regardless of ¢,t. Both ¢ and ¢ are random
variables drawn independently from publicly known distri-
butions. That is, the type ¢ captures the buyer’s private pref-
erence and is assumed to be irrelevant to the informational
variable q.! The seller can design experiments to reveal par-
tial information about state ¢, and would like to design an
optimal mechanism to sell her information to a buyer ran-
domly drawn from the type distribution.

The problem of selling information turns out to differ sig-
nificantly from the classic pricing problem for selling goods.
First, when selling (physical or digital) goods, the seller’s al-
location rule can be described by a probability of giving out
the goods and a risk-neutral buyer’s utility is linear in the al-
location variable. However, when revealing information to a
buyer through experiments, the design variable of an exper-
iment for each buyer type is high-dimensional or can even
be a functional when the state is a continuum. Moreover, the
buyer’s utility is generally non-linear in the variables that
describe an experiment (Bergemann and Morris 2019). Sec-
ond, in selling goods, any individually rational buyer would
participate as long as their expected utility is at least 0. How-
ever, in our setup of selling information, the buyer may al-
ready have positive utility from his active action even with-
out participating in the mechanism. An individually ratio-
nal buyer would participate in the mechanism only when his
utility will become even higher. These differences make the
seller’s optimization task more challenging. This will be evi-
dent later in our characterization of the optimal mechanism,
which turns out to be significantly different from, and ar-
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guably more intricate than, the optimal pricing mechanism
for selling goods by (Myerson 1981).

Main Result

We consider the above information selling problem and
characterize in closed-form the revenue-optimal mechanism,
among all sequential mechanisms that includes all possible
ways through which the seller may sequentially reveal infor-
mation and ask for payments. To simplify the exposition, we
assume that the buyer’s value function is /inear and mono-
tone non-decreasing in t, i.e., v(q,t) = a(q)[t + B(q)] for
some a(q) > 0 and 5(q). In the full arXiv version®, we dis-
cuss how our analysis and results can be generalized to any
convex and monotone (in ) value functions v(q, t).

Assuming v(q,t) = a(q)[t + 8(q)], we show that there
always exists an optimal mechanism of a simple format —
a multi-entry menu where each entry containing a threshold
experiment and a payment for each buyer type. In this opti-
mal mechanism, the buyer is incentivized to report his true
type t first.? The seller then charges the buyer p; and, after-
wards, designs an experiment to reveal whether the realized
state ¢ satisfies 3(q) > 6; or not for some carefully chosen
threshold 6;. We thus call the mechanism a threshold mecha-
nism. The thresholds and payments generally vary for differ-
ent buyer types, and are carefully designed to accommodate
the amount of risk each buyer type can tolerate. That is, the
optimal mechanism features both price discrimination and
information discrimination. We fully characterize the thresh-
old and payment in the optimal mechanism. Depending on
the setting, the negative of the threshold (i.e., —6;) turns out
to equal either the (lower) virtual value of type ¢ as defined
by (Myerson 1981), or its variant which we coin the upper
virtual value, or a novel convex combination of both coined
the mixed virtual value.

The above optimal mechanism exhibits multiple interest-
ing properties. First, the optimal mechanism turns out to
only need to price the experiment with one round informa-
tion revelation, even though the seller in our model is al-
lowed to price experiment outcomes (i.e., signals) and use
multiple rounds of information revelation. This is due to
the independence of the informational variable g and buyer
type t, which makes an upfront payment and an “aggre-
grated” experiment without loss of generality. Second, the
special buyer type ¢ who is a-priori indifferent between ac-
tive and passive action has the largest surplus from partici-
pating the mechanism. This is aligned with our intuition that
this buyer type should benefit the most from additional infor-
mation since the two actions appear indistinguishable to him
a-priori. Moreover, we show that the buyer surplus as a func-
tion of his type ¢ is increasing and convex when ¢ < f but
immediately transitions to be decreasing and convex when
t > t. However, the buyer payment may be increasing or
decreasing in ¢, depending on the setting. Third, informa-
tion discrimination turns out to be crucial for revenue. We

2The full arXiv version: https://arxiv.org/abs/2102.13289

3Equivalently, it is the best interest for each buyer type to
choose the particular menu intended for him. That is, the mech-
anism is incentive compatible.

show that if information discrimination is not allowed, i.e.,
suppose the same experiment must be used for all buyer
types, then the best the seller can do in this case is to re-
veal full information and charge the Myerson’s reserve price.
We demonstrate via an example that the revenue in this case
may be arbitrarily worse than the optimal. However, under
the monotone hazard rate assumption of the buyer type dis-
tribution, we show that the optimal single-entry menu can
always guarantee at least 1/e(= 0.368) fraction of the opti-
mal revenue.

Related Works

The most related literature to our work is the recent study by
(Bergemann, Bonatti, and Smolin 2018), who also consider
selling information to a decision maker. In their model, the
state of nature affects the payoff of every action. They char-
acterize the optimal mechanism for the special cases with bi-
nary states and actions or with binary buyer types, whereas
only partial properties about the optimal mechanism can be
derived for the general case. In contrast, in our setup the
state only affects the payoff of the buyer’s active action. This
restriction allows us to characterize the closed-form solu-
tion of the optimal mechanism with many (even continuous)
states and buyer types, and for general buyer payoff func-
tions. Moreover, our design space of mechanisms allows
multiple rounds of information revelation and also allows
contracting the experiment outcomes (i.e., realized signals),
though it turns out that the optimal mechanism only needs to
price one-round experiments.* While (Bergemann, Bonatti,
and Smolin 2018) also restrict their design space to mech-
anisms that only price one-round experiments, they pointed
out that this restriction does lose generality in their general
setup. That is, the seller may derive strictly more revenue
by using multi-rounds of experiments or by contracting the
experiment outcomes.

(Es6 and Szentes 2007b) studied the pricing of advice in
a principal-agent model motivated by consulting. The prin-
cipal as a consultant in their model can contract the agent’s
actions. With such strong bargaining power, their main re-
sult shows that even the principal observes completely irrele-
vant information about the agent’s payoffs, the principal can
still obtain revenue that is as high as in the situation where
she fully observes the agents’ payoffs. However, different
from consulting service, our model of information selling
assumes that only information itself (i.e., the experiment or
the experiment outcomes) is contractible and the buyer’s ac-
tions are not contractible. Therefore, the main result of (Es6
and Szentes 2007b) clearly does not hold in our model —
if the seller’s information is irrelevant to the buyer’s pay-
offs in our model, she will certainly get zero revenue. In-
terestingly, the format of our optimal mechanism turns out
to bear somewhat similar structure to the optimal contract
of (Es6 and Szentes 2007b), however our results are derived
through different techniques and apply to much more gen-
eral buyer value functions, whereas (Es6 and Szentes 2007b)

“This is first observed by (Babaioff, Kleinberg, and Paes Leme
2012) yet we will provide a formal argument later for complete-
ness.



restrict to simpler agent utility functions (i.e., the sum of
the agent type and the state) and only log-concave agent
type distributions. (Horner and Skrzypacz 2016) study the
problem where a firm faces a decision on whether to hire an
agent, who has a binary private type, i.e., competent or not.
The firm and agent can interact for many rounds by making
money transfer and taking test to elicit information about the
agent’s type. They analyze the equilibrium when the number
of rounds of interactions grows large. Both the model and
the nature of their results are different from us.

There has also been recent interest of algorithmic studies
that formulate optimization programs to compute the opti-
mal mechanism for selling information to a decision maker.
(Babaioff, Kleinberg, and Paes Leme 2012) prove revela-
tion principle types of results and characterize the format
of the optimal mechanism, depending on whether the state
and buyer type are correlated or not; they then develop opti-
mization programs to compute the optimal mechanism. The
efficiency for solving these programs were later improved
by (Chen, Xu, and Zheng 2020).

Model and Problem Formulation
The Setup

We study the following optimal information pricing prob-
lem between an information seller (she) and an information
buyer (he). The the buyer is a decision maker who faces one
of two actions: a passive action 0 and an active action 1. The
the buyer obtains an uncertain payoff v(q,t) for the active
action 1 where ¢ € @ is a random state of nature unknown
to the buyer and ¢ € T is the buyer’s private type. Both 7', @)
are measurable sets. The buyer’s utility for the passive action
0 is always 0, irrespective of his type and the state of nature.
In other words, the passive action is a backup option for the
buyer. For example, if the the buyer is a potential purchaser
of some goods (e.g., a house or a used car) with uncertain
quality, the passive action 0 corresponds to “not purchase”
in which case the buyer has no gain or loss, whereas the ac-
tive action 1 corresponds to “purchase” under which the the
buyer’s utility depends on the quality ¢ of the goods as well
as how much he values the goods (captured by his private
type ).

Both ¢ and ¢ are random variables that are indepen-
dently distributed according to the cumulative distribution
functions (CDF) F'(t) and G(q), respectively. We assume
throughout the paper that that both F'(t) and G(q) are
continuously differentiable, with corresponding probability
density functions (PDF) f(t) and g(q). Both F'(t) and G(q)
are public knowledge. However, the realized g can only
be observed by the information seller. We study the the
seller’s problem of designing a revenue-maximizing pric-
ing mechanism to sell her private observation of g to the
the buyer. Notably, the buyer’s private type ¢ is only known
to himself — had the the seller known the buyer type t,
the seller’s optimal pricing mechanism is simply to reveal
full information and then charge the buyer the value of
(full) information (Bergemann, Bonatti, and Smolin 2018):
Jyeq max{0,v(q, 1) }g(q)dg—max{0, [ ., v(g,t)g(q)dq}.

Throughout we assume that the buyer payoff function

v(g,t) is monotone non-decreasing in his type t for any
q € Q. For expositional simplicity, we will assume v(g, t)
is linear in ¢, i.e., there exist real-valued functions «(gq) > 0
and 3(q) such that v(g,t) = a(q)(t + B(q)).

In our arXiv version, we show how our results and anal-
ysis easily generalize to any convex (in ¢) function v(q, t).
Linearity also implies that the buyer’s type ¢ € R is a real
value, which we assume is supported on a closed interval
T = [t1,t2] . However, the state ¢ is allowed to be sup-
ported on a general measurable set () and does not need to
be a real value. Such an abstract representation of ¢ is use-
ful for accommodating applications where ¢ may include the
non-numerical features relevant to the the buyer’s decisions
(e.g., the brand and production time of a used car). Since
q is a random variable, 3(¢) also has a probability distri-
bution. For ease of presentation, we make a mild technical
assumption that the distribution of 5 does not have any point
mass. However, our analysis applies similarly to the general
case in which 3(¢) contains point masses, but just with more
complex notations (see online version for more details).

With slight abuse of notation, let v(¢) denote the buyer’s
expected utility for action 1 under his prior beliefs about g,
namely, when no information is purchased. That is,

u(t) = /EQ v(g,t)g(q)dg. )]

Mechanism Space and the Revelation Principle

To maximize revenue, the the seller can design arbitrary
mechanisms with possibly multiple rounds of interactions
with the buyer. The task of designing a revenue-maximizing
mechanism can be intractable unless a well-defined and gen-
eral mechanism space is specified. Prior work of (Berge-
mann, Bonatti, and Smolin 2018) restricts to the sale of ex-
periments via only a single-round of information revelation.
In this work, we consider a richer design space of mecha-
nisms, in which the the seller is also allowed to contract the
realized experiment outcomes (i.e., signals) and moreover,
multiple rounds of information revelation and payments are
allowed as well. Specifically, we consider the following set
of sequential mechanisms.®

Definition 1 (Sequential Mechanisms). A sequential
mechanism is a mechanism that results in a finite extensive-
form game between the seller and the buyer. Formally, let
C(n) be the set of all children nodes of node n. Then each
non-leaf node n in the game tree is one of the following three
types:

 Transfer node, which is associated with a (possibly nega-
tive) monetary transfer p(n) to the seller and has a single
child node.

* Seller node that reveals information. Any seller node as-
sociates each state of nature q with a distribution over
C(n), prescribing the probabilities of moving to its chil-
dren nodes. That is, there is a function 1, : Q@ X C(n) —

3This implies that the type’s density function f(¢) > 0,Vt € T.

®This general class of mechanisms was first introduced and
studied by (Babaioff, Kleinberg, and Paes Leme 2012), and was
called the generic interactive protocols in their work.



[0, 1] for each seller node n with 3 ¢,y ¥n(c,q) =
1,Yq € Q. Thus, a child node c carries information
about q.

* Buyer node, which corresponds to an arbitrary set of
buyer choices with every choice leading to a child node.

The buyer’s final decision of taking the active or passive
action is made after the information selling process, and thus
is not modelled in the above sequential mechanisms. There-
fore, at each seller node, the seller’s action is to choose a
message to send to the buyer which determines the child
node the game will move to; the buyer node has the simi-
lar functionality. Note that the mechanism is voluntary and
the buyer is free to leave the mechanism at any stage.

When designing the revenue-optimal mechanism for sell-
ing physical goods, the celebrated revelation principle (My-
erson 1979; Gibbard 1973) enables us to without loss of gen-
erality focus only on truthful and direct mechanisms. How-
ever, when selling information, sequential mechanisms can
bring strictly more revenue than one-round mechanisms. We
show that our setting admits a stronger revelation principle
that allows us to consider w.l.o.g. the set of truthful, direct
and one-round mechanisms.

To describe the space of one-round mechanisms, we need
the notion of experiments, which formalize the way a the
seller reveals information. Given a set of possible signals 3,
an experiment 7 : ) — Ay is a mapping from the state
q to a distribution over the signals in X. Such an experi-
ment can be mathematically described by {7(c|q) }4e0,cex
where 7(o|q) is the probability of sending signal o condi-
tioned on state q. After observing signal o, the buyer infers
posterior probability about any state ¢ via standard Bayes
updates:

olqlo) = m(olg) - 9(q) _ reld)-9la)
Jyeqm(old) 9(d)dd  Egclr(olq)]
Consequently, conditioned on signal o, if a buyer of
type t takes the active action, his expected utility is
fqu U(Q) t)g(Q|U)dq
Different experiments reveal different amount of informa-
tion to the buyer, and thus are of different values. A one-
round mechanism is a menu of experiments and prices that
results in a single-round of interaction between the seller and
the buyer.

Definition 2 (One-round Mechanisms). A one-round
mechanism M, described by a menu {(py,7¢) e, pro-
ceeds as follows:

1. The buyer is asked to report (possibly untruthfully) his
type t;

2. The seller charges the buyer p;;

3. The seller reveals information about q according to ex-
periment Ty.

A one-round mechanism can clearly be represented as a
special sequential mechanism, with the 3 steps correspond-
ing to a buyer node, followed by a transfer node, and then
followed by a seller node. Though sequential mechanisms
can generally contract experiment outcomes (when a seller

node is followed by transfer nodes), any one-round mecha-
nism only prices the experiment 7, at price p; but does not
contract the experiment outcomes.

Let U(t';t) denote the expected utility of a buyer with
type ¢ reporting type t’, defined as

Utst) = 3 max{ [ vt tmeelagta o, o}~

ceXD

A one-round mechanism is said to be incentive compati-
ble, if it is the buyer’s best interest to report his type truth-
fully, i.e., U(t;t) > U(¢';t),Vt,t' € T. The following reve-
lation principle shows that it is without loss of generality to
consider direct, incentive compatible mechanisms and one-
round in our model.

Lemma 1 (Revelation Principle). For any sequential
mechanism M, there exists a direct, incentive compatible
and one-round mechanism that achieves the same expected
revenue as M.

Standard revelation principle argument implies that the
seller can w.l.o.g incentivize truthful type report at the be-
ginning. To prove Lemma 1, the non-trivial part is to argue
that a single-round of payment and information revelation
suffice. This is a consequence of our independence assump-
tion between state g and buyer type ¢, such that it allows us to
simply combine all steps of information revelation as a sin-
gle experiment and combine all payments as a single upfront
payment. A formal proof can be found in our arXiv version.
Notably, the proof of Lemma 1 relies crucially on the inde-
pendence of state ¢ and buyer type ¢. Fundamentally, this
is because with correlation among the buyer type and state,
a buyer type ¢, if misreporting ¢’, will perceive a different
expected payment as the p; perceived by the buyer type ¢/
since t and ¢’ hold different belief about ¢ and thus the ex-
pected payments w.r.t. each signal realization (see the proof
for more illustration). Next, we further simplify the mech-
anism design space. First, we show in Lemma 2 that it is
without loss of generality to consider mechanisms with non-
negative payments. While this result is intuitive, we point
out that it does not trivially hold. In fact, when ¢ and ¢ are
correlated, the full-surplus-extracting sequential mechanism
of (Babaioff, Kleinberg, and Paes Leme 2012) may have to
use negative payments. The proof of this lemma is showed
in our arXiv version.

Lemma 2 (Non-Negative Payments). There exists an op-
timal IC, IR and one-round mechanism in which p; > 0 for
allt e T.

Second, the following known result of (Bergemann, Bon-
atti, and Smolin 2018) shows that when pricing experiments,
we can without loss of generality price responsive experi-
ments, in which each signal leads to a unique buyer best
response action. From this perspective, each signal in a re-
sponsive experiment can be viewed as an obedient action
recommendation.

Lemma 3 ((Bergemann, Bonatti, and Smolin 2018)). The
outcome of any mechanism can be obtained by using respon-
sive experiments.



Formulating the Optimal Pricing Problem

Based on the above simplification of the design space, we
now formulate the mechanism design problem. We start by
introducing (functional) variables to describe a one-round
mechanism with responsive experiments. We will think of
the payment in the menu M as a function p(t) of buyer types
t. Since the buyer has two possible actions, any responsive
experiment 7; for buyer type ¢ only needs two signals. With
slight abuse of notation, we use function 7(q,t) € [0, 1]
to denote the probability of sending signal active (inter-
preted as an obedient recommendation of the active action),
conditioned on state realization ¢. Naturally, [1 — 7(q,t)]
is the probability of sending signal passive conditioned
on state g. Our goal is to derive a feasible menu — repre-
sented by functions 7*(g,t) and p*(¢) — that maximizes
the seller’s revenue.

Seller Revenue:  max f(®)p(t)dt.

P JteT
Note that this is a functional optimization problem since both
m(q,t), p(t) are functional variables that depend on continu-
ous variable ¢ € [t1,t2](= T) and abstract variable ¢ from a
measurable set (). The remainder of this section is devoted to
formulating constraints on 7 (g, t), p(t) according to Lemma
1,2 and 3.

Obedience constraints. Lemma 3 shows that any respon-
sive experiment only needs to have two signals which make
obedient recommendation of the active and passive action,
respectively. This poses two constraints on the function

m(q,1):(1) [eqm(a: (g, t)g(g)dg = 0,vt € T; (2)

Joeoll = (g t)]v(g, t)g(q) dg
< 0,Vt € T. The first constraint above ensures that
when signal active is sent to buyer type ¢, the buyer’s

expected value % for taking the active ac-

tion is indeed at least 0, which is the expected value
of taking the passive action. Similarly, the second con-
straint ensures the obedience of the passive signal.
Slightly manipulating the second constraint above, we ob-
tain [, (g, t)v(g,t)g(q)dg > [ ., v(g.t)9(q)

dg = v(t), where v(t) defined in Equation (1) is the buyer’s
a priori expected value of the active action. Therefore, we
can conveniently summarize the obedience constraint as fol-
lows:

the payment to the seller. To ensure the buyer’s participation
in the mechanism, the following individual rationality (IR)
constraint is required:

IR: / (g, t)v(q,t)g(q) dg — p(t) > max{0,v(t)},vt € T
q€Q 5)

where the right-hand side is the buyer’s expected utility of
not participating in the mechanism and simply takes the best
action according to his prior belief about ¢. Interestingly,
since the payment function is always non-negative accord-
ing to Lemma 2, the IR constraint (5) turns out to imply the
obedience constraint (3).

The buyer surplus s(t) — the additional utility gain of
participating in the mechanism — as a function of the buyer
type t is defined as follows:

s(t) = / 7(¢, 1)o(g, 1)g(g) dq — p(t) — max{v(t),0}
qeQ ©)

The IR Constraint (5) is equivalent to non-negative surplus.

Incentive compatibility (IC) constraints. The derivation
of the IC constraints turns out to be more involved. IC
requires that when reporting truthfully, a buyer of type ¢
should obtain a higher utility than misreporting any other
type ¢'. This turns out to require some analyses since when
a buyer of type ¢ misreports type ¢, the resulting experiment
{m(q,t)}4eq may not be obedient for ¢ any more, leading to
non-linearity in the IC constraints. Specifically, upon receiv-
ing signal active, the expected value of the active action
for a type-t buyer misreporting ¢’ is

Va(t'st) = /EQ m(q,t")v(q,t)g(q) dg
- / @ a@l+ @l dg

Since 7(g,t") may not be obedient for buyer type ¢, he will
choose between active action and the passive action, leading
to true expected value max{V, (t';¢), 0} in this situation.

Similarly, upon receiving signal passive, the buyer’s
value is the maximum between 0 and the following:

Obedience: / 0 (g, t)v(q,t)g9(q) dg > max{0,v(t)},Vt € T /GQ[l —7(q,t)|v(q,t)g(q) dg = v(t) — V,(t';t) (7)

3
Individual rationality (IR) constraints. Since the the

buyer gets utility 0 from the passive action, the expected
utility of buyer type ¢, if he reports his type truthfully and
follows the seller’s obedient recommendation, is

U(t) = EqNG[ﬂ-(Q> t)’U(q, t)] - p(t)
_ / @00 Dg(0) dg o0 @

where the first term is the value from his decision making
assisted by the seller’s information and the second term is

Combining both situations, the expected utility obtained
by a buyer of type ¢ from misreporting type t' is
max{V,(t';t),0} +max{v(t) — Vo (¢;t),0} —p(¢’). So the
incentive compatibility constraint becomes the following:

u(t) > max{V,(t';t),0} + max{v(t) — Vo (t';t),0} — ]ig)')

Such non-linear constraints are difficult to handle in general.
Interestingly, it turns out that we can leverage previous re-
sults to reduce Constraint (8) to linear constraints on 7, with
some careful case analysis:



1. When t > ¢/, we have V,(t';t) > V,(¢';t') > 0, where
the first inequality is due to the assumption a(q) > 0
and the second comes from the obedience constraint (3)
for t’. In this case, the right-hand side of Constraint (8)
becomes V,(t';t) + max{v(t) — Va(t’;t),O} — p(t),
or equivalently max{v( ), Va(t'5t)} — p(t'). Note that
u(t) > v(t) — p(t') is already implied by the IR con-
straint u(¢t) > v(t) and the condition p(t') > 0. There-
fore, the only non-redundant constraint in this case is
u(t) = Va(t'st) — p(t').

2. When t < t/, we have v(t) — V,(t';t) < v(t') —
Va(t';t') < 0 for similar reasons. In this case,
the right-hand side of the above constraint becomes
max{V,(t;t),0} — p(t'). Again, u(¢t) > —p(t’) is al-
ready implied by the IR constraint u(t) > 0 and the con-
dition p(¢') > 0. Therefore, the only non-redundant con-
straint in this case is also u(t) > V,(¢';t) — p(t').

To summarize, given the IR and non-negative payment con-

straints, the IC constraint can finally be reduced to the fol-

lowing:

IC: /Qw(q,t)v(qw)g(q)dq—p(t)

> / m(q,t")v(q,t)g(q) dg — p(t"),Vt,t' € T (9)
qeqQ
Combined optimization problem. The derivation and sim-

plification above ultimately lead to the following optimiza-
tion problem, with functional variables 7 (g, t), p(¢):

maximize [, . f(t)p(t) dt

subjectto [ ., m(q,t)v(q, t)g(q) dg — p(t)
>max{ ()} VieT
fqu[ m(q,t) —m(q,t")]v(q, t)g(q) dg

(g,
p(t)+p{t') >0 Vt,t' eT
p(t) 20, m(q,t) €[0,1]
(10)

The Optimal Mechanism

In this section, we present the characterization of the opti-
mal pricing mechanism. Mathematically, we derive an op-
timal solution in closed-form to the functional optimization
problem (10). The optimal mechanism we obtain turns out to
belong to the following category of threshold mechanisms.

Definition 3 (Threshold Mechanisms). A mechanism
(7, p) is called a threshold mechanism if it only uses thresh-
old experiments. That is, there exists a function 0(t), such
that for any t € [t1,t2),

o= {3 180200,

0 otherwise

In this case, w(q,t) is fully described by the threshold func-
tion 6(¢).

Note that the term “threshold” is only a property about the
experiments and does not pose any constraint on the pay-
ment function p(t). To formally present our mechanism, we
will need the following notions of lower, upper and mixed
virtual value functions.

Definition 4 (Lower/Upper/Mixed Virtual Value func-
tion). For any type t with PDF f(t) and CDF F(t), the

function ¢(t) = t — 1}55“ is called the lower virtual
value function and ¢(t) = t + f(( )) is called the upper vir-
tual value function. Moreover, for any ¢ € [0,1], ¢.(t) =
co(t) + (1 —c)¢(t) is called a mixed virtual value function.

Any virtual value function is regular if it is monotone non-
decreasing in t.

The lower virtual value function ¢(¢) is precisely the vir-
tual value function commonly used in classic mechanism
design settings (Myerson 1981). We remark that while the
upper and mixed virtual value function were not formally
defined before, they have implicitly shown up in previous
works and typically give rise when the IR constraints are
binding at the largest type (e.g., (Esé and Szentes 2007b)).
However, the specific formulation for the information selling
problem allows us to characterize the optimal mechanism
for much more general buyer utility functions (see more de-
tailed comparison in the related work).

Ironing. When a virtual value function is irregular, we
will need to apply the so-called “ironing” trick to make it
monotone non-decreasing in ¢. (Myerson 1981) developed a
procedure for ironing the lower virtual value function ¢(t).
This procedure can be easily generalized to iron any func-
tion about the buyer type t, specifically, also to the three
types of the virtual value functions defined above. For any
virtual value function ¢(#) (upper, lower or mixed), let ¢ (¢)
denote the ironed version of ¢(t) obtained via the standard
ironing procedure of (Myerson 1981) (for completeness, we
give a formal description of this ironing procedure in the
arXiv version).’

If a virtual value function ¢(t) is already non-decreasing,
it remains the same after ironing, i.e., o7 (t) = &(t),Vt
With ¢.(t) = co(t) + (1 — ¢)é(t), the following useful
properties of the ironed mixed virtual value functions will
be needed for proving our main result (and may also be of
independent interest in general). Their proofs are technical
and are deferred to the arXiv version.

Lemma 4 (Useful Properties of Ironed Mixed Virtual
Values).

1. Forany0 < c<c <1, ¢¥(t) > ¢h(t) foranyt;

2. For any ¢ € [0,1], let t. be the buyer type such that
F(t.) = c. Then we have ¢} (t) < t,Vt < t. and
¢F(t) > t,Yt > t.. This also implies ¢+ (t) < t <
&t (t),Vt € (t1,t2).

Notably, the second property above also implies that
¢t (t.) = t. always holds.

We will be readily prepared to state the optimal mecha-

"For techniques to iron a general function, we refer the reader
to a recent work by (Toikka 2011).



nism after introducing the following two quantities:

Vi = max{v(t1),0}
12
v [ slao(a)dadz, (1)
ti Ja:B(a)>2—¢t (z
Vu = max{v(t1),0}

ta
+ // ~ g9(q)alq) dgdz, (12)
tr JaBle)>—¢+ ()

where ¢ () and ¢ () are the ironed upper and lower vir-
tual value functions, respectively. Note that Lemma 4 im-
plies —¢™ (z) > —¢*(2) and consequently V;, < Vj since
g(q)a(q) is always non-negative and thus V7, integrates over
a smaller region.
Our main result is then summarized in the following the-
orem.
Theorem 1 (Characterization of an Optimal Mecha-
nism).
1. If v(ty) < Vi, the threshold mechanism with thresh-
old function 6* (t) = —¢* (t) and the following payment
function represents an optimal mechanism:

p*(t) =/EQ 7™ (q,t)g(q)v(q,t) dg

- ~/tlt /qu 7" (¢, 2)9(g)a(q) dgda.

where m* is determined by 0* (t) as in Definition 3. More-
over, p*(t) is monotone non-decreasing for t € [t1,ta).

2. If v(te) > Vg, the threshold mechanism with thresh-
old function 0*(t) = —¢™ (t) and the following payment
function represents an optimal mechanism:

p*(t) =/EQ 7™ (q,t)9(q)v(g,t) dg

to
LT
t qeQ

where m* is determined by 0* (t) as in Definition 3. More-
over, p*(t) is monotone non-increasing fort € [t1,t2].

3. If Vi < v(te) < Vp, let ¢ € (0,1) be a constant that
satisfies

to
// 9(q)a(q) dgdt = v(tz),
t1 Jq:B(e)=2—¢F (1)

where ¢F(t) is the ironed version of the mixed virtual
value function ¢.(t). Then the threshold mechanism with
threshold function 0*(t) = —¢F(t) and the following
payment function represents an optimal mechanism:

(1) = / 7@ sa)(a ) dg

) / /qu ™ (¢, 2)g(a)o(q) dgda.

Moreover, p*(t) is monotone non-decreasing in t when
F(t) < c and monotone non-increasing when F(t) > c.

(q)a(q) dgdx — v(t2),

Let t satisfy v(t) = 0. In all cases above, the buyer surplus
Sunction s(t) is convex and monotone non-decreasing when
t < t, but immediately transitions to be convex and mono-
tone non-increasing when t > 1.

The Power of Information Discrimination

The above example shows that the optimal mechanism fea-
tures information discrimination, i.e., reveals different infor-
mation to different buyer types, which then leads to price
discrimination. One might wonder how well a mechanism
can perform if information discrimination is not allowed.
Our following proposition shows that in this case, the op-
timal mechanism is to simply post a uniform price and then
reveal full information to any buyer who is willing to pay.
To describe the mechanism, we introduce a notation e(t)
that captures the value of full information for any buyer with

type t:

e(t) = /  max(vla. 1), 0)o(a)ds (13)

- max{ [ vlanstada, o}

That is, e(t) equals the additional value buyer type ¢ obtains
by fully observing q. We have the following lemmas and
their proofs can be found in the arXiv version.

Lemma 5. If information discrimination is not allowed,
then the optimal mechanism is to charge the Myerson’s
reserve price T* with respect to value e(t), ie, r* =
argmax,. [r - Prip(e(t) > )], and then reveal full infor-

mation to any buyer who pays.

Lemma 6. If distribution of e(t) has monotone hazard rate

(with randomness inherited from t ~ F), then we always
RevSingle™* > 1

have Trors > <.

Proof of the Main Theorem

In this section, we prove Theorem 1. Due to space limit, we
will only provide a complete proof for Case 3. The core idea
for proving Case 1 and 2 is similar. We thus defer them to
our arXiv version, respectively. The proof has two major
steps: (1) characterizing useful properties of (any) feasible
mechanisms; (2) leveraging the properties to derive the op-
timal mechanism. While the first step is also based on the
analysis of the IC constraints as in classic mechanism de-
sign, the conclusions we obtain are quite different since our
problem’s constraints are different. Significantly deviating
from the Myersonian approaches for classic mechanism de-
sign is our second main step, which arguably is much more
involved due to additional constraints that we have to han-
dle (this is also reflected in the more complex format of our
optimal mechanism).

Useful Properties of Feasible Mechanisms

Define feasible mechanisms as the set of mechanisms (7, p)
that satisfy all the constraints of program (10) (but not nec-
essarily maximizing its objective). We first characterize the



space of feasible mechanisms. To describe our characteriza-
tion, it is useful to introduce the following quantity.

Po(t) = / (@@l ds (14)

Note that P, (t) can be interpreted as the expected weighted
probability (with weight «(q)) of being recommended the
active action 1. The following lemma summarizes our char-
acterization. Its proof is showed in our arXiv version.

Lemma 7 (Characterization of Feasible Mechanisms). A
mechanism (0, p) with non-negative payments is feasible if
and only if it satisfies the following constraints:

P, (t) is monotone non-decreasing in t (15)
¢

u(t) = u(ty) +/ P.(z)dz,¥t €T (16)
t1

u(tz) > (tz) u(ty) 20 7)

p(t) >0, VteT (18)

Note that condition (15) is analogous to Myerson’s alloca-
tion monotonicity condition in the auction design problem,
but also differs in the sense that the value of an item in auc-
tion design only depends on the buyer type ¢ with no weight
associated to it. In information selling, the value of taking
the active action will depend on the utility coefficient a(q).

Next we characterize the buyer’s surplus s(t) = u(t) —
max{0,v(t)}, as expressed in Equation (6), from partici-
pating in the information selling mechanism. Recall that,
with only the prior information, a buyer of type ¢ has ex-
pected utility v(t) = [ ., v(q,t)g(q) dg for the active ac-
tion. Since v(g, t) is monotone non-decreasing in ¢, we know
that v(t) is also monotone non-decreasing. Let ¢ be any
buyer type at which v(¢) = 0. The following lemma charac-
terize how the buyer’s surplus changes as a function of his
type.

Lemma 8. Let t be any buyer type such that v(t)
fqu v(q,t)g(q) dg = 0. In any feasible mechanism (7, p)
with non-negative payments, the buyer’s surplus s(t) is
monotone non-decreasing for t € [t1,t] and monotone non-
increasing for t € [t t).5

Proof: When t <, we have v(¢t) < 0. Therefore, without
participating in the mechanism to purchase additional infor-
mation, the buyer will get maximum utility O by taking the
passive action. So his surplus for participation is

¢
s(t) = u(t) = u(ty) +/ Pr(x)dx
t1
by the utility identify in Equation (16). Since u(t1) > 0 and
P.(z) > 0, it is easy to see that s(¢) is non-negative and
monotone non-decreasing in ¢.

8t can be any one of them if there are multiple ¢ such that v(t) =
0.If no ¢ € [t1,t2] makes v(¢) = O, then either v(t) < 0 or
v(t) > 0 forany ¢t € T and in this case s(¢) is monotone within 7".

When ¢t > t, we have v(¢) > 0. So the buyer’s maximum
utility is v(t) without participating in the information selling
mechanism. We thus have

s(t) =u(t) —

- [ut //

—[/ <>[t+6<>]<>dq}
= [ut Um =
IR

—u(ty) — o(t) + U/

Since 7(¢,z) —1 < 0 and «a(q)g(g) > 0, we thus have
that s(t) is monotone non-increasing in ¢. Notably, s(t) >
s(t2) = u(t2) — v(t2) > 0 by inequality (17). O

)a(q )dqu}

)9(q) dqu}
q) dgdz + v(tl)]

~1alg)e(a) dqu} .

After holding those properties, we are ready to proof the
main theorem case by case with side lemmas. The proof is
intricate and technical as we need to carefully balance the
surplus curve. Thus, we refer readers to our arXiv version
section 4.2 to gain a further picture.
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