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Abstract

Ultrasonic testing is a common Non-Destructive Inspection
(NDI) method used in aerospace manufacturing. However,
the complexity and size of the ultrasonic scans make it chal-
lenging to identify defects through visual inspection or ma-
chine learning models. Using computer vision techniques to
identify defects from ultrasonic scans is an evolving research
area. In this study, we used instance segmentation to identify
the presence of defects in the ultrasonic scan images of com-
posite panels that are representative of real components man-
ufactured in aerospace. We used two models based on Mask-
RCNN (Detectron 2) and YOLO 11 respectively. Addition-
ally, we implemented a simple statistical pre-processing tech-
nique that reduces the burden of requiring custom-tailored
pre-processing techniques. Our study demonstrates the feasi-
bility and effectiveness of using instance segmentation in the
NDI pipeline by significantly reducing data pre-processing
time, inspection time, and overall costs.

Introduction
Non-Destructive Inspection (NDI) is inspecting an object
without damaging it. This process is essential in manufac-
turing, construction, defect evaluation, art restoration, in-
frastructure safety, and many more (Honarvar and Varvani-
Farahani 2020; Ould Naffa et al. 2002; Dwivedi, Vish-
wakarma, and Soni 2018; Memmolo et al. 2015; Brosnan
and Sun 2004). With the advent of artificial intelligence (AI)
and machine learning (ML), automation of the NDI pro-
cess has become at the forefront of research (Gardner et al.
2020; Lin et al. 2023). In this study, we worked with ul-
trasonic scans of thin-walled composite materials, used in
the aerospace manufacturing industry to identify defects in
the manufactured product. A trained inspector inspects the
scan using proprietary software to identify any defects in the
scans. In our work, we want to augment the process by sug-
gesting areas of interest for the inspector to look for defects.
With the help of ML, we can reduce the inspection time and
inspector fatigue and increase the safety of the manufactured
parts.

The process of using ML to identify defects from ultra-
sonic scans is of great interest to the NDI research commu-
nity. Several studies suggested methods of identifying de-
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fects using ML (Baumgartl et al. 2020; Yang et al. 2022).
However, the lack of high-quality training data and high
training time are constraints to the progress of this field.
While researchers agree that ML is the direction to choose
for the future of NDI (Jodhani et al. 2023; Sun, Ramuhalli,
and Jacob 2023), there are still many improvements to make
before it becomes the primary choice (Hassani and Dack-
ermann 2023). In the manufacturing industry, the high cost
of deployment and maintenance is also a prohibitive factor.
So, for ML-based approaches to have a place in the NDI
pipeline, the training and maintenance of the models need to
be cheaper, and the method should have very high accuracy
to ensure the safety of the critical parts. In this work, we pro-
pose image segmentation models as a feasible approach for
ML-based NDI systems. While image segmentation is used
by many researchers as a tool to pre-process the data, or as
a part of the defect detection models, using image segmen-
tation as a viable defect detection approach needs further
research.

Object detection using image segmentation models has
recently become a rising research area. The object detec-
tion models classify images at the pixel level to identify the
presence of an object (Hafiz and Bhat 2020). In this study,
we used trained two different models - Detectron 2 based
on Mask-RCNN (Wu et al. 2019a) and “You Only Look
Once” (YOLO) 11 (Redmon et al. 2016; Khanam and Hus-
sain 2024) to detect defects in the ultrasonic scans and com-
pared the results to propose this as a viable approach for
NDI.

Related Works

NDI. NDI is an essential part of the manufacturing
pipeline that ensures the quality of manufactured prod-
ucts through inspection without destroying or breaking the
products (Gholizadeh 2016; Honarvar and Varvani-Farahani
2020). This inspection process ensures the reliability of the
product right from the start. Additionally, in safety-critical
manufacturing domains, such as aerospace, NDI is neces-
sary for the scheduled inspections that are conducted when
the product is in use, to ensure there is no major damage
occurring from wear and tear (Khedmatgozar Dolati et al.
2021).



NDI Techniques. NDI is an undeniable part of manufac-
turing, the food industry, structural health monitoring, in-
specting artifacts, and many more. In the airline industry, the
inspection of composite material is an essential part of NDI
process. Studies such as Diamanti, Soutis, and Hodgkin-
son (2005); Gholizadeh (2016); Dwivedi, Vishwakarma, and
Soni (2018); Honarvar and Varvani-Farahani (2020) showed
different effective techniques of inspection, including but
not limited to, Visual Testing, Ultrasonic Testing, Ther-
mography, Radiographic Testing, Electromagnetic Testing,
Acoustic Emission, Shearography Testing, and so on. With
the advancement of technology over time, composite struc-
tures are preferred over metals for their lightweight and
durability in the aerospace industry. Metal parts used eddy
current and magnetic particle induction techniques for NDI
(Lange 1994). However, these techniques do not work on
composite structures like carbon fiber-reinforced polymer
(CFPR) materials. Advances in NDI techniques addressed
this in studies from Gupta et al. (2022); Gholizadeh (2016).
Ultrasonic testing is the most common method used in the
industry (Honarvar and Varvani-Farahani 2020). Despite its
inability to detect very small defects and dependence on the
experience of the inspectors (Gupta et al. 2022), ultrasonic
testing, due to its ability to detect sub-surface defects and
relatively low cost, has been the most popular method for
the NDI process (Dwivedi, Vishwakarma, and Soni 2018;
Wang et al. 2020). The ultrasonic-based NDI approach re-
quires processing complex signals to interpret for the pres-
ence of flaws in a structure. Due to this complexity, the use
of ML has become inevitable.

ML in NDI. Many research articles evaluated (Mishra,
Bhatia, and Maity 2020) and discussed the importance, use-
fulness, and challenges (Gardner et al. 2020; Taheri, Gonza-
lez Bocanegra, and Taheri 2022; Lin et al. 2023) of ML in
NDI.

Mishra, Bhatia, and Maity (2020) evaluated artificial neu-
ral networks (ANN), adaptive neuro-fuzzy inference sys-
tems (ANFIS), and support vector regression (SVR) models
and found SVR most promising. While discussing the un-
deniable performance improvement of NDI with the help of
ML. Gardner et al. (2020) also underscored the challenges
of data availability, data quality, and complexity in training
the ML models. Other methods like gradient boosting deci-
sion tree (GBDT) (Yang et al. 2022), principal component
analysis (PCA), and support vector machine (SVM) (Ma,
Tsuchikawa, and Inagaki 2020) are proposed for NDI tech-
niques. However, appropriate hyper-parameter tuning and
quality training data are critical for the better performance
of ML (Sun, Ramuhalli, and Jacob 2023).

Image Segmentation. Image segmentation is an incre-
mental research area that has evolved over decades and is
rooted in classification research. The instance segmentation
techniques, which have become highly effective in recent
times, combine the detection of object bounding boxes and
categorically detecting every image pixel (Hafiz and Bhat
2020). Image segmentation on ultrasonic images is a cru-
cial technique in the computer-aided diagnosis (CAD) field,
where researchers use semantic segmentation techniques to

identify cancerous areas in the ultrasonic images (Su et al.
2011; Irfan et al. 2021). A similar technique can be used in
ultrasonic scan images of other materials to identify defects.
Several deep learning models have also been proposed by
the research community like UPSNet, Panoptic-DeepLab,
Detectron, and so on (Kirillov et al. 2019; Xiong et al. 2019;
Cheng et al. 2020; Wu et al. 2019b). The available models
use medical or real-world object datasets for training (El-
harrouss et al. 2021). In aerospace, several works have em-
ployed semantic segmentation for identifying aircraft com-
ponents such as engine, wing, and fuselage using DeepLab
v3 (Thomas et al. 2024) and YOLO v5 (Xiang, Chang, and
Ye 2024). Furthermore, computer vision was also used for
identifying surface defects on aircraft from drone images us-
ing YOLO-FDD (Li, Wang, and Liu 2024). However, identi-
fying defects from 3D ultrasonic images is challenging due
to the images requiring additional pre-processing to trans-
form into 2D images. Prakash et al. (2023) have used a soft-
ware to first visualize the fuselage scan, apply complex fea-
ture processing techniques such as histogram of gradients,
and train a KNN classifier to identify defects.

In this study, we aim to use simple pre-processing tech-
niques on raw 3D ultrasonic scans and train instance seg-
mentation models to identify defects. Furthermore, we do
a comparative analysis of two popular segmentation frame-
works such as Detectron 2 and YOLO 11, and evaluate the
computational needs as well as their performance. Devel-
oping instance segmentation models that can achieve de-
sirable performance with minimal pre-processing, enhances
the scalability of the method as well as reduce the time and
computational cost.

Data
We used a proprietary dataset containing scans of specimen
panels, which are thin-walled composite structures represen-
tative of aerospace structures used in the industry. The pan-
els consist of multiple plies of unidirectional carbon fiber
polymer. In some of the specimens, an additional fiberglass
ply was added on top of the layup. The specimen has a range
of thicknesses to account for changes in actual structure.
Teflon strips were placed throughout the layup at controlled
locations to represent defects in the material. Per industry
standards, the Teflon strips at varying depths and locations.
The Teflon material has a sound impedance that can rep-
resent foreign inclusions or delaminations in the composite
structure.

A single transducer system with 2.5MHz and 5MHz
frequencies is used to scan the plates from both sides. The
transducer was positioned perpendicular to the structure and
sent ultrasonic waves through the material, and a receiver at
the opposite of the object received the signals. From each
point of scans, 512, 1024, and 2048 samples were collected
for further analysis. Fluctuations in the amplitude of the re-
ceived signals indicate the presence of defects. Differences
in the signal attenuation can be observed from the visualiza-
tion in Figure 1.

Each scan comprising the signal data has height and width
dimensions of 258 × 368 and channels 512, 1024, or 2048,
depending on sampling frequency as discussed above. Since
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Figure 1: Sample of signals showing the difference between
defect and non-defect areas

we use 2D segmentation models, we first convert these 3D
scans to 2D data by taking the variance over the sampling
frequency dimension. Then, we converted the 2D data into
NumPy arrays and exported them as PNG images. For the
purpose of training the models, we converted the defect an-
notations into COCO formatted (Lin et al. 2014) JSON files.
The annotated JSON contained the bounding boxes for each
defect which will be used for the training. To reduce the re-
source usage during training, we converted the images into
grayscale. Using this process, we created 72 files for our
study. We randomly selected 56 images for training, 8 for
validation, and 8 for testing our models. Figure 2 (A) shows
an example of the exported images used for training. Or-
ange labels in Figure 2 (B) indicate the defect regions on the
training image.

Method
We used two different models to identify the defects in the
exported images. We used the instance segmentation ap-
proach, which is a more refined version of semantic segmen-
tation, where each pixel of an image is classified, and a clus-
ter of pixels is classified as part of a class (Hafiz and Bhat
2020). We used two different pre-trained algorithms, Detec-
tron 2 based on Mask-RCNN (Wu et al. 2019a) and YOLO
11 (Jocher, Jing, and Chaurasia 2023), and fine-tuned them
to train on our datasets.

Mask R-CNN (Detectron 2)
We used the instance segmentation feature of the Detectron
2 library, which utilizes the Mask R-CNN model. In this ap-
proach, the model first detects an object and creates a bound-
ing box. Subsequently, it classifies the pixels inside that
bounding box. To optimize model performance, we trained
the model using various configurations and hyperparameter
settings, such as number of epochs, batch size, images per
batch, etc.

Training Configuration. To train the Detectron 2 model,
we prepared the COCO dataset discussed above. The train-
ing was performed on a machine with 12GB GPU and
64GB RAM. To find the optimal model configuration, we
conducted a series of training experiments using various
fine-tuned hyperparameters, as summarized in Table 1. The

performance of each model was measured using the mean
average precision (mAP) metric at the intersection over
union (IOU) (Rahman and Wang 2016) threshold of 0.5 and
0.75. To maintain consistency and ensure efficient process-
ing, all images were resized to a standardized 512 × 512
pixel format. No additional image augmentation techniques
were employed during the training process.

Name Batch
Size

Epochs mAP 50 mAP 75 Time
(hours)

d2-10k 8 10, 000 43.56% 5.30% 9.52
d2-50k 8 50, 000 80.60% 51.16% 12.22
d2-90k 8 90, 000 82.65% 46.96% 22.50

Table 1: Detectron 2 training configurations

From this experiment, we found that d2-50k offered the
optimal result offering the best performance while minimiz-
ing the training time.

A

B

C

D

Figure 2: Exported images of the ultrasonic scans. A) The
exported image used for the training. B) Orange labels show-
ing the defect location on the image. C) Defects identified by
the Detectron 2 model displayed with green labels. D) De-
fects identified by the YOLO 11 model displayed with blue
labels.

Results. In our experiment, we achieved an average pre-
cision exceeding 80% at the 50% IOU threshold. However,



given the critical safety implications of NDI applications,
prioritizing sensitivity over precision is crucial. In this con-
text, false positives are preferable to false negatives, as iden-
tifying every potential defect is essential. Since the primary
goal of the model is to assist inspectors in locating regions
of interest, detecting a fragment of a defect is sufficient to
warrant a manual inspection of the affected area.

Figure 2 (C) visually represents the ability of the model to
accurately identify all potential defect areas within a scan,
highlighted by green overlays.

YOLO v11
We used the object detection models of YOLO 11, which
integrates a backbone network for extracting features, fol-
lowed by a segmentation head that generates both bounding
boxes and detailed pixel-level masks for individual objects.

Training Configuration. To train the YOLO 11 model,
we converted the COCO formatted data into appropriate
labels and image files accepted by the YOLO (Ultralytics
2023) framework. We fine-tuned different hyperparameters
of the pre-trained model to find the optimal configuration.
We performed the training on the same hardware configu-
ration as the Detectron 2 experiment. The performance of
the training configurations is summarized in Table 2. To en-
sure efficient processing, all images were resized to stan-
dardized 640×640 pixels during training. We experimented
with two pre-trained YOLO 11 models – yolo11n, a small-
est model with 2.6million parameters, and yolo11x, a larger
model with 56.9million parameters (Ultralytics 2024). The
training processes were terminated when the model perfor-
mance converged. The first experiment with 1, 000 epochs
converged at 837 epochs whereas the other experiments con-
verged at 1296 epochs.

Name Batch
Size

Max
Epochs

mAP 50 mAP 75 Time
(min)

yolo11n-1k 8 1, 000 77.04% 48.41% 16.75
yolo11n-10k 8 10, 000 75.22% 48.66% 29.55
yolo11x-10k 8 10, 000 75.22% 48.66% 28.68

Table 2: YOLO 11 training configurations

Results. From the YOLO 11 training, we observed that the
smaller pre-trained model, yolo11n, was sufficient to achieve
optimal performance with minimal training time. Similar to
the Detectron 2 experiment, the performance metric, while
not perfect, was sufficient to identify almost all the defect
areas, as illustrated by the blue overlays in Figure 2 (D).

Discussion
Our experiments demonstrated that the proposed method
significantly reduces data pre-processing requirements. By
converting scan data to PNG format, we successfully trained
image segmentation models without requiring any complex
pre-processing and data normalization. This streamlined
pipeline enhanced the practicality of the models for indus-
trial deployment by reducing computational overhead and

increasing the model’s adaptability across different scanning
configurations.

The minimized pre-processing time enables real-time de-
fect detection, allowing inspectors to identify defects as soon
as the scanned data is available. This boosts efficiency and
strengthens the NDI process. This minimized pre-processing
step increased the model’s viability across varied industrial
environments.

Our experimental results indicate that the YOLO 11
model exhibited significantly faster training times while
achieving performance comparable to the Detectron 2
model. This accelerated training process is particularly ad-
vantageous for rapid prototyping and iterative model devel-
opment.

Compared to traditional ML models, which often require
extensive signal preprocessing and cleanup, image segmen-
tation models demonstrated remarkable performance di-
rectly from the raw scan data. This reduced reliance on com-
plex pre-processing techniques simplifies the overall train-
ing and deployment pipeline for different manufactured ma-
terials.

Additionally, the high detection accuracy and efficiency
of these models suggest their potential for practical appli-
cation in real-world scenarios. The ability to accurately seg-
ment objects within images can be leveraged in a wide range
of NDI processes.

Since the models rely on PNG images rather than under-
lying signals, they can easily adapt to defect detection on
any new scan from a similarly shaped object. This flexibil-
ity minimizes the need for extensive retraining when intro-
ducing new manufactured parts. The retraining for new parts
can also be simplified by creating images of the new compo-
nents and incorporating them into the existing training data.
This incremental approach allows for efficient adaptation to
evolving product designs without requiring a complete re-
training process.

Conclusion
Our experimental results present a robust approach to defect
identification within the NDI process, leveraging state-of-
the-art image segmentation techniques. The proposed meth-
ods demonstrate a high defect detection rate while minimiz-
ing the need for extensive data pre-processing and computa-
tional resources. The rapid detection capabilities inherent to
these methods empower inspectors in the NDI process and
significantly enhance productivity.

By integrating this approach into the defect detection
pipeline, we can effectively reduce inspector fatigue, opti-
mize productivity, and elevate the overall safety standards
for manufactured parts. This integration can lead to a more
efficient and reliable NDI process, reducing the likelihood of
human error and improving the quality of the final product.
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