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Abstract

We introduce Llama-3-Meditron, a high-performing open-
source suite of medical LLMs built on LLama-3.1 (8B and
70B). Our models are pre-trained on a carefully curated
medical corpus, including textbooks, filtered PubMed Cen-
tral articles, and Clinical Practice Guidelines, following an
enhanced Meditron methodology. To enable robust reason-
ing and generalization, we synthesize a novel dataset for in-
struction fine-tuning, combining multi-turn Q&A, adversarial
questions, medical exams, and differential diagnostics. Addi-
tionally, we propose MediTree, an inference pipeline leverag-
ing the Tree-of-Thoughts sampling strategy, to boost the per-
formance of the smaller 8B model. On popular benchmarks
(MedMCQA, MedQA, PubMedQA), Llama-3-Meditron-8B
surpasses all Llama-3.1 models by over 3%, while our 70B
model outperform competitors medical LLMs across nearly
all tasks, outperforming Meditron 1 and 2, GPT-4 (fine-
tuned), Flan-PaLM, and MedPaLM-2. Notably, our model
only lags GPT-4-Base on these tasks and slightly underper-
forms MedPaLM-2 on MedMCQA. These findings demon-
strate that open-source medical LLMs can set new bench-
marks in physician-level question-answering, advancing the
accessibility and utility of AI in healthcare.

Introduction
Access to medical knowledge and expertise is crucial
for delivering high-quality healthcare, especially in low-
resource settings where shortages of medical professionals
are common. Recent advancements in large language mod-
els (LLMs) have demonstrated that AI can perform profi-
ciently on medical question answering tasks (Liévin et al.
2024; Rajpurkar et al. 2022; Singhal et al. 2023a). This has
spurred significant interest in the development of medical
LLMs with the eventual goal of achieve physician-level ca-
pabilities.

Closed-source medical models such as the MedPaLM
family (Anil et al. 2023) and even non-specialized LLMs
including GPT-4, have achieved impressive performance on
popular benchmarks such as MedMCQA (Pal, Umapathi,
and Sankarasubbu 2022), MedQA (Jin et al. 2020a), and
PubMedQA (Jin et al. 2019). However, there has been an en-
thusiastic response from the research community to develop
open-source medical LLMs such as the BioMistral(Labrak
et al. 2024), PMC-Llama (Wu et al. 2024), and Meditron
(Chen et al. 2023) families. PMC-Llama, adapted from

Llama 2 (Touvron et al. 2023), was specialized to the medi-
cal domain through continued pre-training on PubMed Cen-
tral (PMC) articles (Roberts 2001). Meditron-70B improved
on this approach by performing continued pre-training on a
richer source of medical data, including filtered PMC data,
medical textbooks, and Clinical Practice Guidelines (CPG).

In this work, we introduce a new family of models,
LLama-3-Meditron, based on Llama-3 (Dubey et al. 2024).
The marked improved language capabilities of the Llama-
3 herd provide us with a base superior to the founda-
tion of other open-source models built on top of Llama-
2. We adopt the continued pre-training methodology of
Meditron-70B, but develop an improved instruction fine-
tuning phase by utilizing novel Q&A datasets reformat-
ted from DDxPlus (Tchango et al. 2022) and MedlinePlus
(Miller, Lacroix, and Backus 2000), standard training splits
of MedQA, MedMCQA, and PubMedQA augmented with
explanations, and adversarial question-answering. To further
improve the quality of the 8B model, we develop MediTree,
a Tree-of-Thoughts inspired pipeline co-designed with clin-
icians to leverages the problem-solving ability of large lan-
guage models (LLMs) for differential diagnosis.

In particular, the 8B model equipped with MediTree is
capable of outperforming substantially larger models such
as Meditron-70B. The 70B model is even more promising,
outperforming Med-PaLM 2, and surpassing the base Llama
3 70B model by over 2% on average, while trailing GPT-4-
Base by approximately 3%.

Methodology
In this section, we detail our training strategy to develop
Llama-3-Meditron.

Pre-training
We constructed our pre-training dataset from a variety of
authoritative medical information sources, aiming to cover
both general medical knowledge and specialized clinical
guidelines.

• PubMed Central Articles: We included peer-reviewed
articles from PubMed Central (PMC) (pmc), focusing on
high levels of evidence such as meta-analyses, systematic
reviews, randomized controlled trials, practice guide-
lines, and Phase III/IV clinical trials. Articles tagged



with ”Animal” or ”Veterinary” were excluded to main-
tain clinical relevance. The selection and filtration pro-
cess was rigorously validated by medical doctors from
the Centre Hospitalier Universitaire Vaudois (CHUV).

• Medical Textbooks: To provide a solid foundation of
medical knowledge, we incorporated validated medical
textbooks covering various specialties, including genet-
ics, oncology, infectious diseases, and pain management.
Recognizing the challenges of extracting text from PDFs,
we utilized advanced tools like Surya (Paruchuri and
Surya Contributors 2024), enabling us to extract approx-
imately 34 million tokens of high-quality text.

• Clinical Practice Guidelines: We incorporated clini-
cal practice guidelines (CPGs) from globally recognized
entities, following the approach of (Chen et al. 2023).
CPGs represent the pinnacle of evidence-based medical
data, synthesizing expert analyses to offer crucial guid-
ance for clinical decision-making. Our guidelines corpus
includes 46,000 articles spanning multiple medical do-
mains and catering to diverse geographic scopes, includ-
ing both high- and low-resource settings.

Instruction Tuning Data
To enhance the models’ ability to follow instructions and
perform complex medical tasks, we fine-tuned them on a
custom instruction-tuning dataset. This dataset was designed
to make the models more useful for real-world interactions
and to improve their knowledge extraction capabilities.
• Patient Progression Dialogue Dataset: This multi-turn

chat dataset tracks patients’ conditions throughout their
hospital stay or across a series of appointments. Con-
structed from the PMC-Patient dataset’s discharge sum-
maries (https://pmc-patients.github.io/), it simulates in-
teractions where the assistant suggests medical tests or
treatments based on initial symptoms, and the user pro-
vides results or feedback. This setup mirrors the iterative
diagnostic process in clinical practice.

• Symptoms to Diagnosis QA: We reformatted the DDx-
Plus dataset (Tchango et al. 2022) to create a question-
answering dataset where, given a list of symptoms in nat-
ural language, the model outputs a differential diagnosis
containing potential diseases. This enhances the model’s
diagnostic reasoning capabilities.

• Questions for Diagnosis Generation: Another refor-
matting of the DDxPlus dataset, this component focuses
on generating relevant diagnostic questions given a dif-
ferential diagnosis. This task improves the model’s abil-
ity to suggest pertinent questions, aiding in the diagnostic
process.

• Health and Lab Tests Topics QA: We scraped the Med-
linePlus website (med 2024) to construct a multi-turn
question-answering dataset covering various health top-
ics and medical tests. This dataset enriches the models’
knowledge base and improves their ability to handle pa-
tient inquiries.

• Exam MCQA: We combined the training sets from
MedQA (Jin et al. 2020a), MedMCQA (Pal, Umap-
athi, and Sankarasubbu 2022), and PubMedQA (Jin

et al. 2019) to create a comprehensive multiple-choice
question-answering dataset with standardized format-
ting. To enhance instruction tuning stability, we pro-
cessed these datasets through Llama 3.1 70B using web-
based retrieval-augmented generation (RAG), generat-
ing explanations along with answers. This approach in-
creased the amount of tokens in 80% of the samples, pro-
viding richer context and improving the models’ perfor-
mance on complex tasks.

• Adversarial QA: We created a synthetic dataset that cri-
tiques answers to exam questions, pointing out poten-
tial shortcomings to discredit them. This task trains the
model to self-reflect and recognize incorrect or subopti-
mal responses, enhancing its reliability.

Following recommendations from (Longpre et al. 2023),
we diversified system prompts and included few-shot ex-
amples in approximately 50% of the samples, improving
the models’ capabilities in both zero-shot and few-shot set-
tings. We also incorporated a portion of the AlpacaReplay
dataset to broaden the range of learned tasks and mitigate
over-fitting. A summary of the instruction tuning dataset is
provided in Table 1.

Training Infrastructure
We conducted training of both the 8B and 70B models
on a high-performance computing cluster. Each node was
equipped with 8 NVIDIA A100 SXM GPUs with 80GB
of memory, connected via NVLink and NVSwitch within
nodes. For inter-node communications, we have a 2-port
ThinkSystem Mellanox ConnectX-6 Dx 100GbE QSFP56
Ethernet Adapter per node, utilizing RoCE to speed up com-
munications.

After considering the number of tokens, the size of the
models, and the number of nodes available for training, we
ultimately decided against using 3D parallel training frame-
works such as Megatron (Shoeybi et al. 2019), which would
have required a significant amount of hours to implement
all the features we wanted to experiment with. Instead, we
opted to use multiple Hugging Face libraries: transformers
(Wolf et al. 2020) for the models and checkpoints, datasets
(Lhoest et al. 2021) for preprocessing and feeding data to the
models during training, and accelerate (Gugger et al.
2022) to shard the models among multiple GPUs. For the lat-
ter, we leveraged the DeepSpeed integration included in ac-
celerate, specifically DeepSpeed ZeRO-3 (Rajbhandari et al.
2020).

Experiments
In this section, we assess the medical question-answering
abilities of Llama-3-Meditron in comparison to other well-
known models.

Selected Benchmarks
We selected three well-known medical question-answering
benchmarks. MedQA (Jin et al. 2020b) and MedMCQA
(Pal, Umapathi, and Sankarasubbu 2022) evaluate the accu-
racy and reasoning abilities of models in diagnosing medi-
cal conditions based on clinical information and established



Dataset Type Samples Percentage (%)

Patient Progression Dialogue Multi-turn 86,000 14
Symptoms to Diagnosis QA Single-turn 10,000 1
Questions for Diagnosis Generation Single-turn 24,000 4
Health and Lab Tests Topics QA Multi-turn 3,000 0.6
Exam MCQA MCQA with CoT 397,000 62
Adversarial QA Single-turn 32,000 2

AlpacaReplay Single-turn 52,000 8

Total 607,000 100

Table 1: Summary of the instruction tuning dataset.

medical knowledge. These datasets use simple multiple-
choice answer evaluation strategy. PubMedQA (Jin et al.
2019) evaluates the model on a more theoretical medical
knowledge. This is also a multiple-choice dataset. To sys-
tematically run these benchmarks, we used a (Gao et al.
2023).

Llama-3-Meditron evaluation
We compared our model Llama-3-Meditron to several other
medical LLMs. We compared it to Llama-2[7B] and Llama-
2[70B], Meditron-7B, Meditron-70B (Chen et al. 2023),
MedPalm 2 (Singhal et al. 2023b) and GPT-4 (Base and fine-
tuned). We observe that our 8B model achieves high per-
formance in the 7B/8B category. On average, Llama-3[8B]-
Meditron beats all models and achieves similar results to
Llama-2-70B. More detailed results can be found in Table
2.

Meditree Inference Pipeline
In this section, we discuss MediTree, a novel inference
pipeline designed with the supervision of trained medi-
cal doctors from start to finish. Built for helping clinical
decision-making, the pipeline leverages the problem-solving
ability of large language models (LLMs) for differential di-
agnosis. We take inspiration from the diagnostic approach
used by medical doctors, the LLM sampling in the Tree of
Thoughts architecture presented by Yao & al. (Yao et al.
2023) and the Med-Gemini architecture (Saab et al. 2024).
The differential diagnosis (DDx) approach provides a sys-
tematic method to identify a disease and determine appro-
priate treatment, especially when numerous alternative di-
agnoses are possible. See Section for an example.

The input to the MediTree pipeline is a patient case de-
scription. The pipeline then iteratively calls four compo-
nents:
• Chat: Interact directly with the user to adds more con-

textual information to the patient description.
• Generation: Proposes a thought to elaborate on or sug-

gests a probable diagnosis.
• Evaluation: Assesses the pertinence of each proposed

diagnosis.
• Selection: Chooses the best diagnosis to explore using

the evaluation results or determine the end of the pipeline
if the confidence is high enough.

Chat. The chat component adds additional context
through an interactive process that mimics a medical eval-
uation. The model aims to evaluate the temporalization,
quality, and quantification of symptoms by asking questions
to the patient, similar to the way medical doctors do. The
model is prompted to ask questions to the user in an inter-
active way, to further describe the main characteristics of
the symptoms. At the end of the interaction user model, the
model is prompted to update the patient description based
on the new information collected. This patient description/-
patient note serves as both the input to the pipeline and is
also updated to reflect the new state of the patient, for exam-
ple, including the results of any medical test. It is composed
of four parts :
• Introduction: A brief introduction to the patient and

their illness, injury, or condition.
• Symptoms: Observed or detectable signs, and experi-

enced symptoms of an illness, injury, or condition.
• Treatments/Tests: Information of previous or current

medical therapy and medical tests conducted on the pa-
tient.

• Medical history: Details involving the patient, and even-
tually people close to them, to gather reliable/objec-
tive information for managing the medical diagnosis and
proposing efficient medical treatments.

Doctor guidance for the prompts. To mimic how doc-
tors investigate a patient’s case, we craft questions to address
specific points:
• Temporalization, location of the symptoms and their par-

ticular characteristics.
• The patient’s previous treatments and behaviors affecting

the symptoms.
• Understanding the patient’s pain, including its nature and

intensity.
– Quantifying the pain level on a scale from 1 to 10.
– Describing the kind of pain felt.

• Other contexts that might influence the patient’s condi-
tion, such as:
– Geographical context.
– Location and recent travels.

• The patient’s personal and family medical history and
current medication.



Accuracy (↑)

Model MedmcQA MedQA PubmedQA Average

Llama2-70B-Base Inst 43.08 49.73 76.80 56.54
Llama2-70B-Base 47.93 57.42 74.40 59.92
Llama 3 8B Instruct 56.99 60.25 74.20 63.81
Llama 3 8B 57.52 60.00 74.80 64.11
Meditron 70B 53.30 59.80 79.80 64.30
Llama-3-Meditron 8B (ours) 57.83 63.00 76.80 65.88
Flan-Palm 57.60 67.60 79.00 68.07
Meditron 2 70B 65.10 65.40 80.00 70.17
Meditron 2 70B - CoT 63.20 67.80 81.00 70.67
GPT-4 69.50 78.80 75.20 74.50
Meditron 2 70B - CoT/SC 66.70 75.80 81.60 74.70
Llama 3 70B 70.00 78.40 77.00 75.13
Llama 3 70B Instruct 70.01 76.36 79.81 75.39
MedPalm 2 71.30 79.70 79.20 76.73
Llama-3-70B (ours) 70.10 80.75 81.00 77.28
GPT4-Base 73.66 86.10 80.40 80.05

Table 2: Performance of Selected Models on Medical QA Benchmarks. This table shows the accuracy of the selected models
on three medical QA benchmarks: PubMedQA, MedMCQA, and MedQA-4-Option.

Base Instruct (Gen) ContPre ContPre+Instr ContPre + prompt

Llama-2-70B-Base Llama-2-70B-Instruct Meditron 70B Meditron 2 70B Meditron 2 70B CoT*
GPT4-Base GPT-4 Medprompt
Palm Flan-Palm MedPalm 2
Llama 3 8B Llama 3 8B Instruct Llama-3-Meditron-3 8B Meditron 3 8B Inst
Llama 3 70B Llama 3 70B Instruct Llama-3-Meditron 70B Meditron 3 8B Inst

Average Gain 0 -0.93 1.65 5.87 8.43

Table 3: Comparison of different models and their respective configurations.

• Lifestyle factors, such as smoking and drinking, that can
significantly impact the patient’s overall health.

Generation The generation component uses the mode
sample, similar to the method presented in Yao & al. (Yao
et al. 2023), to generate multiple diagnosis. This step in-
volves producing multiple answers from the model with a
high temperature (temperature = 1.5) to encourage diver-
sity in the responses. To optimize inference time, sampling
is performed using batch generation with a sampling size of
8, assuring a sufficiently large sample size. Each generation
represents multiple possible diagnosis, and each diagnosis is
identified by parsing the model answers.

Evaluation The evaluation component assigns a score to
each possible diagnosis suggested in the answers. The score
is calculated as the ratio of the number of times a particular
diagnosis has been suggested to the total number of sugges-
tions. This scoring method aims to approximate the proba-
bility of each opinion, using a sampling strategy to evaluate
the model’s knowledge rather than relying on the raw logits.

Selection The selection component at the end of the
pipeline is inspired by Med-Gemini (Saab et al. 2024). In
this part, the entropy of each generation candidate is calcu-
lated using Shannon’s formula H = −

∑d
i∈S pi log2(pi). If

the entropy value is higher than a predetermined threshold,
indicating that the choice is not confident enough, resam-
pling occurs. A new set of diagnoses is generated using a
modified prompt, and this process is repeated until the en-

tropy falls below the threshold. The inference pipeline then
outputs the diagnosis with the highest probability.

Conclusion
We release Llama-3-Meditron, a suite of open source med-
ical LLM foundation models. In the continuity of the Open
Meditron methodology, we crafted a high-quality dataset,
using continued pretraining, instruction tuning, query tools,
and alignment. We developed a novel inference pipeline,
Meditree, that provides potential diagnoses and explores the
most likely options, mimicking a doctor’s diagnostic ap-
proach. Our 8B model, tailored for low resource settings,
is state of the art in his category, and performs compara-
ble results to bigger models. Our 70B model achieved the
best performances on public benchmarks, within 2% of the
closed model GPT-4-Base.
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Appendix
MediTree Example

MediTree Example

MedQA question:
A 30-year-old G1P1 woman gives birth to a healthy
infant at 39 weeks gestation. The mother attended
all her prenatal visits and took all her appropri-
ate prenatal vitamins. Her past medical history is
notable for diabetes mellitus, for which she takes
metformin. Apgar scores were 8 and 9 at 1 and
5 minutes, respectively. The infant’s temperature is
99.2°F (37.3°C), blood pressure is 65/40 mmHg,
pulse is 110/min, and respirations are 22/min. On
exam, the child has ambiguous genitalia. A kary-
otype analysis demonstrates the presence of a Y
chromosome. Further workup reveals internal testes
with normal levels of serum luteinizing hormone
and testosterone. Which of the following additional
findings would most likely be seen in this patient?
(A) Decreased androgen receptor responsiveness (B)
Impaired sense of smell (C) Long extremities (D)
Testosterone-to-dihydrotestosterone ratio > 1 (E)
Testosterone-to-dihydrotestosterone ratio > 20 Give
a step-by-step explanation then always answer the
question with one of the options A, B, C, D or E
(Answer: correct letter).

One of the answers:
Let’s solve this step-by-step, referring to authori-
tative sources as needed. The infant has ambigu-
ous genitalia and a Y chromosome, indicating XY
sex chromosome anatomy. However, the presence
of internal testes suggests an androgen biosynthetic
defect rather than a receptor defect (option A) or
XY complete sex reversal. Patients with XXXY
sex reversal often have Kallmann syndrome (hypo-
olfactory deficiency, hyposmia), but XY complete
sex reversal typically does not manifest with olfac-
tory deficiencies (option B). The diagnosis is likely
congenital adrenal hyperplasia (CAH) with com-
plete virilization due to a 21-hydroxylase deficiency.
CAH is often characterized by tall stature (long
extremities) due to premature epiphyseal ossifi-
cation. Elevated testosterone-to-dihydrotestosterone
(T:DHT) ratio is consistent with CAH, as a defi-
ciency in the conversion of testosterone to DHT
leads to increased androgen levels (option E). The
T:DHT ratio is typically high (> 20) in classic forms
of CAH, such as 21-hydroxylase deficiency. An-
swer: E

Results:
’D’: 2, ’E’: 5, ’A’: 1
Entropy: 1.2
Probability of D: 0.25
Probability of E: 0.625
Probability of A: 0.125
Answer E is the correct answer. ✓

MedMCQA

Prompt:
A 45 yrs old man presents with progressive cervi-
cal lymph nodes enlargement, since 3 months; most
diagnostic investigation is
A. Xray soft tissue
B. FNAC
C. Lymph node biopsy
D. None of the above

Rejected

I would choose option A. Xray soft tissue. Explana-
tion: The patient presenting with progressive cervi-
cal lymph node enlargement suggests the possibility
of malignancy, which would require further evalua-
tion beyond just an X-ray of the soft tissue. Lymph
node biopsy is the most appropriate diagnostic in-
vestigation in this case as it can provide a defini-
tive diagnosis by examining the tissue sample for the
presence of cancer cells. Additionally, an X-ray may
not provide enough information to determine the un-
derlying cause of the lymph node enlargement.
Answer: A. Xray soft tissue

Chosen

Explanation: Ans. is ’c’ i.e., Lymph node biopsy
Harrison writes that in cases of lymphadenopathy,
if the patient’s history and physical findings are sug-
gestive of malignancy, then a prompt lymph node
biopsy (excisional biopsy) should be done. FNAC is
not of much use, as it does not provide enough tissue
to reach a diagnosis. (”FNAC should be reserved for
thyroid nodules and for confirmation of relapse in
patients whose primary diagnosis is known.” - Har-
rison)
Answer:C. Lymph node biopsy


