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Abstract

With the increasing reliance on AI models for weather
forecasting, it is imperative to evaluate their vulnera-
bility to adversarial perturbations. This work introduces
Weather Adaptive Adversarial Perturbation Optimiza-
tion (WAAPO), a novel framework for generating targeted
adversarial perturbations that are both effective in manip-
ulating forecasts and stealthy to avoid detection. WAAPO
achieves this by incorporating constraints for channel spar-
sity, spatial localization, and smoothness, ensuring that per-
turbations remain physically realistic and imperceptible. Us-
ing the ERA5 dataset and FourCastNet (Pathak et al. 2022),
we demonstrate WAAPO’s ability to generate adversarial tra-
jectories that align closely with predefined targets, even un-
der constrained conditions. Our experiments highlight critical
vulnerabilities in AI-driven forecasting models, where small
perturbations to initial conditions can result in significant de-
viations in predicted weather patterns. These findings under-
score the need for robust safeguards to protect against ad-
versarial exploitation in operational forecasting systems. The
code for WAAPO is available at https://github.com/Huzaifa-
Arif/WAPPO

Introduction
Recent research has focused extensively on the develop-
ment of artificial intelligence models for weather predic-
tion tasks, leading to the creation of advanced AI-based pre-
diction models such as FourcastNet (Nvidia) (Pathak et al.
2022), GraphCast (Google) (Lam et al. 2022), ClimaX (Mi-
crosoft) (Huang et al. 2023), and PonguWeather (Huawei)
(Bi et al. 2022). These models have demonstrated impres-
sive accuracy and efficiency in weather forecasting, some
of which can generate a 10-day forecast in just one minute
(Rackow et al. 2024). Their accuracy often rivals that of
traditional physics-based models, sparking significant in-
terest from both private-sector companies and government
agencies. The European Center for Medium-Range Weather
Forecasts (ECMWF) and the National Oceanic and Atmo-
spheric Administration (NOAA), which operates the Global
Forecast System (GFS), have recognized the potential of
these AI models. On 6 September 2023, ECMWF tweeted
that three of its AI forecast models accurately predicted the
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slow westward movement of Hurricane Lee in the Atlantic
Ocean, underscoring the practical application of these AI-
driven forecasts (The Washington Post 2023).

Despite this success, limited research has been conducted
to assess the vulnerability of these AI models to adversar-
ial attacks. Traditional climate science institutes, such as
ECMWF, employ rigorous protocols to ensure model reli-
ability in prediction. Our study highlights a potential vulner-
ability by exploring whether these AI models could be sus-
ceptible to adverse manipulation of initial weather fields.
We introduce a novel problem in the context of weather fore-
casting, specifically targeting the inference phase of weather
forecasting models, demonstrating that they are highly vul-
nerable to input perturbations (see Figure 1).

Our study has significant implications, as creating false
weather events or erasing or mistiming real ones could lead
to serious consequences if these models are deployed with-
out adversarial safeguards.

Adversarial Scenario in Weather Forecast Models
Climate forecasting relies on sensor data that are vulnerable
to cyberphysical attacks (see Figure 1), enabling attackers to
manipulate sensor data and inject inaccuracies into forecast-
ing models. These models are often used by government-
owned entities, such as NOAA. Even government-controlled
sensors and models are not immune, as demonstrated by the
following past incidents.

In September 2014, the National Oceanic and Atmo-
spheric Administration (NOAA) experienced a significant
cyberattack in which vulnerabilities in its IT security pro-
gram were exploited. This attack compromised four NOAA
websites and temporarily disrupted satellite imagery feeds,
highlighting long-standing deficiencies in the NOAA cyber-
security infrastructure (Pagliery 2014). Similarly, in an unre-
lated application, in November 2024, China-linked hackers
infiltrated multiple US telecommunications providers, ex-
tracting data on legal wiretaps and eavesdropping on gov-
ernment and political conversations. This breach, which af-
fected roughly ten providers, including Verizon and AT&T,
marked a substantial counterintelligence failure (Nakashima
2024).

These cases illustrate the tangible threat of cyberattacks
on forecasting models, particularly as these models become
more widely used and increasingly depend on data from in-
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Figure 1: The weather forecasting process involves several key steps: data collection, data assimilation, forecasting, analysis,
and dissemination. Data from sources like weather stations and satellites is processed through assimilation and forecasting
models, refined through analysis, and shared with users via devices such as phones or TVs. Our study highlights vulnerabilities
in this process, showing that adversaries can exploit the data collection phase to introduce perturbations and generate targeted
false forecasts.

dependent sources, thereby expanding the attack surface. At-
tackers could exploit less secure third-party data providers
to manipulate model inputs, potentially leading to inaccu-
rate weather predictions. Such inaccuracies could result in
economic losses, disrupted logistics, and public safety risks.

Therefore, vigilance and robust cybersecurity measures
are critical to safeguarding forecasting systems against these
potential threats.

Related Works
Typically, the literature focuses on adversarial attacks,
where the target model is a classifier (Costa et al. 2024). In
such settings, the goal of the adversary is defined as:

argmin
δX

∥δX∥ s.t. f(X+ δX) = Y∗, (1)

X∗ = X+ δX, (2)
where f is the target classifier and Y∗ is the target class

defined by the adversary. For a clean example (X,Y), the
adversary seeks a perturbation δX that results in the output
(X + δX,Y∗). To maintain imperceptibility, the perturba-
tion is constrained, typically using ℓ∞ or ℓ2-norms. This en-
sures that the perturbed input appears similar to the clean
input, while causing the classifier to misclassify with high
confidence. A visual depiction is provided in Figure 6, re-
produced from (Akhtar and Mian 2018).

Numerous approaches to executing adversarial attacks in
the classification setting have been proposed in the literature.

Common methods include the box-constrained L-BFGS
(Long et al. 2022), Fast Gradient Sign Method (FGSM)
(Goodfellow, Shlens, and Szegedy 2014), and the Carlini
and Wagner (C&W) attack (Carlini and Wagner 2017). Ad-
ditional techniques are summarized in the surveys (Costa
et al. 2024; Akhtar and Mian 2018).

With the rise of generative models, there has been a grow-
ing interest in exploring adversarial attacks and defenses in
this domain (Kos, Fischer, and Song 2018; Rathore et al.
2020). These attacks are typically categorized as untargeted
adversarial attacks (Belkhouja and Doppa 2022):

{Xadv | ∥Xadv −X∥p ≤ ϵ and fθ(X) ̸= fθ(Xadv)} (3)

or targeted adversarial attacks (Liu et al. 2022), where tadv
is a predefined adversarial target:

{Xadv | ∥Xadv −X∥p ≤ ϵ and fθ(Xadv) = tadv} . (4)

In this setting, an autoregressive model is repeatedly
queried with some initial input over a fixed time hori-
zon. While adversarial attacks have been extensively stud-
ied in tasks like time-series forecasting, their application to
weather forecasting remains largely unexplored in the lit-
erature. This work aims to address this gap by introducing
a study of targeted adversarial attacks specifically designed
for weather forecasting models. Our analysis is conducted
in the white-box setting, where the adversary has complete
knowledge of the forecasting model and its parameters.



The objective of this novel adversarial attack strategy is
to perturb the initial conditions of a weather forecasting
model to cause significant deviations in the predicted trajec-
tories for manipulating extreme weather events, such as hur-
ricanes, toward some predefined target event. Importantly,
these perturbations must satisfy constraints of physical re-
alism and stealth, ensuring they remain relatively impercep-
tible, undetectable to unbounded perturbations and do not
violate physical laws of weather fields.

Our experimental setup employs the state-of-the-art Four-
CastNet (Pathak et al. 2022; Nguyen et al. 2024) as the
weather forecasting model, using the widely adopted ERA5
dataset for evaluation. The results demonstrate the effective-
ness of this adversarial evasion attack in influencing weather
forecasts by employing physically plausible and stealthy
perturbations.

Problem Statement
An adversary can introduce subtle, realistic modifications
to the initial weather conditions, mirroring plausible real-
world scenarios, to manipulate weather forecasts toward de-
sired outcomes. The practical implications of such perturba-
tions are detailed in Appendix. For instance, if the adversary
aims to create a false temperature event, they might adjust
temperature profiles to trigger alerts for heat measures in a
targeted region. By altering initial temperature fields, they
could change the predicted temperature distribution across a
region, affecting forecasts for heatwaves or cold spells. Each
of these objectives relies on small, carefully controlled ad-
justments to particular atmospheric variables, allowing the
adversary to steer forecasts toward their desired outcomes.

Table 1 provides an overview of the notations used in this
paper. The autoregressive AI forecast model (e.g., FourCast-
Net (Pathak et al. 2022)) is denoted by ϕ, which generates a
trajectory of forecasts Z ∈ RT×L×M×N over a time horizon
T . Here, N represents the prognostic variables (e.g., Tem-
perature, Surface Wind Speed, etc.; see Table 4 for more de-
tails on the prognostic variables used by FourCastNet). L
and M denote the number of latitude and longitude points,
respectively (e.g., L = 721, M = 1440 for FourCastNet
(Pathak et al. 2022)).

We use the subscript i to indicate the forecast at a spe-
cific time point. For instance, Z3 represents the model’s third
prediction for a given initial condition. The initial condition
Z0 ∈ RL×M×N is provided as input to ϕ(·), which then
generates the sequence of predictions Z1:T which for sim-
plicity is replaced by Z when discussing the whole forecast
trajectory.

In this study, we address the challenge of designing a per-
turbation δ ∈ RL×M×N applied to the initial conditions Z0

to manipulate a weather forecast model ϕ(·) (e.g., Forecast-
Net). Specifically, our objective is to minimize the squared
ℓ2-norm difference between the model’s forecast at time T ,
denoted as ZT = ϕT (Z0 + δ), and a desired adversarial
future event tadv. Here the subscript T of the model ϕ de-
notes the prediction of the model at the T th timestep. Given
a predetermined trajectory length T , the goal is to design the
perturbation δ such that, when added to the initial condition,
it causes the forecast to deviate significantly within the time

Table 1: Definitions of Variables

Symbol Description

ϕ(·) Weather forecast model (e.g., ForecastNet)
Z Set of T future forecast values, of shape T×L×M×N
Z0 Initial condition, of shape L×M ×N
δ Perturbation applied to the initial conditions
tadv Desired adversarial event, of shape L×M ×N
L Longitude
M Latitude
N Number of prognostic variables (e.g., temperature,

wind speed)

frame T , making it resemble tadv. This approach constitutes
a targeted evasion attack for weather forecast task.

Are Weather Forecasts Secure to
Unconstrained Attacks?

FourCastNet (Pathak et al. 2022) is evaluated on an ensem-
ble of perturbed initial conditions. These initial conditions
are generated by adding scaled Gaussian noise to the unper-
turbed state, where δijk ∼ N (0, 1). Specifically, different
ensembles are created as Z′

0 = Z0 + σ · δ with σ = 0.3.
The resulting trajectories are produced as ϕ(Z′

0). The paper
shows that the ensemble mean predictions of FourCastNet
closely follow the unperturbed control forecast, as assessed
by the chosen evaluation metrics. This indicates that small
Gaussian perturbations to the initial conditions do not cause
significant deviations in the predictions, demonstrating the
model’s insensitivity to i.i.d. random minor variations in the
initial weather fields.

However, to fully assess the robustness of FourCastNet to
different inputs, it is essential to evaluate its performance un-
der more targeted and potentially larger perturbations δ. We
begin by constructing an attack aimed at solving optimiza-
tion problem Equation (5), where no restrictions are placed
on the initial perturbation:

δ∗ = min
δ∈RL×M×N

∥ϕT (Z0 + δ)− tadv∥22 (5)

The perturbation derived from solving Equation (5) influ-
ences all the prognostic variables listed in Table 4 (see
Appendix), thereby altering the model’s initial conditions
across multiple atmospheric fields. Figure 2 exemplifies this
effect on the temperature field. In this test case, the model
is tasked with predicting conditions 24 hours into the fu-
ture, while the adversarial target tadv is set to reflect condi-
tions at 120 hours. Such manipulations could yield serious
real-world consequences. For instance, artificially elevated
temperatures in the forecast might prompt authorities to pre-
pare for a heatwave that will never materialize, potentially
wasting resources and generating undue alarm. Conversely,
underestimating temperatures could obscure an imminent
heat risk, leaving communities unprepared and vulnerable
to harm.

To visualize the distortion, Figure 2 compares the point-
wise global temperature differences ϕT (Z0 + δ∗)− tadv and
ϕT (Z0+δ∗)−GT, where GT is the true temperature field at



Figure 2: Pointwise temperature differences (in Kelvin) comparing the 24-hour perturbed forecast with both the 120-hour
adversarial target (tadv) and the 24-hour ground truth (GT/True Value). Despite the adversarial target representing conditions
120 hours into the future, the unconstrained attack effectively manipulates the model’s prediction to align more closely with
the adversarial target than the actual 24-hour ground truth. This highlights the attack’s capability to fabricate a false global
temperature event, significantly overriding the model’s original forecast.

(a) WAAPO applied to only the temperature (t2m) channel. (b) WAAPO with a spatial mask over South America.

Figure 3: These results illustrate the Weather Adaptive Adversarial Perturbation Optimization (WAAPO) framework from
Algorithm 1. In (a), WAAPO targets only the temperature (t2m) channel (Kelvin), showing that even single-channel pertur-
bations can significantly alter predictions, closely mirroring the behavior seen in Figure 2. In (b), a spatial mask M is applied
over South America, demonstrating that localized, channel-specific perturbations can substantially reshape forecasts within the
targeted region.

24 hours. Lighter regions correspond to smaller deviations,
making it clear that the perturbed prediction adheres more
closely to the adversarial target than to the authentic ground
truth. To observe the individual temperature forecasts for the
ground truth, unperturbed prediction, and perturbed predic-
tion refer to Figure 5 (Appendix).

These results demonstrate that weather prediction models
are inherently non-robust to arbitrary perturbations. How-
ever, such a naive attack is impractical in real-world scenar-
ios, as a meteorologist could readily detect discrepancies in
the initial data by analyzing the divergent trajectories of var-
ious fields. In the following section, we investigate whether
incorporating a layer of imperceptibility into the attack can
achieve comparable results while enhancing the realism and
practical applicability of these perturbations in controlled
settings.

Are Weather Forecast Models Secure to
Localized Attacks on a Single Field?

Building on the previous section, we extend our approach
to ensure systemic stealthiness in targeted adversarial at-
tacks inspired by the approach as in Equation 4. This is cru-
cial because trajectory observers (e.g., meteorologist) may
detect data corruption if the perturbed trajectories diverge
significantly from expected behavior or if validation against
ground truth fails during a pilot run. The objective is to iden-
tify a stealthy perturbation, δ, that modifies the initial in-
put Z0 to create an adversarial example while adhering to
stealth constraints. We impose stealthiness through the fol-
lowing criteria: First, the perturbation should affect only a
minimal subset of channels, representing correlated vari-
ables, to align with the adversary’s goal of targeting specific
events (e.g., temperature) while limiting observable discrep-
ancies. Second, the attack must be localized to a specific
spatial region, such as simulating a heatwave warning con-
fined to a targeted area. This adds to obfuscating the ob-
servable discrepancy for a chosen targeted variable. Third,



Figure 4: This figure demonstrates why a smoothness constraint is essential for creating imperceptible perturbations using
WAPPO. The top row, without smoothness constraints, displays a clearly visible patch in the targeted area, whereas applying a
smoothness constraint in the bottom row yields more diffused, subtle perturbations that blend naturally and are harder to detect.

the perturbation must maintain physical realism to avoid
producing values that fall outside realistic bounds and could
easily signal tampering. Finally, transitions introduced by
the perturbation must be smooth, avoiding abrupt or spiky
changes that could highlight corrupted data from sensors.
These constraints collectively ensure that adversarial pertur-
bations remain both effective and undetectable within real-
world operational settings.

To impose the channel sparsity constraint, only a subset
of channels C, where C ⊆ {1, 2, . . . , N}, is perturbed. For
the localization constraint, the perturbations are confined to
a spatial mask M.

To achieve these constraints, a projection operator PM,C

is employed. The perturbed input Zδ
0 is defined as Z0 + δ,

where δ = PM,C(δ). Each component of δ is constrained
such that channels not in C are zeroed out, while those in C
are further localized by the mask M.

Additionally, the perturbations must generate forecast tra-
jectories that are smooth and realistic, ensuring that the tar-
get fields remain within allowable limits. To impose these
constraints, we utilize an adaptive loss objective that bal-
ances the primary objective with penalty terms for smooth-
ness and realism. The primary objective, Lprimary, minimizes
the difference between the perturbed forecast and the adver-
sarial target tadv:

Lprimary = ∥ϕT (Z0 + δ)− tadv∥22
Two penalty terms encourage additional constraints: L∞,

which limits the maximum allowable values in the perturbed
trajectories, and LTV, which minimizes the total variation to

promote spatial smoothness. Each channel n ∈ {1, . . . , N}
is assigned a distinct penalty weight, λ∞,n and λTV,n, along
with maximum allowable limits, ϵn, and smoothness param-
eters, τn. As previously defined, Zt is the tth prediction in a
trajectory of length T which must obey these allowable and
smoothness constraints:

L∞ =

T−1∑
t=0

N∑
n=1

λ∞,n ·max (0, ∥(Zt)n∥∞ − ϵn)

LTV =

T−1∑
t=0

N∑
n=1

λTV,n ·max (0,TV ((Zt)n)− τn)

The total loss function combines these terms to guide the
optimization of δ, ensuring the perturbations are both realis-
tic and stealthy:

L(δ) = Lprimary + L∞ + LTV.

To produce stealthy adversarial perturbations, we intro-
duce Weather Adaptive Adversarial Perturbation Opti-
mization (WAAPO), summarized in Algorithm 1. WAAPO
operates by iteratively updating the perturbation δ through
gradient-based optimization. At each iteration, it computes
the gradient of the total loss L(δ) with respect to δ, which
includes the primary objective Lprimary (ensuring the predic-
tion aligns with the adversarial target tadv) and two penalty
terms, L∞ and LTV, previously discussed, that collectively
enforce physical realism, boundedness, and smoothness.

The algorithm then performs a gradient descent step to
refine δ. A subsequent projection step applies the channel
and spatial masks C and M, ensuring that only designated



variables and regions are perturbed. By iterating this pro-
cess until convergence or a fixed number of iterations is
reached, WAAPO produces localized, channel-specific, and
physically plausible adversarial examples.

Algorithm 1: Weather Adaptive Adversarial Perturbation
Optimization for Weather Forecast (WAAPO)
Input : Initial input Z0, target tadv, learning rate α, max iterations

K, channels C, spatial mask M, penalties λ∞,n, λTV,n,
constraints ϵn, τn

Output: Optimized perturbation δWAPPO

Initialize perturbation: δ(0) ← 0 for k = 0 to K − 1 do
Compute Gradient:
∇δL(δ

(k))← ∂
∂δ

[
∥ϕT (Z0 + δk)− tadv∥22 +∑T−1

t=0

∑N
n=1 λ∞,n ·max (0, ∥(Zt)n∥∞ − ϵn) +∑T−1

t=0

∑N
n=1 λTV,n ·max (0,TV((Zt)n)− τn)

]
Gradient Descent Step: δ(k+1) ← δ(k) − α∇δL(δ

(k))
Projection Step: for each channel n = 1 to N do

if n ∈ C then
δ
(k+1)
n ←M⊙ δ

(k+1)
n ; // Apply spatial

mask
else

δ
(k+1)
n ← 0 ; // Zero out perturbation

end
end

end
return optimized perturbation δWAPPO = δ(K)

Experimental Discussion
Hyperparameters:

We use samples from the ERA5 dataset for weather fore-
casting, starting from 2018, with data points spaced 6 hours
apart. The initial condition Z0 represents the first sample,
and tadv corresponds to the forecast 120 hours (5 days) after
Z0. Forecasting is performed using the FourCastNet model
(Pathak et al. 2022). The number of prognostic variables N
is set to 20 (Table 4). In experiments involving perturba-
tion of specific channels, we perturb C = {t2m}, repre-
senting the temperature at 2 meters above the surface. The
spatial mask for perturbations is configured with a patch
starting at (L0,M0) = (1100, 300) and a patch size of
(Lp,Mp) = (200, 300), chosen to target the South Amer-
ican region. The penalty parameters λ∞,n and λTV,n are set
to 0.01, while the constraints ϵn are determined as the maxi-
mum value of each field over a 5-day forecast. The smooth-
ness parameter τn is computed as the average smoothness
value over the same period. Specific parameter values are de-
tailed in the Appendix (Table 5). Optimization is performed
using the Adam optimizer with a learning rate of α = 0.01
and a total iteration count of K = 1000.

Performance of WAAPO
Utilizing the hyperparameters described, we solved for

δ∗ in the unconstrained optimization setting in Equation
5. However, solving for δWAPPOrequired additional hy-
perparameter selection. Channel-based masking initially led
to gradient explosions, resulting in a non-smooth, spiky
loss trajectory that hindered optimizer convergence. To ad-

dress this issue, we implemented norm-based gradient clip-
ping to stabilize the gradients and incorporated a learning
rate scheduler for dynamic adjustment. These techniques
significantly enhanced optimizer stability, leading to im-
proved convergence and more effective perturbation discov-
ery. Consequently, we successfully induced temperature de-
viations without affecting other channels. Figure 3a illus-
trates the results when the field t2m (temperature at 2m
above the surface, as described in Table 4 in the Appendix)
was only perturbed. It can be seen that the results are notably
similar to 5. Notably, even though some variables are corre-
lated with t2m, e.g. U10, V10, and sp, the perturbation was
restricted solely to t2m, leaving other fields intact. WAAPO
was thus able to successfully induce temperature deviations
even while leaving correlated variables unchanged.

In a subsequent experiment, we applied localized temper-
ature perturbations over South America to ensure that tem-
peratures in other regions remained unaffected. This targeted
perturbation involved applying a spatial mask to the pertur-
bation, as shown in Figure 3b. The results indicate that the
differences between the true forecast and the perturbed pre-
diction are confined to the South American region, demon-
strating the effectiveness of the spatial masking approach.

We also investigated the impact of the smoothness param-
eter on the perturbations. Figure 4 shows the results of local-
ized perturbations with and without a smoothness penalty.
As is evident from the figure, omitting the smoothness pa-
rameter produces coarse, visible patches, underscoring the
importance of incorporating smoothness constraints. This
comparison highlights the critical role of the smoothness pa-
rameter in ensuring realistic and physically consistent per-
turbations. Additionally, while the patch based attack is able
to perturb the target region, the temperature profile of the
affected region is still not similar to the target temperature
profile. A possible reason could be the inherent spatial mix-
ing that prevent effective execution of the targeted attack.
In future work we explore how the adversary maybe able
to utilize the potential inherent vulnerability of the process
and improve WAPPO for the targeted localized patch based
attacks.

While FourCastNet (Pathak et al. 2022) demonstrates ro-
bustness to random Gaussian noise added to its initial con-
ditions, we observe that smaller, yet strategically crafted
WAAPO perturbations can induce significant forecast er-
rors. To quantify this effect, we introduce the Perturbation
Magnitude Ratio relative to Gaussian (PMRG), which com-
pares the Frobenius norm of δWAAPO to that of a scaled Gaus-
sian perturbation, σ · δGaussian, where δGaussian ∼ N (0, 1) and
σ = 0.3. The PMRG is defined as:

PMRG =
∥δWAAPO∥F

∥σ · δGaussian∥F
indicates how the overall size of the WAAPO perturba-

tion compares to a typical Gaussian disturbance of the same
scale. Since

∥σ · δGaussian∥F ≈ σ
√
L ·M ·N,

this provides a meaningful benchmark for evaluating
magnitude differences.



WAAPO Perturbation Variant PMRG
Sp

WAAPO (patch-based) 0.105
Sc

WAAPO (channel-based) 0.565

Table 2: Comparison of WAAPO’s perturbation magnitudes
relative to Gaussian noise. Despite being smaller, both vari-
ants substantially impact the model’s forecasts.

Table 2 shows that both the patch-based (Sp
WAAPO)

and channel-focused (Sc
WAAPO) attacks yield perturbations

smaller than the baseline Gaussian noise. Yet, these osten-
sibly imperceptible adjustments—especially when localized
to a single region or variable—can lead to significant devi-
ations in FourCastNet’s predictions. This highlights a criti-
cal vulnerability: despite being smaller than random noise in
magnitude, carefully targeted adversarial perturbations can
exert a disproportionately large effect on AI-based weather
forecasts.

Conclusion
In this work, we introduced Weather Adaptive Adversarial
Perturbation Optimization (WAAPO), a novel framework
for generating adversarial perturbations in weather fore-
casting models. By enforcing channel sparsity, spatial lo-
calization, and smoothness constraints, WAAPO produces
perturbations that are imperceptible, physically valid, and
localized to specific regions. Our experiments, conducted
using the ERA5 dataset and FourCastNet (Pathak et al.
2022), demonstrate that these carefully tailored attacks can
align the model’s forecasts closely with adversarial tar-
gets—revealing critical vulnerabilities in forecasting sys-
tems that heavily depend on accurate initial conditions. As
weather models increasingly inform decisions in agriculture,
disaster management, and transportation, adversarial attacks
that generate false weather alerts or hide extreme events pose
significant risks, highlighting the need for effective safe-
guards.

Notably, our patch-based experiments show that while
WAAPO can successfully perturb a targeted region, the re-
sulting temperature profile does not fully match the adver-
sarial target. A possible explanation is the inherent spatial
mixing within the forecasting model, which dilutes localized
perturbations over time. Future work will address this lim-
itation by refining WAAPO’s methodology to exploit such
mixing more effectively. In addition, the current study fo-
cuses mainly on the temperature field (t2m); expanding the
attack space to other critical variables, such as surface pres-
sure (sp), is essential for investigating impacts on hurricane
forecasts and other severe weather scenarios. Beyond Four-
CastNet, evaluating adversarial robustness in alternative
state-of-the-art models—including GraphCast (Lam et al.
2022), ClimaX (Huang et al. 2023), and PanguWeather (Bi
et al. 2022)—represents a crucial research direction. Finally,
building practical defenses (e.g., robustness-aware training
or automated anomaly detection) will be vital to mitigat-
ing adversarial risks not only in weather forecasting but also
in broader climate modeling and environmental simulation

tasks.
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Appendix
Real-World Adversarial Perturbations and
Attack Strategies in Weather Forecasting

Models
In the context of weather forecasting models like FourCast-
Net, feasible adversarial attacks would aim to subtly alter the
input variables to achieve a significant change in the forecast
output. Consider some examples of perturbations and attack
strategies that could be employed:

These are specific instances of the attack and we can keep
the setting to be very generic.

1. Changing Hurricane Location
Objective: Shift the predicted path of a hurricane to a dif-
ferent location.

Perturbation: Slightly adjust the wind speed, tempera-
ture, and pressure in the initial conditions around the hurri-
cane’s current location to steer it towards a different path.

2. Altering Storm Intensity
Objective: Modify the predicted intensity of a storm (e.g.,
making a hurricane appear stronger or weaker).

Perturbation: Small changes in sea surface temperature,
pressure, and humidity around the storm’s center to affect
the storm’s development and intensity.

3. Creating False Weather Events
Objective: Generate forecasts that predict non-existent
weather events, such as a hurricane or severe storm where
none would occur.

Perturbation: Introduce small but spatially consistent
perturbations across temperature, wind, and pressure fields
in regions where no significant weather is expected to create
the illusion of a developing storm.

4. Suppressing True Weather Events
Objective: Prevent the model from predicting an actual se-
vere weather event.

Perturbation: Apply small changes to key variables in
the vicinity of the developing weather system to disrupt its
formation in the model forecast.

5. (One Variable) Modifying Temperature Profiles
Objective: Change the predicted temperature distribution
across a region.

Perturbation: Adjust the initial temperature field to cre-
ate warmer or cooler forecast conditions in targeted areas,
which could affect predictions of heatwaves or cold spells.

6. (One Variable) Wind Pattern Manipulation
Objective: Alter the predicted wind patterns, which could
impact wind energy forecasts or general weather patterns.

Perturbation: Small, targeted changes to the initial wind
field at various altitudes to influence the overall wind distri-
bution.



7. Time Manipulation
Objective: Change the predicted speed and timing of a
hurricane’s movement, causing delays or acceleration, and
spread out the uncertainty in its path.

Perturbation: Adjust the initial conditions to alter the
hurricane’s speed and trajectory timing. This includes mod-
ifying wind speeds, pressure gradients, and other relevant
atmospheric variables to delay or accelerate the hurricane’s
movement and increase the uncertainty in its predicted path

Unconstrained Optimization

Table 3: Variables and Functions

Symbol Description
X0 ∈ RN×L×M Original input
δ ∈ RN×L×M Perturbation
C ⊆ {1, 2, . . . , N} Channels to perturb
M ∈ RL×M Spatial mask
ϕ(Zt)n Model output at time t for channel n
ϵn Infinity norm constraint for channel n
τn Total variation constraint for channel n
λ∞,n, λTV,n Penalty parameters for channel n
α Learning rate
ϕ(ZT−1 | Xδ

0) Model output at final time step with perturbed input
TV(·) Total variation operator
⊙ Element-wise multiplication



Figure 5: Top: Normal Prediction. Bottom: Perturbed Prediction. Illustration of the effect of the unconstrained adversarial
attack on weather forecasts.

Table 4: 20 Prognostic Variables Modeled by FourcastNet(Pathak et al. 2022)

Variable Description
Surface
U10 Zonal wind velocity at 10 meters above the surface
V10 Meridional wind velocity at 10 meters above the surface
T2m Temperature at 2 meters above the surface
sp Surface pressure
mslp Mean sea level pressure
1000 hPa
U1000 Zonal wind velocity at 1000 hPa
V1000 Meridional wind velocity at 1000 hPa
Z1000 Geopotential height at 1000 hPa
850 hPa
U850 Zonal wind velocity at 850 hPa
V850 Meridional wind velocity at 850 hPa
Z850 Geopotential height at 850 hPa
T850 Temperature at 500 hPa
R850 Relative humidity at 850 hPa
500 hPa
U500 Zonal wind velocity at 500 hPa
V500 Meridional wind velocity at 500 hPa
Z500 Geopotential height at 500 hPa
T500 Temperature at 500 hPa
R500 Relative humidity at 500 hPa
50 hPa
Z50 Geopotential height at 50 hPa
Integrated Variables
TCWV Total Column Water Vapor
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Figure 6: Comparison of Original and Perturbed Images for
CaffeNet and VGG-F when the underlying target model is a
classifier. An imperceptible perturbation leads to a different
class with high confidence.

Figure 7: Coarse Patches.

Channel n ϵn τn
1 9.1473× 10−8 99165.6016
2 2.5559× 10−6 109694.2422
3 1.3177× 10−6 27920.4980
4 2.8082× 10−7 58921.9922
5 1.8507× 10−6 34445.3281
6 4.2667× 10−7 22821.9902
7 1.2589× 10−7 98763.7188
8 5.4461× 10−7 108050.5078
9 1.9669× 10−6 32448.5762

10 5.8189× 10−7 89158.7656
11 1.7013× 10−6 102990.0625
12 3.5134× 10−6 20403.5078
13 3.3896× 10−7 61842.3750
14 1.8124× 10−7 63398.3281
15 2.4146× 10−6 13680.4805
16 1.8668× 10+0 19226.8984
17 3.6435× 10−6 9923.5332
18 4.8708× 10−6 114838.1641
19 1.6442× 10−6 142137.9844
20 6.4423× 10−8 49321.4219

Table 5: Values of ϵ and τ for different channels.
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