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Abstract

Phase-field equations, mostly solved numerically, are known
for capturing the mesoscale microstructural evolution of a
material. However, such numerical solvers are computation-
ally expensive as it needs to generate fine mesh systems to
solve the complex Partial Differential Equations(PDEs) with
good accuracy. Therefore, we propose an alternative approach
of predicting the microstructural evolution subjected to pe-
riodic boundary conditions using Physics informed Neural
Operators (PINOs). In this study, we have demonstrated the
capability of PINO to predict the growth of θ′ precipitates
in Al-Cu alloys by learning the operator as well as by solv-
ing three coupled physics equations simultaneously. The cou-
pling is of two second-order Allen-Cahn equation and one
fourth-order Cahn-Hilliard equation. We also found that us-
ing Fourier derivatives(pseudo-spectral method and Fourier
extension) instead of Finite Difference Method improved the
Cahn-Hilliard equation loss by twelve orders of magnitude.
Moreover, since differentiation is equivalent to multiplication
in the Fourier domain, unlike Physics informed Neural Net-
works(PINNs), we can easily compute the fourth derivative
of Cahn-Hilliard equation without converting it to coupled
second order derivative.

Code — https://drive.google.com/drive/folders/
1qQi9bOyf45hh5XlNvYWWjKzLDL0tsUqg?usp=
share link

Datasets — https://drive.google.com/drive/folders/
181JzAgr202V7jLIAl5h1TCfe8AGAVJqy?usp=
share link

Introduction
The evolution of a microstructure can be described us-
ing complex PDEs such as Allen-Cahn and Cahn-Hilliard
equation. These equations are traditionally solved using nu-
merical methods such as pseudo-spectral method(Liu and
Shen 2003), finite element methods(FEM)(Barrett, Blowey,
and Garcke 1999), and finite difference methods(FDM)(Sun
1995). However, solving complex multi-physics and high or-
der PDEs using numerical methods are computationally ex-
pensive due to the requirement of fine mesh in both the spa-
tial and time domain to obtain accurate solution. Because
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of the limitations involved in using numerical method for
solving PDEs, recently researchers have started looking into
Machine Learning(ML) approaches for solving PDEs. ML-
based approaches for solvinge PDEs can be divided into two
categories i.e., solution function approximation and opera-
tor learning. In operator learning the model learns the so-
lution operator of a given family of parametric PDEs, e.g.,
Fourier Neural Operator(FNO)(Li et al. 2020), Deep Opera-
tor Network(DeepONet)(Lu et al. 2021), and their physics-
informed counterparts(Li et al. 2021; Wang, Wang, and
Perdikaris 2021). Whereas, in solution function approxima-
tion like PINNs(Raissi, Perdikaris, and Karniadakis 2019),
the model parameterizes the solution function of a single in-
stance of the PDE as a neural network. For each new in-
stance of the PDEs, PINNs needs to train a new neural net-
work(Chen et al. 2024). This makes them impractical for
applications where a PDE solution is needed for several pa-
rameter instances, such as those with varying shapes, ini-
tial or boundary conditions, coefficients, etc.(Li et al. 2020).
Such parametric PDEs can be learnt using FNO and Deep-
ONet but both are data-driven, meaning that it requires a
larger volume of training data to produce accurate results
for complex problems. Generating the data is expensive as it
involves repeated evaluation of experiments or high-fidelity
numerical simulators. Therefore, by adding physics con-
straints and using some available data, PINO and physics-
informed DeepONets learns the solution operator of a fam-
ily of PDEs. It will make the model more robust with limited
number of data and possibly improve its ability to capture
non-linearities in the model evolution.

Physics-informed DeepONets learns the operator by us-
ing two neural networks known as the branch and the trunk
network. Similar to PINNs, it uses automatic differentiation
to calculate the derivatives of the physics which are memory
intensive. Whereas, PINO is a variation of neural operators
that learns the operator in the Fourier domain. The deriva-
tives are also calculated in Fourier domain which simplifies
the computation since differentiation is equivalent to mul-
tiplication in this domain. Therefore, in this study we have
chosen PINO to learns the dynamics of growth of θ′ pre-
cipitates in Al-Cu alloy. The feasibility and computational
advantage of PINOs have been proven previously in litera-
ture involving only first and second order PDEs(Rosofsky,
Al Majed, and Huerta 2023; Li et al. 2021). Hence, in this



work we determined the capability of PINO in solving three
coupled PDEs: two Allen-Cahn and one Cahn-Hillard equa-
tions which are second-order and fourth-order PDEs respec-
tively. The results from this study was compared with the
high fidelity data obtained from computational phase-field
method. We used PyTorch framework(Paszke et al. 2019) to
train the PINO model using two NVIDIA V100 32 GB GPU
for 2D problem.

Methodology
Overview
PINO uses the FNO architecture instead of feed forward
neural network to overcome the challenges of PINNs. It
learns the solution operator using the physics constraints as
well as supervision from data. In this study, the growth of
θ′ precipitates in a binary alloy is described by three phase-
field variables namely, composition(c) and two order param-
eter (η1 and η2) fields. Therefore, to learn the precipitate
growth, PINO requires to have three inputs and correspond-
ing three outputs at a given time. Furthermore, in the coupled
physics problem, PINOs has to solve multiple equations si-
multaneously. The architecture of PINO for coupled fields is
shown in Fig.1.

The neural operator of the PINO model has the form:

Gθ = NN2 ◦ (WN +KN ) ◦ · · · ◦σ(Wn+Kn) ◦NN1. (1)

Where, NN1 is a feed-forward neural network that lifts the
inputs to a higher dimension(υ0), W is the bias term which
keeps track of the non-periodic boundary conditions and κ
is an integral kernel operator in frequency space which are
multiplied with an activation function(σ) at the intermediate
Fourier layer, and NN2 is the feed-forward neural networks
that projects back to the original dimension of the solution
(c, η1, η2) at the end. Once the solution from PINO model
is obtained, loss function consisting of data loss and PDE
loss will be computed followed by gradient calculation and
weight update. The total loss function is defined as:

Ltotal = wdata(η1)Ldata(η1) + wpde(ACη1
)Lpde(ACη1

)

+ wdata(η2)Ldata(η2) + wpde(ACη2
)Lpde(ACη2

)

+ wdata(c)Ldata(c) + wpde(CH)Lpde(CH)

(2)

where w are the weights for each loss terms. The loss term
for initial conditions is not added in the loss function as they
are already embedded in the data we are using to train the
model. Moreover, for our precipitate growth problem with
periodic boundary conditions we do not need to include a
loss term for the boundary conditions(BCs) because the neu-
ral network architecture of FNO implements periodic BCs
by default via fast Fourier transform (FFTs).

Computational Experiments
Data generation
Data with various combinations of supersaturated com-
position and seed were generated using a phase-field
model(Kumar Makineni et al. 2017) designed to investigate
the evolution of Al−2Cu precipitates. In 2D representation,

θ′ precipitates in Al-Cu alloy is defined by one composition
field(c) and two long-range order parameter fields (η1 and
η2). The growth of the precipitates is governed by a Cahn-
Hilliard(Cahn 1961) equation and two Allen-Cahn(Allen
and Cahn 1979) equation as given in Eq.3 and Eq. 4 respec-
tively. In addition to chemical energy, elastic energy con-
tribution to total energy is considered to get the desired θ′

morphology.
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i = 1, 2;x ∈ [0, 127); t ∈ [0, 99).

where L is the interfacial kinetic coefficient, M is the con-
centration dependent mobility, κc and κη are the gradient
energy coefficient, and f(c, η) is the bulk free energy den-
sity which is given as:

f(c, η1, η2, η3) =A1c
2 +A2(1− c)(η21 + η22)

+A41(η
4
1 + η42) +A42(η

2
1η

2
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6
1 + η62).

(5)

The elastic energy is denoted by Fel and the variational
derivative of elastic free energy is given as:

δFel

δηi
= 2ηi(r)

 1∑
p,i=0

Bpi(n)θ̃p(k)


r

, (6)

θp = η2p(p = 1, 2).

where, Bpi = Cstuvϵ
(p)
st ϵ

(i)
uv − σ̂

(i)
st ntnvωus(n)σ̂

(p)
uv , C is the

elastic modulus tensor, ϵ is the eigen strain, k represents
the Fourier wave vector, n is the unit vector in the K-space,
ω−1
us (n) = Cstuvntnv is the normalized inverse Green ten-

sor, and the elastic stress is given by σ̂
(i)
st = Cstuvϵ

(i)
uv .

For this study, two parameters(supersaturated composi-
tion and seed) were considered with 5 levels(Table 1) i.e,
a total of 25(52) combinations. The training data is repre-
sented by (N, T, X, Y)=(5×100×128×128), with N repre-
senting the number of instances, T is temporal resolution,
and X,Y denoting the spatial resolution along x and y di-
rection, respectively. The input data is the initial condition,
while the remaining time frames is output of the model.

Methods to compute the derivatives
The PINO framework can implement different methods of
differentiation to compute the equation loss. In this work we
have used central difference method(a type of FDM), pseudo
spectral method, and Fourier extension. FDM is one of the
common numerical techniques that replaces the derivatives
by finite difference approximations. To solve the derivatives
it divide the domain of the problem into a grid or mesh



Figure 1: Architecture of PINO for learning the dynamics of θ′ precipitation in Al-Cu alloys(2D).

Level Supersaturation
(c0) seed

1 0.20 494
2 0.21 1111
3 0.22 1482
4 0.23 4446
5 0.24 7410

Table 1: Initial parameters with their levels

of discrete points. FDM can handle both periodic and non-
periodic boundary conditions.

In the precipitate growth problem, the boundary condi-
tions is periodic in the spacial domain and non-periodic in
the time domain. Since, Fourier method works well with
periodic problems. We compute the derivative with respect
to x and y in the Fourier space and derivative with respect
to time using central difference method. This approach is
known as pseudo spectral method. Another approach know
as Fourier extension deals with non-periodic boundary con-
ditions by padding zeros in the input to extend the problem
domain into a larger and periodic space before performing
Fourier differentiation. After computing the derivative in the
equation loss with three different numerical derivatives as
shown in Table 2, we found that pseudo-spectral method and
Fourier extension improved the Cahn-Hilliard equation loss
by twelve orders of magnitude. Moreover, pseudo-spectral
method performs better compared to Fourier extension. As a
result, we have used pseudo-spectral method to compute the

derivatives in this study. We also found that in our PINO
model, since the derivatives are calculated in Fourier do-
main, the additional step of converting fourth derivative of
Cahn-Hilliard equation to coupled second order derivative
was omitted, thus saving computational costs. This step was
performed in PINNs to prevent vanishing gradients(Wight
and Zhao 2020; Mattey and Ghosh 2022; Rezaei et al. 2022).

For θ′ precipitate growth in 2D(128×128×100), we
found that the inference time of PINO using pseudo-spectral
method to calculate the derivatives was 0.332s. Similarly,
the inference time was 0.313s for PINO using Fourier exten-
sion to calculate the derivatives. Whereas, the execution time
for phase-field model which used pseudo-spectral method to
solve the equation was 0.254s.

Learning the evolution of θ′ precipitates using
PINO
Our objective is to compute the solution at each given space
and time coordinate from the initial data. Therefore, the in-
put of the model consist of an initial data of three different
fields i.e, c, η1 and η2. To begin with we first determine the
optimum number of training data required for training the
model. As shown in Table 3, we see that out of 25 com-
binations of parameters(Table 1) using 12 different initial
conditions give the least training loss for our PINO model.
The algorithm followed for training the model is shown in
Algorithm 1.

Similarly, by trial and error approach we optimize the ar-
chitecture of PINO. The Fourier layer, modes, and width
of the PINO model were chosen as 4, 28, and 64 respec-



Network with: 64, Network depth:4, Learning rate: 0.0001, Activation function : gelu
wdata(c)= 1.0, wdata(η)=1.0, wPDE(AC) = 1.0, wPDE(CH) = 0.1

Cases Methods dataη1

loss
dataη2

loss
datac
loss

PDEAC(η1)

loss
PDEAC(η2)

loss
PDECH(c)

loss
Total
loss

1 FDM
(central) 9.99×10−1 9.97×10−1 9.99×10−1 7.30×10−3 6.49×10−3 8.35×1010 1.83×1010

2 Pseudo-
spectral 5.33×10−3 3.53×10−3 1.91×10−2 1.13×10−3 5.40×10−4 1.05×10−1 4.03×10−2

3 Fourier
extension 4.58×10−3 1.01×10−2 4.60×10−2 1.56×10−3 3.27×10−3 3.31×10−1 9.87×10−2

Table 2: Three different methods to compute the derivatives

Cases Training
data

dataη1

loss
dataη2

loss
datac
loss

PDEη1

loss
PDEη2

loss
PDEc

loss
Total
loss

1 6 3.26×10−3 2.58×10−3 4.70×10−2 1.02×10−3 9.70×10−4 3.44×10−1 8.92×10−2

2 8 4.52×10−3 4.43×10−3 4.66×10−2 1.20×10−3 1.44×10−3 3.39×10−1 9.22×10−2

3 10 4.73×10−3 3.28×10−3 4.60×10−3 1.58×10−3 1.19×10−3 3.31×10−1 8.99×10−2

4 12 2.95×10−3 3.07×10−3 4.51×10−2 1.05×10−3 9.90×10−4 3.33×10−1 8.65×10−2

5 14 6.53×10−3 5.75×10−3 4.63×10−2 1.78×10−3 1.61×10−3 3.33×10−1 9.54×10−2

Table 3: Determining the optimum number of training data

Algorithm 1: Operator Learning: Learn a neural operator Gθ

to approximate G† using both the data loss Ldata and the
PDE loss Lpde.

Input: input output function pairs {aj , uj}Kj=1
Output: Neural operator

G : A → U

1: for i = 0,1,2,. . . do
2: for j =1 to K do
3: Lift the input aj ∈ A to a higher dimensional rep-

resentation by the local transformation P

υn(x, y, t) = P (a(x, y, t))

4: for n = 1 to N no. of Fourier layers. . . do
5: Update the Fourier layer

υn −→ υn+1

6: Project the output from the last fourier layer to
original dimension

u(x, y, t) = Q(υN (x, y, t))

7: end for
8: Compute Ldata and Lpde.
9: Update neural operator G

10: end for
11: end for

tively. We observed convergence in the loss when the num-
ber of epochs was about 6000 as shown in Fig.2. The
model’s hyper-parameters, which include the learning rate
and gamma value, were selected to be 0.9 and 0.001, respec-

Figure 2: Loss vs. epochs

tively. The weights of loss terms are taken as wdata(η) = 1,
wpde(AC) = 1, wdata(c) = 1,wpde(CH) = 0.1. The accuracy
of the model was assessed using L2 norm of the relative er-
ror. A comparison of the predictions from our PINO model
with that from high-fidelity phase-field simulations at time
step 99 for two different unseen initial condition is shown in
Fig.3 and Fig.4. This shows that the trained PINO model has
the capability to predict the growth of θ′ precipitates with
good accuracy for those instances or initial conditions which
were not seen during training.



Figure 3: Predicting the growth of θ′ precipitates for an
unseen instance; Supersaturated composition: 0.21, seed:
1111; Relative L2 error: c, η1, η2= 5.14×10−2, 1.41×10−2,
1.15×10−2

Conclusion
We have demonstrated the ability of PINOs to accurately
learn the physics of two second-order and one fourth-order
coupled PDEs with high accuracy. PINO was able to han-
dle higher order PDEs with good accuracy since it calcu-
lated the derivatives in the Fourier domain. We have also
demonstrated the capability of PINOs to generalize to other
instances without re-training. Although we have shown the
efficiency of PINO model on precipitation growth problem,
it can be used for predicting other complex microstructural
evolution problems such as grain growth and coarsening, so-
lidification, and crack propagation.

For a 2D problem with a domain size of 128×128×100,
we did not see an improvement in computational time. This
could be because numerical approaches for smaller spatial
domain require less computing time. We may need to go to
larger spacial domain to see the computational advantage of
PINO over numerical approaches.

Future work
Most of the studies on θ′ precipitation are limited to 2D
simulation due to the enormous computational power re-
quired for 3D phase-field simulations. Therefore, our goal
is to extend the current 2D PINO model to 3D PINO model
to predict the evolution of θ′ precipitates in Al-Cu binary
alloys. We will explore the zero-shot resolution capabil-
ity(prediction of unseen instances at higher resolution com-
pared to those used in training) of PINOs to reduce the com-
putational cost.

In this study we have shown that PINOs can learn the
physics of coupled higher order PDEs with high accuracy.
We further want to perform temporal extrapolation tests as
well as determine the prediction capability of PINO to un-
seen initial conditions in extrapolation settings. Given that

Figure 4: Predicting the growth of θ′ precipitates for an
unseen instance; Supersaturated composition: 0.23, seed:
1482; Relative L2 error: c, η1, η2= 5.87×10−2, 2.21×10−2,
2.09×10−2

PINO employs paired input-output data for training, it may
limit time-domain extrapolation because in that scenario, the
number of output data will not match the number of input
data used in training. We could require a new model or train-
ing algorithm to address such challenge.
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