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Abstract

Due to the computational complexity of evaluating inter-
atomic forces from first principles, the creation of interatomic
machine learning force fields has become a highly active field
of research. However, the generation of training datasets of
sufficient size and sample diversity itself comes with a com-
putational burden, that can make this approach unpractical for
modeling rare events or systems with a large configuration
space. Transfer learning has been shown to achieve good ac-
curacy for machine learning force fields with a much sparser
sampling of configurations. Unfortunately, it does not pro-
vide solutions on how to efficiently sample different regions
of configuration space in the first place and without such a
method, the actual improvement in data efficiency remains
much less obvious. In active learning, model uncertainty can
be used to guide the sampling procedure towards regions of
high uncertainty, resulting in a much more efficient sampling
procedure. Therefore, it seems highly desirable to develop a
framework for transfer learning that can also produce high-
quality uncertainty quantification. In this paper, we demon-
strate that Bayesian neural networks are suitable as such a
framework by utilizing their prior density for transfer learn-
ing.

Introduction
Ever since the discovery of the laws of quantum mechan-
ics almost a century ago, the prediction of molecular and
material properties such as stress-strain relationships or cat-
alytic activity from first principles has in theory been possi-
ble (Atkins and Friedman 2011; Gastegger and Marquetand
2020). However, in practice, this task remains challenging
even to this day (Schütt et al. 2020; Giustino 2014). The ma-
jor difficulty lies in the exponentially growing computational
complexity of solving the underlying Schrödinger equation
with an increasing number of electrons (Atkins and Fried-
man 2011). As a consequence, several alternative methods
for property prediction have been developed, which are com-
putationally tractable for larger systems at the cost of vary-
ing degrees of accuracy.
Some of the most popular of these methods are in roughly
ascending order of accuracy and computational complex-
ity Density Functional based Tight Binding (DFTB) meth-
ods (Spiegelman et al. 2020), Density Functional The-
ory (DFT) (Giustino 2014) and Coupled Cluster (CC) ap-
proaches (Bartlett and Musiał 2007). With these approxima-

tions, many properties, such as electronic structure, bind-
ing energies and interatomic forces can be predicted with
a high degree of accuracy and a computational complex-
ity that is feasible on a typical high-performance cluster
for many tasks (Giustino 2014). While DFT has enabled
the investigation of the properties for individual materials
at quantum mechanical accuracy, high-throughput screening
of materials or molecules for desired properties still remains
very computationally demanding. Furthermore, Molecular
Dynamics (MD) – the simulation of the time evolution of
molecular systems and materials – remains challenging,
as the forces on all atoms have to be calculated at each
timestep. This severely limits the time horizon that can be
achieved in practical amounts of time using DFT (Gastegger
and Marquetand 2020).
Subsequently, the development of machine learning mod-
els that can predict interatomic forces has become an ac-
tive field of research (Kocer, Ko, and Behler 2022). In par-
ticular neural network-based interatomic force models have
made great strides in the past years and can achieve much
higher accuracy than previous methods with just a few hun-
dred well-sampled training configurations of a specific sys-
tem(Klicpera, Becker, and Günnemann 2021; Unke et al.
2021; Schütt, Unke, and Gastegger 2021; Batzner et al.
2022; Haghighatlari et al. 2022; Qiao et al. 2022). How-
ever, in practice, the necessary amount of data that needs to
be generated is much higher. First of all, to generate physi-
cally realistic and diverse atomic configurations, these train-
ing configurations usually have to be sampled from much
larger MD trajectories containing thousands of configura-
tions (Chmiela et al. 2017a; Christensen and von Lilienfeld
2020; Wen and Tadmor 2020). While some alternatives such
as umbrella sampling exist (Torrie and Valleau 1977), that
reduce some redundancy in the sampled trajectory by modi-
fying the underlying dynamics, they are still based on simu-
lating a dynamical trajectory that involves the costly calcu-
lation of forces. Due to this, there is still a large amount of
redundancy due to configurations of subsequent time steps
being very similar. This problem is compounded by the
fact that a bigger system typically has a larger configura-
tion space and hence requires longer trajectories to sample
it sufficiently while the computational demand of calculat-
ing each time step is also increased. Consequently, when at-
tempting to create a Machine Learning Force Field (MLFF)



Figure 1: Lennard-Jones models of the radial force of a hy-
drogen molecule with correct bond energies but bond dis-
tances of 0.74 Å and 0.73 Å respectively. The dotted line
indicates the difference in radial force values. Due to the
rapidly growing radial forces under compression along the
bond axis, an MD trajectory done with the model that has
a larger bond distance will likely contain no configurations
with a bond distance around 0.73 Å which is the most likely
configuration of the other model.

for ever larger systems, one can quickly reach a limit due to
the same reason the force field was needed in the first place:
Dynamical trajectories at the desired accuracy can not be
computed for a time horizon of adequate length. At first
glance, computing the trajectory at a lower accuracy and
computational complexity and then recalculating some sub-
set of those configurations at the desired accuracy appears
like a simple solution to increase sample diversity and re-
duce computational demand. Unfortunately, even though
lower accuracy methods often predict qualitatively very sim-
ilar force fields that result in almost identical chemistry, they
often introduce some small biases such as slightly different
bond lengths. For example, some DFT methods are known
to have a bias towards bond lengths that are too small by up
to one percent while the usual variation in bond length due
to thermal fluctuations can be much lower than that(Giustino
2014). As a result, many typical configurations from a tra-
jectory of one simulation method can become very rare in
trajectories of the other method (Figure 1). Consequently,
the MLFF would become less accurate for configurations
it frequently encounters in its trajectories, since no similar
configurations were contained in the training set.
The problem of sampling relevant configurations is even

more severe when trying to train a MLFF to explore chem-
ical phenomena such as reaction mechanisms. Chemical re-
actions themself are almost never contained in MD trajecto-
ries due to their rarity. This is well illustrated simply by the
fact that reaction rates are typically measured in change in
concentration per second while MD simulations run at ap-
proximately femtosecond time steps. Subsequently, on the
order of 1015 time steps would usually need to be simulated
to have a reasonable chance of observing chemical reactions.
A new paradigm for creating training datasets appears ur-

gently needed in order to extend the capabilities of MLFFs
to model larger systems and explore chemical phenomena
or other rare events. An iterative approach utilizing trans-
fer learning and active learning is a promising way forward
to remedy some of the mentioned problems. Transfer learn-
ing has already been demonstrated to significantly reduce
the necessary amount of data for creating accurate neural
network models of atomic systems by pretraining the neu-
ral network on auxiliary datasets (Kolluru et al. 2022; Za-
verkin et al. 2023; Smith et al. 2019) and then fine-tuning
the pre-trained model on the actual training data. The auxil-
iary datasets could for example contain data generated from
lower accuracy simulation methods that require orders of
magnitude less computation or labeled configurations from
existing datasets of different systems. The second point is
particularly interesting in light of the recent efforts to create
universal publicly available machine-learning force fields
(Smith, Isayev, and Roitberg 2017; Chen and Ong 2022;
Smith et al. 2018) that are applicable to a large variety of
atomic systems out of the box but which do not reach the
desired accuracy in many applications. Here tranfer learn-
ing might enable the fine-tuning of the universal force fields
with only a sparse sampling of configuration space.
However, it is not obvious how to create such a sparse sam-
pling that still contains samples from all physically relevant
regions of configuration space without subsampling from a
long MD trajectory. Hence, it seems unclear how much more
efficient these approaches are in practice.

Uncertainty-based active learning methods have estab-
lished themselves as a way to further improve data efficiency
as well as accuracy during rare events (Vandermause et al.
2019; Podryabinkin et al. 2019; Podryabinkin and Shapeev
2017; Gubaev et al. 2019) by sampling configurations more
efficiently. This can be achieved by selectively labeling
samples from regions of configuration space where the
MLFF still has a high uncertainty (Kulichenko et al. 2023).
Thus, the combination of active learning and transfer
learning appears very promising.
For example, on-the-fly learning is an elegant approach
(Jinnouchi et al. 2020; Vandermause et al. 2019) where the
pre-trained model might be used to drive the dynamics (e.g.
MD simulation, transition state optimization, etc.) until a
configuration is encountered that exceeds a certain uncer-
tainty threshold. This configuration is then recalculated with
classical simulation methods and used to update the model
which then resumes the task until the next configuration
above the uncertainty threshold is encountered. This ap-
proach has the additional benefit of being very easy to use
for non-machine learning experts, like many computational
chemists are, since essentially only the initial state of the
system and the uncertainty threshold would have to be
specified.

However, what is currently missing from the literature is
a framework to systematically update a pre-trained neural
network-based MLFF on new data while also being able to
assess its uncertainty.

An appropriate framework needs to fulfill two separate
conditions which we will use to assess suitability. First of



Figure 2: An illustration of a molecular dynamics workflow of a water molecule utilizing a machine learning force field.

all, it needs to produce an accurate force field with a sparser
sampling of configuration space. Furthermore, it needs to
be able to detect configurations with a high likelihood of
a large error based on its predicted uncertainty in order
to enable the sparse sampling of that configuration space.
Bayesian Neural Networks (BNNs) have demonstrated a
high quality of uncertainty quantification comparable to
classical ensemble-based methods of uncertainty quantifica-
tion (Kahle and Zipoli 2022). In addition, Bayesian meth-
ods offer a simple and systematic way of incorporating and
data-based updating of preexisting knowledge by utilizing
the Bayesian prior density and Bayes theorem (Shwartz-Ziv
et al. 2022; Chen et al. 2019).
Due to these properties, the principal research question of
this paper is whether BNN models of interatomic forces
might be suitable as such a framework.

The main contributions of this work are the following:

• We develop a simple Bayesian framework for
uncertainty-aware transfer learning of interatomic
force fields, by harnessing a simple transfer learn-
ing prior and Monte Carlo Markov Chain (MCMC)
sampling.

• We analyze this approach in three different transfer learn-
ing scenarios, DFTB to DFT, DFT to CC and the use of
and transfer learning between different atomic systems at
DFT level accuracy and demonstrate large improvements
in accuracy and data efficiency for each scenario.

• We demonstrate that the quality of uncertainty quantifi-
cation in all three scenarios is comparable to a Bayesian
neural network model of similar accuracy which was
trained from scratch.

Interatomic Force Modeling using Bayesian
Neural Networks

Throughout the rest of this paper, bold case symbols
designate vectors, n is the number of individual atoms of
an atomic system, m is the size of the training set and y|x
denotes y conditioned on x.

Machine-learned interatomic force fields for molecules
aim to map an atomic configuration {(r1, z1), ..., (rn, zn)},
composed of the nuclear coordinates ri ∈ R3 and nu-
clear charges zi, to the forces F i acting on each nucleus
i ∈ {1, ..., n}. The predicted forces can then for example be
used in combination with Newton’s equations of motion to
model the time evolution of the molecules (Figure 2). Be-
cause generating large amounts of high-quality training data
is typically infeasible due to the high computational demand
of classical simulation methods, modern machine learning

models have several forms of physical constraints built into
them, in order to make them more data efficient (Unke et al.
2021; Schütt, Unke, and Gastegger 2021; Batzner et al.
2022; Qiao et al. 2022; Schütt et al. 2018; Chmiela et al.
2017b). One important constraint is energy conservation,
meaning that the forces can be derived as the negative
gradients of a potential energy surface u(r1, ..., rn) ∈ R,
i.e F i = −∇riu(r1, ..., rn).
Further, the potential energy surface is known to be invariant
under any transformation of the nuclear coordinates which
leaves interatomic distances invariant.

Bayesian Neural Networks
Bayesian neural networks have demonstrated promising re-
sults for modeling uncertainties in neural network predic-
tions and in particular in machine learning force fields
(Kahle and Zipoli 2022; Kwon et al. 2018; Rensmeyer et al.
2023). The main difference between the Bayesian approach
to neural networks and the regular approach is, that the train-
able parameters of the neural network, e.g. its weights and
biases, are modeled probabilistically. For simplicity of no-
tation, we denote by θ a vector containing all the train-
able parameters of the neural network. For a given param-
eter vector θ and input sample x, the neural network pre-
dicts a probability density p(y|x,θ) over the target variable
y. In the case of machine learning force fields, x will be
an atomic configuration {(r1, z1), ..., (rn, zn)} and y will
be the atomic forces {F 1, ...,F n}. The starting point of
Bayesian methods is a prior density p(θ) over the param-
eters which expresses apriori knowledge about which sets
of parameters are likely to result in a good model of the
underlying data distribution. Given some training dataset
D = {(x1,y1), ..., (xm,ym)} the prior density gets refined
into the posterior density p(θ|D) using Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
.

With the mild assumption on conditional independence

p(y1, ...,ym|x1, ...,xm,θ) = Πm
i=ip(yi|xi,θ)

this can be simplified to

p(θ|D) = Z · p(θ)Πm
i=ip(yi|xi,θ),

where Z = p(x1,...,xm)
p(D) is a normalization constant. On a

new input sample x, the probability distribution of the target
variable y can then be calculated via

p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ = Ep(θ|D) [p(y|x,θ)] .



Figure 3: An illustration of the neural network architecture for predicting the means F̂ i and standard deviations σi for all atoms.
Except for the MLP this corresponds to the architecture of the original NequIP neural network model.

Because this integral is almost never analytically tractable
for neural networks, a Monte Carlo estimate is typically
used:

p(y|x,D) ≈ 1

k

k∑
i=1

p(y|x,θi), θi ∼ p(θ|D),

where the parameter sets θi are sampled from the posterior
density using either approximate inference (Maddox et al.
2019; Blundell et al. 2015; Gal and Ghahramani 2016) or
MCMC methods (Welling and Teh 2011; Chen, Fox, and
Guestrin 2014; Ma, Chen, and Fox 2015). MCMC meth-
ods in particular have displayed good results in uncertainty
quantification (Yao et al. 2019) due to their ability to sam-
ple different regions of the posterior. These methods work
by simulating a stochastic process over the space of neural
network parameters which converges in distribution to the
posterior.

Relation to other Works
Even though Bayesian neural networks offer a very promis-
ing opportunity to systematically incorporate and update
pre-existing knowledge via the prior density, we find that
this approach is very underutilized in the literature and in
fact, we could only find two instances in the literature, where
this was attempted (Shwartz-Ziv et al. 2022; Chen et al.
2019). In (Chen et al. 2019) transfer learning of simulated
to experimental data was done via a Bayesian neural net-
work prior. A simple isotropic Gaussian prior with a mean
derived during pretraining was used in that work, which we
will also employ here.
A more sophisticated approach for constructing a transfer
learning prior was introduced in (Shwartz-Ziv et al. 2022),
where a rescaled local approximation of the posterior on the
auxiliary dataset was used as a prior. However, in the appli-
cations considered here, this approach is not very practical.
One reason for this is, that by definition this form of a prior
assigns a low density to parameters that produce a low log-
likelihood on the auxiliary dataset and hence discourages
changes in the predictions on configurations included in the
auxiliary dataset. This is a problem for transfer learning sce-
narios from lower accuracy simulations to higher accuracy

ones, where those predictions necessarily need to change.
As a consequence, we found no improvement in data effi-
ciency in these scenarios.
Further, while such conceptual issues don’t exist for the
transfer learning scenarios from auxiliary datasets of differ-
ent compounds generated with the same simulation method
as the target dataset, there instead exists a practical problem.
Oftentimes such a scenario will involve finetuning a publicly
available universal machine-learned force field, which was
trained via a classical neural network optimizer and hence,
that method for constructing a prior will simply not be ap-
plicable.
Transfer learning of a pre-trained model for interatomic
force fields has been investigated in (Kolluru et al. 2022; Za-
verkin et al. 2023; Smith et al. 2019). However, the model-
ing of uncertainty has not been under consideration in those
works.

Solution
We utilize a stochastic variant of the NequIP (Batzner
et al. 2022) model introduced in (Rensmeyer et al. 2023).
This model can be divided into three different compo-
nents (Figure 3). The first one maps the input x =
{(r1, z1), ..., (rn, zn)} to latent variables {v1, ...,vn} that
are invariant under distance-preserving transformations of
the atomic coordinates ri. The second is a Mulit-Layer Per-
ceptron (MLP) which calculates a scalar standard deviation
σi from each atomic feature vector vi. The third compo-
nent calculates a scalar (virtual) energy contribution Ei for
each atomic feature vector vi. A total potential energy is
then calculated as E =

∑n
i=1 Ei and from that the expected

forces F̂ i are calculated as the negative gradients of the en-
ergy with respect to the atomic coordinated ri.
From the predicted means and standard deviations, we
model the distribution over the forces as

F 1, ...,F n|(r1, z1), ..., (rn, zn),θ ∼ Πn
i=1N(F̂ i, σ

2
i I),

where N denotes a normal distribution and I is the identity
matrix.
To construct the prior, we pre-train this model on the aux-
iliary dataset to generate a set of neural network parame-



ters θ0. We then set the transfer learning prior as pTL ∼
N(θ0, σ

2
TLI) with a small standard deviation σTL, which

is the approach used in (Chen et al. 2019). Importantly, in
this formalism, a diverse ensemble of models can still be
generated by sampling (approximately) independent param-
eter sets from the posterior. Further, it is not necessary to
optimize several models from scratch as would be the case
for deep ensembles but instead, we can sample all parame-
ter sets from the same Markov chain, starting from the sin-
gle parameter set θ0. This is highly advantageous since the
training of a single state-of-the-art neural network model
from scratch can already take several days on a modern
GPU. To sample the posterior density, we use the AMSGrad
version of the Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) algorithm (Chen, Fox, and Guestrin 2014) intro-
duced in (Rensmeyer et al. 2023) (see Appendix A for de-
tails of the neural network architecture, sampling procedure
and pre-training).

Empirical Evaluation
Three different benchmarks are used to evaluate our model,
representing likely scenarios where transfer learning might
be employed. The first test is a transfer learning scenario of
finetuning a more general neural network model trained on a
variety of different compounds to a specific molecule of in-
terest not included in the pre-training dataset. More specifi-
cally we pre-train a neural network model on a dataset con-
sisting of a variety of compounds of the MD17 (Chmiela
et al. 2017a) and MD22 (Chmiela et al. 2023) datasets,
which consist of MD trajectories of several molecules at
DFT level accuracy and then finetune it on the paracetamol
dataset of the MD17 dataset.
The second benchmark is a transfer learning scenario from
DFTB level accuracy to DFT level accuracy. In particular,
we generate a large dataset of different configurations of a
stachyose molecule in DFTB for pre-training and then uti-
lize the stachyose data from the MD22 dataset for the trans-
fer learning task.
The final test scenario is a transfer learning task for reach-
ing CC level accuracy on an ethanol molecule starting from
a model pre-trained on the corresponding ethanol data from
the MD17 dataset. The CC-level dataset used for this was
introduced in (Bogojeski et al. 2019).
In all three test scenarios, a validation set of 10 configura-
tions was used to recalibrate all predicted standard devia-
tions on the test sets by multiplying them with a scalar factor
that was chosen by matching the resulting mean predicted
variance to the mean square error on the validation set. All
experiments were done with 8 Monte Carlo samples gener-
ated from the same Markov chain, which has been identified
as a good tradeoff between computational complexity and
quality of uncertainty quantification in previous benchmarks
(Rensmeyer et al. 2023). Details of all the datasets can be
found in Appendix B. We set σTL as 0.2 in all experiments.

The Evaluation Metrics:

On all tasks, we evaluate the model’s overall accuracy
in terms of the Root Mean Square Error (RMSE) of the

force components. We analyze the accuracy of the transfer
learned model in dependence of the size of the training
dataset and compare it to a model that is trained from scratch
with a simple Gaussian mean field prior p(θ) ∼ N(0, I).
One concern is, that a prior with a small standard deviation
could lead to a suboptimally small predictive variance of
the Monte Carlo samples from the posterior since parameter
sets of all samples will tend to remain close to the mean
of the prior. This might negatively impact the quality of
uncertainty quantification at a given accuracy compared to
a model generated from a wider uninformative prior e.g.
p(θ) ∼ N(0, I).
Hence we analyze the transfer learning models quality
of uncertainty quantification in comparison to a model
with a Gaussian mean field prior p(θ) ∼ N(0, I). For
this, we compare the Mean Log Likelihoods (MLLs) of
the force components as a function of the RMSE for
both models. To smooth each predicted distribution of the
8 Monte Carlo samples on this metric, we fit a normal
distribution to the means and variances of each predicted
distribution and use these smoothed distributions instead.
Further, since the main goal of the uncertainty measure is
the identification of configurations with a large error in the
prediction, we evaluate the models in the task of detecting
force components with a large prediction error based on
the predicted uncertainty. More specifically, we analyze the
corresponding AUC-ROC scores for detecting large errors
via the predicted variance and plotting them as a function of
the RMSE. On the ethanol and paracetamol dataset errors
of more than 1kcal/molÅ were considered large, while on
the more difficult stachyose dataset, the cutoff was set as
3kcal/molÅ because an error of 1kcal/molÅ could not be
considered an outlier.

Results
As can be seen in Figure 4, very high accuracies were
reached for the transfer learning model on the paracetamol
dataset even for small training datasets in terms of the
RMSE when compared to the model trained from scratch.
Further, there appears to be no major decrease in the
quality of uncertainty quantification at a given accuracy as
measured by the MLLs and AUC-ROC scores and the plots
are almost on top of each other where the RMSEs overlap.
However, there might be a very small decrease in quality as
indicated by Figure 4.
On the stachyose dataset, again a clear improvement in
accuracy at equal amounts of training samples is visible
when compared to the baseline model (Figure 4). However,
both models have higher RMSEs than their counterparts
on the paracetamol dataset at equal amounts of training
configurations. The MLLs of the transfer learning model
appear to be slightly lower than for a model trained from
scratch when controlled for accuracy. The same is true
only to a much smaller degree for the AUC-ROC scores.
Further analysis revealed, that the validation set was too
small for the large configuration space of stachyose to
properly recalibrate the uncertainties which led to an
overestimation of the errors on the test set for the transfer
learned models but not for the baseline models. This also



Figure 4: Results on the paracetamol and stachyose datasets. On the left are the mean log-likelihoods as a function of RMSE
(all means and standard deviations in kcal/molÅ). In the middle are the AUC-ROC scores for uncertainty-based detection of
force components with a high prediction error. On the right are the Root Mean Square Errors as a function of the number of
training configurations

explains the absence of such reduced performance on the
AUC-ROC scores which are invariant under recalibration of
uncertainties. Accounting for the slightly wrong calibration
by recalibrating the uncertainties on the test set instead
of the validation set confirmed miscalibration as the main
source of the gap in MLLs. In particular, the gap between
the MLLs of the transfer learning models that are closest in
RMSE reduced from 0.191 to 0.086.
The biggest improvement in accuracy, when compared
to the baseline model, was found on the ethanol dataset
(Figure 5), with an RMSE of less than 0.5kcal/molÅ with
only 10 configurations. There appears to be no decrease in
the quality of uncertainty quantification both in terms of
MLLs as well as AUC-ROCs on this benchmark.

Interestingly, for all transfer learning scenarios, the er-
ror of the pre-trained model was quite large with mean
absolute errors of 2.31kcal/molÅ on the paracetamol val-
idation set, 4.34kcal/molÅ on the stachyose validation set
and 5.12kcal/molÅ on the ethanol validation set. Further, all
pre-trained models achieved a validation loss smaller than
0.15kcal/molÅ on their pre-training datasets strongly indi-
cating, that DFTB, DFT and CC methods disagree quite sub-
stantially in their force predictions for a given configuration.
However, as was already alluded to in the introduction, this
can most likely be traced back to simple biases in the sim-
ulation methods, such as slightly different equilibrium bond
lengths. These small biases in different simulation methods
can lead to qualitatively very similar force fields that may
disagree substantially on the forces of a given configuration.
This would also explain, why transfer learning is very ef-
ficient in these cases, as the model mostly has to correct

for those biases such as equilibrium bond lengths. Impor-
tantly, those force fields will lead to very similar predictions
of physical and chemical properties despite their apparently
large disagreement, while a machine-learned force field with
a similar magnitude of error to one of those methods can not
in general be expected to yield those properties as well and
hence needs to be trained to a much higher accuracy.
One additional result that stands out is the relatively high
RMSE of both the transfer learning and the baseline model
on the stachyose dataset when compared to the other two
test scenarios. However, there are two factors that make this
dataset particularly challenging. First of all, stachyose is a
larger molecule than paracetamol and ethanol which in ad-
dition contains many single sigma bonds that allow for rota-
tional degrees of freedom along the bond axis. This results
in a very large configuration space for stachyose molecules
even relative to their size. The second factor that makes this
benchmark more challenging for the transfer learning model
is that unlike in the ethanol case, the higher accuracy dataset
was not composed of configurations generated from an MD
trajectory of the lower accuracy method but instead from a
trajectory at DFT-level accuracy. As a result, the distribution
of configurations in the DFT dataset will be different from
the one from the DFTB dataset. Lastly, one important obser-
vation we made is that the transfer learning approach con-
verges much faster than when training from scratch. While
state-of-the-art models can take days to train from scratch,
training and validation losses converged within minutes on
the transfer learning tasks. In fact, the only reason we let the
sampling algorithm run for as long as described in the Ap-
pendix is to make sure that no pathological overfitting takes
place.



Figure 5: Results on the ethanol dataset. On the left are the mean log-likelihoods as a function of RMSE (all means and standard
deviations in kcal/molÅ). In the middle are the AUC-ROC scores for uncertainty-based detection of force components with a
high prediction error. On the right are the Root Mean Square Errors as a function of the number of training configurations

Conclusion and Outlooks

Despite the simplicity of the chosen transfer learning prior,
the outcomes demonstrate a clear improvement in accuracy
and data efficiency on all three tasks. While technically
the computational demand of generating the lower accuracy
data has to be taken into account for the DFTB to DFT and
DFT to CC transfer learning scenarios, this is not very rele-
vant in practice since the higher accuracy simulation meth-
ods are orders of magnitude slower. The predicted uncertain-
ties of the transfer learning model do not appear to have a
substantially diminished quality despite the relatively small
standard deviation of the transfer learning prior. One excep-
tion to this are the somewhat lower MLLs on the stachyose
benchmark due to miscalibration. Particularly encouraging
are the high AUC-ROC scores, which are close to the opti-
mal value of one during all experiments. This strongly in-
dicates that the transfer-learned models can reliably detect
configurations with a high likelihood of a large error. Con-
sequently, the stated conditions for a suitable framework
to combine active and transfer learning are clearly met by
the transfer learning algorithm investigated here. This opens
up new possibilities to extend the application of MLFFs to
larger systems and new scenarios such as rare events.

The biggest remaining obstacle to this is developing active
learning algorithms suitable for different application scenar-
ios e.g. MD simulations or transition state optimization and
integrating them with the transfer learning algorithm dis-
cussed here. Additionally, the introduced framework offers
an opportunity to make transfer-learned models more trust-
worthy by evaluating their uncertainty and recomputing con-
figurations with high uncertainty on the fly with classical
simulation methods.
In summary, the results in this paper point towards Bayesian
transfer learning of machine-learned force fields as a viable
option for trustworthy and data-efficient molecular mod-
eling. Further, the quantification of predictive uncertainty
could potentially be used in the future in iterative active
learning approaches to enhance data efficiency even more
and to ensure high accuracy even for rare configurations by
sampling the configuration space more efficiently.
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Implementation Details
The Neural Network Architecture
For the base neural network architecture we use a NequIP model with four interaction blocks, a latent dimension of 64 and
even and odd parity features up to and including angular momentum number l=2. The standard deviations σi are predicted by a
three-layer MLP with input dimension 64, latent dimensions 32 and 16 and output dimension 1. SiLU activation functions are
used for the latent layers and the output activation function is the exponential function. We do not normalize the force values
and instead rescale the predicted means by the root mean square of the forces in the training dataset. The predicted standard
deviations are not rescaled.

Generating Samples from the Posterior
For sampling the Bayesian posterior, we use the SGHMC algorithm (Chen, Fox, and Guestrin 2014) with the adaptive mass
term introduced in (Rensmeyer et al. 2023). For the ethanol and paracetamol test cases, the step size γ is exponentially
decreased from 10−2 and 0.3 · 10−2 to 10−5 during the first 106 steps for the baseline model and transfer learning model
respectively. At the end of this phase, the first model is sampled. Afterward, the cyclical learning rate schedule used in
(Rensmeyer et al. 2023):

γi =
γ0
2

(
cos

(
π +

i · π
K

)
+ 1

)
with γ0 = 0.001 and cycle length K = 50000
is employed to sample the subsequent models from the same Markov chain at the end of each cycle.
The same procedure is also utilized for the baseline model on the stachyose test case, however, the initial convergence phase is
shortened to 0.5 · 106 steps for the transfer learning model, as the other two test cases had revealed a quicker convergence for
the transfer learning models. For the paracetamol and ethanol cases, a batch size of 30 is used and for the stachyose case, it is
set as 15. After the first 90 percent of the initial convergence phase, the mass term is kept constant to ensure close convergence
to the posterior.

Pretraining the Models
To pre-train a model, we converge it to a local maximum of the log-posterior on the pre-training dataset with a Gaussian mean
field prior p(θ) ∼ N(0, I). Almost the same sampling algorithm and hyperparameters are used as in the sampling of posterior
of the corresponding baseline model. The only differences are, that the injected noise is downscaled by a factor of 0.1 and
only the first model is sampled. The injected noise was not set to zero, because we found that a small amount of injected noise
actually speeds up convergence, especially at the beginning of the optimization.

The Datasets
The Ethanol Transfer Learning Datasets
To pre-train the model 5000 randomly sampled configurations from the MD17 ethanol dataset are used. This dataset consists
of over 500000 configurations generated from a molecular dynamics trajectory calculated at DFT level accuracy. We use the
training and test datasets of ethanol at CCSD(T) level accuracy introduced in (Bogojeski et al. 2019) for the transfer learning
task. We use the last 10 configurations of the training set as validation data. The actual training data consisted of the first m ∈ N
configurations of the training dataset for varying values of m.

The Paracetamol Transfer Learning Datasets
The pretraining dataset consists of randomly sampled configurations from the aspirin, benzene, malonaldehyde, toluene, sali-
cylic acid, naphthalene, ethanol, uracil and azobenzene from the MD17 dataset as well as the AT-AT DNA base pair, stachyose,
Ac-Ala3-NHMe and docosahexaenoic acid datasets from the MD22 dataset. The first 100000 configurations from each MD17
dataset and all configurations from the MD22 datasets were used to form a pool of configurations from which 100000 are
randomly drawn as the pretraining dataset.
For the actual training set m ∈ N configurations are randomly sampled from the MD17 paracetamol dataset for varying values
of m. 10 additional configurations are randomly sampled as a validation set. The rest of the 106490 configurations are used as
a test set.

The Stachyose Transfer Learning Datasets
The pretraining dataset was generated from a long molecular dynamics trajectory of a stachyose molecule in DFTB+(Hourahine
et al. 2020). The initial geometry was generated from a structural relaxation with a convergence criterium of 10−3H/Å for
the maximal force component. The MD trajectory was simulated at 1 femtosecond time steps with a Nose Hoover thermostat
(Martyna et al. 1996) at 600° Kelvin with a coupling strength of 3200 cm−1. The simulation ran for 106 time steps using the
velocity verlet driver with one configuration sampled every ten time steps yielding a dataset of 100000 configurations. For both



the geometry optimization as well as the MD simulation a Hamiltonian with self-consistent charges (Elstner et al. 1998) and
third-order corrections (Gaus, Cui, and Elstner 2011) was used in correspondence with the 3ob-3-1 Slater Coster files (Gaus
et al. 2014). For all atoms, s- and p-orbitals were used in the Hamiltonian.

For the actual training set m ∈ N configurations are randomly sampled from the first 10000 configurations of the MD22
stachyose dataset for varying values of m. 10 additional configurations are randomly sampled from the configurations 10100 to
10900 as a validation set. Configurations 11000 up to 27000 are used as a test set.


