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Abstract

When developing eye drops, it is necessary to take into ac-
count not only the biological activity of the drug, but also a
number of additional properties affecting its effectiveness. In
this work, we present a novel pipeline based on deep rein-
forcement learning for de novo design of ophthalmic drugs
with desired properties. Using the pipeline, we generate 2000
new molecules with improved corneal permeability, melanin
binding and irritation as key properties characterizing active
substances of eye drops. The resulting molecules are vali-
dated against already known drugs by a set of properties com-
monly used to evaluate drug-like compounds.

Code — https://github.com/ai-chem/ophthalmic drugs

Introduction
Eye drops are the preferred method of treatment for var-
ious ophthalmic diseases due to their convenience, cost-
effectiveness, and safety. However, their efficacy is lim-
ited by the challenges of delivering drugs through the an-
terior segment of the eye, which has unique physiology
and anatomy restricting bioavailability (Gause et al. 2016).
Development of eye drops is no different to any other
drug and remains a long and resource-intensive task. In
the early stages of rational drug design, new molecules
can be created by merging fragments of existing com-
pounds or using optimization techniques like genetic algo-
rithms (?). Recently, deep learning methods have gained
traction in drug discovery, with autoencoder-based models
(Gómez-Bombarelli et al. 2018), variational autoencoders
(VAEs) and adversarial autoencoders (AAEs) (Dai et al.
2018), generative adversarial networks (GANs) (De Cao
and Kipf 2018). The models discussed do not account for
protein-ligand interactions, which are crucial for therapeu-
tic effects (Śledź and Caflisch 2018). A promising strategy
for generating protein-conditioned molecules involves rein-
forcement learning (RL), where an agent explores chemical
space and receives rewards based on the properties of gen-
erated molecules (Danel et al. 2023). The binding affinity
of a molecule to a target protein serves as an ideal reward.
Among generative RL models for de novo drug design,
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REINVENT and MolDQN are notable (Popova, Isayev, and
Tropsha 2018; Zhou et al. 2019). A recent study comparing
the improved FREED++ model with these on docking score
optimization for the USP7 target showed that FREED++
achieved higher scores, likely due to its focus on fragment
generation, which narrows the search space and enhances
the RL agent’s learning efficiency (Telepov et al. 2024).

As mentioned earlier, development of eye drops is fraught
with difficulties, since this type of drug administration has
low bioavailability. First, eye drops need to pass a natu-
ral barrier - the cornea. Prediction of corneal permeabil-
ity using machine learning methods has been performed by
various scientific groups (Agatonovic-Kustrin, Evans, and
Alany 2003; Ghorbanzad‘e et al. 2011; Kidron et al. 2010;
Ramsay et al. 2018; Dargó et al. 2019). Classical machine
learning models were used to predict the speed of drug
passage through a rabbit’s cornea. Corneal permeability is
not the only factor for increasing the bioavailability of eye
drops, however. The eye tissues have pigmented cells con-
taining melanin. Binding of the drug to this biopolymer can
lead to longer retention of the drug in the tissues of the eye.
Several research groups(Jakubiak et al. 2018; Lowrey et al.
1997; Radwa et al. 1995; Reilly et al. 2015) have developed
an in silico approach to predict drug binding to melanin.

In this work, we present a novel pipeline for generating
potential active substances for eye drops based on protein-
ligand interactions with predefined properties. We trained
classical machine learning (ML) models to predict corneal
permeability, drug binding to melanin, and eye irritation.
These models were integrated into a fragment-based gen-
erative model based on FREED++. Finally, we performed
the generation procedure using our pipeline. The gener-
ated molecules utilized the predictions from our ML mod-
els in the reward function. We evaluate these structures
against our trained models and compared their properties
with those produced by the FREED++ model. Our approach
yielded molecules with enhanced potential for eye drops,
demonstrating improved target characteristics. Additionally,
we validated the resulting compounds against key drug-like
properties, including lipophilicity and synthetic accessibil-
ity.



Results and discussion
Pipeline for generative design of ophthalmic drugs
We present a novel pipeline for generative design of oph-
thalmic drugs with predefined properties (Fig.1).
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Figure 1: Novel pipeline for de novo design of ophthalmic
drugs based on RL. We constructed the reward function to
explicitly take into account the desired properties of eye
drops and binding affinity to COX-2 protein.

We used RL-based sequential generation method based on
FREED++ model (Telepov et al. 2024). The agent takes the
current state (starting fragment) and selects an action which
is a molecular fragment appended to the current state. The
transition dynamic is straightforward: the new state is as-
sembled from the previous state by attaching a new frag-
ment to it. In the context of the RL cycle, machine learning
models are used as reward to predict specific properties of
eye drops, namely, corneal permeability, melanin binding,
and irritation. In our implementation, we have adopted an
approach where the weights for all predicted properties are
set to 1. This means that each property contributes equally
to the overall reward calculation during the training process.
The rationale behind this decision is to ensure that no single
property dominates the learning process, thereby allowing
the model to develop a balanced understanding of all prop-
erties being predicted. Thus, by repeating several RL cy-
cles, we fine-tune the model to produce molecules with the
desired properties. To implement the reinforcement learn-
ing approach, we used a high-performance computing setup
with single NVIDIA A6000 GPU and 20 GB of RAM. In the
following sections, we describe the results of the individual
components of the pipeline in more detail.

Data
We manually collected three datasets describing the tar-
get properties of eye drops - corneal permeability, melanin
binding, and irritation (Fig. 2A). For corneal permeabil-
ity, we selected studies that tested the rate of drug per-
meability through the rabbit cornea in vivo, since it is the
most common method for measuring corneal permeabil-
ity (Agatonovic-Kustrin, Evans, and Alany 2003; Ghorban-
zad‘e et al. 2011; Kidron et al. 2010; Ramsay et al. 2018).
For melanin binding, we used the data obtained from in vitro
studies, since their number was noticeably larger. We used a
dataset from a study where drug binding to melanin was as-
sessed by analytically quantifying the unbound fraction after
centrifugation (Jakubiak et al. 2018). For irritation, we used

in vivo data obtained from the Draize test, a toxicity test that
involves applying a substance to the cornea of a live, immo-
bilized rabbit, then washing the substance off after a certain
time and recording the effects (Wang et al. 2017).

SMILES (Simplified Molecular-Input Line-Entry Sys-
tem) notation is the most widely used way of represent-
ing molecules. Therefore, we used the SMILES representa-
tions to describe the composition and structure of chemical
molecules with short strings. To convert strings into the vec-
tor form, we used MACCS (Molecular ACCess System) fin-
gerprints, RDKit descriptors and Morgan fingerprints. For
each dataset, we employed three variants of representing
molecules (i.e., RDKit descriptors, MACCS and Morgan
fingerprints) and compared their effectiveness in terms of
performance metrics of the corresponding machine learn-
ing models. Additionally, we experimented with multiple
feature engineering and selection techniques (such as PCA
for dimension reduction, correlation and feature importance
analysis) striving for the best predictive performance (Fig.
2B).

Prediction of corneal permeability, melanin
binding and irritation
We experimented with different ways to represent molecules
and compared their influence on the model performance.
The best results across all datasets were achieved using
gradient boosting models. Specifically, the XGBRegression
model attained an R² score of 0.67 for predicting corneal
permeability, while the XGBClassifier achieved an F1-score
of 0.86 for melanin binding prediction. The LGBM model
excelled with an F1-score of 0.95 for predicting eye irrita-
tion. The relatively low performance in predicting corneal
permeability can be attributed to the limited training data,
as many studies report small sample sizes, such as the 32
compounds analyzed by Ramsay et al. (Ramsay et al. 2018).
Despite this, our extensive data collection on drug perme-
ability through rabbit corneas allows us to consider these
performance metrics as state-of-the-art. To interpret the ma-
chine learning models, we conducted a feature importance
analysis using MACCS fingerprints, which provide a binary
representation of molecular substructures (Yang et al. 2022).
The RDKit library was employed to link bit numbers to their
corresponding substructures in SMARTS format. The anal-
ysis of most important features revealed that hydrophobic
groups, such as alkyl chains and aromatic rings, are crucial
for estimating corneal permeability due to the lipophilic na-
ture of the cornea. For melanin binding predictions, aromatic
rings significantly impact model performance, likely due to
their ability to interact with melanin through π-π stacking.
In predicting eye irritation, 6-membered rings and nitrogen-
carbon bond fragments were identified as the most important
features.

KAN for more reliable melanin binding prediction
Tree-based gradient boosting models are recognized as lead-
ing methods for tabular data. Despite achieving high perfor-
mance in predicting melanin binding, we noted significant
overfitting, with accuracy differing notably between train-
ing and test sets. To address this, we explored the potential
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Figure 2: Data collection and curation. A) Schematic representation of the measurement of properties required of eye drops.
B) Data preprocessing. Feature engineering and dimensionality reduction.

of Kolmogorov-Arnold Networks (KANs) (Liu et al. 2024)
alongside traditional models like gradient boosting (GB) and
multilayer perceptrons (MLP).

Table 1: Comparison of train and test accuracy between GB,
MLP and KAN models.

Model Train accuracy Test accuracy ∆

GB 0.937 ± 0.010 0.799 ± 0.028 0.138

MLP 0.994 ± 0.010 0.781 ± 0.029 0.213

KAN 0.786 ± 0.005 0.759 ± 0.025 0.027

Our experiments showed that KAN achieved accuracies
of 0.76 on the test set and 0.78 on the training set. While
KAN’s test accuracy was 2-4% lower than that of GB and
MLP, it exhibited a significantly reduced overfitting, with
the delta (the absolute difference between training and test
accuracy) being five times lower for KAN compared to GB
and even more so against MLP (Table 1). These findings
indicate that KAN may serve as a more reliable predictive
model in drug discovery, where managing false positives and
negatives is critical for the safety and efficacy of new medi-
cations.

Case study: predicted inhibitors of COX-2

To demonstrate the effectiveness of our pipeline for de novo
synthesis of active components in eye drops, we gener-
ated 6000 molecules with high inhibitory capacity against
the COX-2 protein, which plays a key role in synthesizing
prostanoids involved in inflammation and pain relief (Zarghi
and Arfaei 2011). We also utilized FREED++ as base model
to assess the impact of our modified reward function. In
Table 2, we compare the predicted properties of the gener-
ated molecules, including average corneal permeability (log-
arithm of permeability through rabbit cornea), melanin bind-
ing probability, and irritation (toxicity). We also included
docking scores (DS), estimated using QVina02 software,
to characterize ligand-protein interactions (Alhossary et al.
2015). While melanin binding and docking scores showed
only moderate changes between the base and modified mod-
els, we observed significant improvements in corneal perme-
ability and irritation. Specifically, the logarithm of corneal
permeability increased by 1.07, indicating a tenfold im-
provement in average permeability rate. Additionally, the
probability of irritation decreased by over 40%. These find-
ings underscore the advantages of our reward function and
validate the effectiveness of our approach.
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Figure 3: Validation of pipeline. Tanimoto index with lifitegrast. The Tanimoto index (or Tanimoto coefficient) is a measure
of similarity between two sets, commonly used in cheminformatics to compare the similarity of chemical compounds. LogP
and SA score for our molecules and for known inhibitors of COX-2. LogP, or the logarithm of the partition coefficient (P), is
a measure of a compound’s hydrophobicity (lipophilicity). The SA score, or Synthetic Accessibility score, is a metric used in
cheminformatics to evaluate how easy or difficult it is to synthesize a particular chemical compound.

Table 2: Property comparison of molecules generated by
FREED++ and our model. Arrows in brackets indicate better
values.

Property Base model Our model ∆

CP (↑) 3.44 ± 0.19 4.51 ± 0.11 +1.07 (+31.10%)

MB (↑) 0.75 ± 0.01 0.76 ± 0.02 +0.01 (+1.01%)

EI (↓) 0.55 ± 0.06 0.33 ± 0.09 -0.22 (-40.00%)

DS (↓) -7.07 ± 0.16 -6.49 ± 0.25 +0.58 (+8.20%)

Validation
The validation process employed key metrics to assess the
drug-like properties of the generated molecules (Fig. 3). We
calculated Tanimoto similarity scores to compare our com-
pounds with the known ophthalmic anti-inflammatory agent
lifitegrast, yielding an average index of 0.33, indicating min-
imal shared features. The LogP value for our compounds
was 4.05, compared to 4.25 for known COX-2 inhibitors,
suggesting they are relatively lipophilic and may penetrate
the cornea effectively. Additionally, the Synthetic Accessi-
bility (SA) score of 3.66 indicates that these compounds are
reasonably accessible for laboratory synthesis. In summary,
the moderate Tanimoto similarity, high LogP values, and
satisfactory SA score suggest promising drug-like proper-
ties, warranting further investigation as potential ophthalmic
anti-inflammatory agents.

Limitations
The results presented above are promising for the practical
application of our pipeline. However, experimental valida-
tion, including the synthesis of generated molecules, as well
as in vivo and in vitro tests, is necessary to confirm its effec-
tiveness. Based on our results, we can highlight the follow-
ing limitations:

1. Due to the small amount of data used to train predictive
models, the diversity of generated molecules is limited.

2. As described earlier, FREED++ is a fragment-based
model, and a starting fragment is necessary in the train-
ing phase to achieve the target properties of the generated
molecules.

Conclusions
We developed a novel pipeline for designing eye drops with
specific properties such as corneal permeability, melanin
binding, and eye irritation. This involved creating three
datasets from scientific articles, which were processed to in-
clude RDKit descriptors, MACCS and Morgan fingerprints.
We trained classical machine learning models based on gra-
dient boosting to predict the desired properties, achieving
state-of-the-art performance with R2 = 0.67, F1-scores of
0.86 and 0.95 for irritation and melanin binding, respec-
tively. Utilizing a dataset with melanin, we applied the new
KAN architecture, significantly reducing overfitting com-
pared to classical models. Our models were integrated into
the FREED++ framework for targeted molecule generation,
demonstrating improved properties over standard FREED++
outputs. We also assessed lipophilicity, synthetic accessibil-
ity, and Tanimoto index of the generated molecules against
known COX-2 inhibitors. Our findings indicate that this
pipeline effectively predicts and optimizes essential eye drop
formulation properties, enhancing the potential for develop-
ing therapeutic agents. Our research marks just the begin-
ning of optimizing ocular drug development. We also plan
to compare our results with other RL architectures, such as
REINVENT and MOLDQN, in the near future
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