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Abstract

The dynamics of burning plasmas in tokamaks are crucial for
advancing controlled thermonuclear fusion. This study ap-
plies the NeuralPlasmaODE, a multi-region multi-timescale
transport model, to simulate the complex energy transfer pro-
cesses in ITER deuterium-tritium (D-T) plasmas. Our model
captures the interactions between energetic alpha particles,
electrons, and ions, which are vital for understanding phe-
nomena such as thermal runaway instability. We employ neu-
ral ordinary differential equations (Neural ODEs) for the nu-
merical derivation of diffusivity parameters, enabling precise
modeling of energy interactions between different plasma re-
gions. By leveraging transfer learning, we utilize model pa-
rameters derived from DIII-D experimental data, enhancing
the efficiency and accuracy of our simulations without train-
ing from scratch. Applying this model to ITER’s inductive
and non-inductive operational scenarios, our results demon-
strate that radiation and transport processes effectively re-
move excess heat from the core plasma, preventing thermal
runaway instability. This study underscores the potential of
machine learning in advancing our understanding and control
of burning plasma dynamics in fusion reactors.

1 Introduction
The dynamics of burning plasmas in tokamaks are criti-
cal for advancing controlled thermonuclear fusion. In the
International Thermonuclear Experimental Reactor (ITER)
(IAEA 2002), deuterium-tritium (D-T) fusion reactions gen-
erate 14.1MeV neutrons and 3.5MeV fusion alpha particles
(Green et al. 2003). These alpha particles, confined by mag-
netic fields, transfer their energy primarily to core electrons
before transferring it to ions. The heated core electrons emit
various types of radiation, including electron cyclotron radi-
ation (ECR), bremsstrahlung, and impurity radiation, which
rapidly dissipate energy compared to the slower transport of
energy to the edge. However, the energized electrons and
remaining alpha particles also heat the core ions through
collisional processes, potentially increasing fusion reactiv-
ity and leading to more fusion alpha particles. This positive
feedback loop poses a risk of thermal runaway instability in
ITER. Consequently, radiation and transport processes be-
tween different plasma regions with varying timescales are
crucial for effective burning plasma operation.

In previous research by Liu and Stacey (Stacey 2021;
Liu and Stacey 2021; Liu 2022; Liu and Stacey 2024),

a multi-region multi-timescale burning plasma dynamics
model has been developed to simulate these complex inter-
actions in tokamaks. Different regions, including the core,
edge, scrape-off layer (SOL), and divertor, are modeled as
separate nodes. This model incorporates essential mecha-
nisms such as auxiliary heating, fusion alpha heating, radia-
tions, collisional energy transfer, transport, and ion orbit loss
(IOL). Neural ordinary differential equations (Neural ODEs)
(Chen et al. 2018) have been employed to optimize the para-
metric diffusivity formula, and this multinodal model has
been validated for deuterium plasmas from DIII-D (Liu and
Stacey 2024).

In this study, we extend this multinodal burning plasma
dynamics model, NeuralPlasmaODE1, to analyze ITER D-
T plasmas. We make several assumptions suitable for ITER
burning plasmas, modeling deuterons, tritons, alpha parti-
cles, and electrons in the core and edge nodes. This special-
ized multinodal model is applied to simulate inductive and
non-inductive operational scenarios, examining the dynam-
ics and energy flows among species through various mecha-
nisms with multiple timescales. By leveraging Neural ODEs
for the numerical derivation of diffusivity parameters, we
enhance the model’s precision and efficiency. Additionally,
we employ transfer learning to utilize model parameters de-
rived from fitting DIII-D data and avoid the need for training
from scratch. The simulation results indicate that radiation
and transport processes efficiently remove excess heat from
fusion alpha particles, preventing thermal runaway instabil-
ity. This study highlights the potential of machine learning in
improving our understanding and control of burning plasma
dynamics in fusion reactors.

2 Related Work
Research on fusion-relevant plasmas, particularly focusing
on burning plasma dynamics, has been extensive. Wang et al.
(1997) used a 1.5D Tokamak Transport Simulation Code
(TTSC) to simulate ITER burning plasmas, highlighting po-
tential issues with fusion power excursions due to slight
confinement improvements. Green et al. (2003) categorized
burning plasma physics in ITER into energetic particle ef-
fects, self-heating phenomena, and reactor-scale physics, as-
sessing various drive scenarios. Cordey et al. (2005) im-

1Repository: https://github.com/zefang-liu/NeuralPlasmaODE
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proved the ELMy H-mode scaling law for energy confine-
ment time using principal component regression, enhanc-
ing ITER performance predictions. Stacey (2007) reviewed
abrupt transition phenomena in plasmas and studied theo-
retical thermal instabilities. Hill and Stacey (2017) devel-
oped a confinement tuning model specific to DIII-D experi-
ments, showing improved temperature simulations over the
ITER-98 scaling law. Hill (2019) further investigated control
mechanisms for plasma power excursion in ITER, identify-
ing electron cyclotron radiation (ECR) as a critical passive
control mechanism, and presented a framework for multin-
odal dynamics modeling. Stacey (2021) introduced a spa-
tially coarse nodal space-time dynamics model for burning
plasmas, outlining core and edge particle and energy balance
equations. Liu and Stacey (2024) proposed a multi-region
multi-timescale transport model employing neural ordinary
differential equations (Neural ODEs) to simulate intricate
energy transfer processes in tokamaks, validated against
DIII-D experimental data. These studies lay the foundation
for our work, which builds a practical multinodal model us-
ing Neural ODEs and machine learning to simulate ITER
plasmas.

3 Burning Plasma Dynamics Model
To effectively and efficiently simulate the complex energy
transfer processes in ITER burning deuterium-tritium (D-T)
plasmas, we implement a multi-region multi-timescale burn-
ing plasma dynamics model.

3.1 ITER Plasma Geometry
The geometry of the burning plasma dynamics model is
fundamental for simulating ITER plasmas. A conventional
tokamak is viewed as a torus with a circular cross-section.
The torus is divided into three regions: the core, edge, and
scrape-off layer (SOL), following the flux surfaces from the
inner to the outer side, while the divertor region is ignored in
this geometry. Each region is represented as a separate node
in this model, as illustrated in Figure 1. In this model, each
node is a toroidal shell with interfaces represented as torus
surfaces. The minor radii for the surfaces rcore, redge, and
rsol correspond to the core, edge, and SOL surfaces respec-
tively. The radial distances between these nodes are defined
as ∆rcore-edge for the core to edge, ∆redge-sol for the edge to
SOL, and ∆rsol-div for the distance from the SOL node cen-
ter to its outer surface. These radial distances are calculated
as ∆rcore-edge = redge/2, ∆redge-sol = (rsol − rcore)/2, and
∆rsol-div = (rsol−redge)/2. Additionally, the normalized mi-
nor radius is defined as ρ = r/a, where a is the minor radius
of the plasma.

3.2 Assumptions for ITER Plasmas
To simulate ITER D-T plasmas, the multinodal burning
plasma model (Liu and Stacey 2024) requires several nec-
essary modifications to balance accuracy and computational
efficiency:

• Only the core and edge regions are modeled as separate
nodes.
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(b) Geometry of the multinodal model

Figure 1: Multinodal model geometry of tokamak plasmas,
where the first figure shows the cross section of an ITER
plasma, and the second figure is the simplified geometry in
the multinodal model.

• The model computes the behavior of deuterons, tritons,
alpha particles, and electrons, while including helium,
beryllium, and argon as impurity particles.

• The simulation focuses solely on the D-T fusion reac-
tion, while all atomic and molecular processes, as well
as neutral and recycling particles, are neglected.

• The triton particle and thermal diffusivities are assumed
to be equal to those of deuterons.

• A delay mechanism for fusion alpha heating is imple-
mented in the core node.

• Predetermined energy deposition profiles for neutral
beam injection (NBI) and radiofrequency (RF) heating
(Kessel et al. 2007) are utilized.

• Electron cyclotron radiation (ECR) (Albajar, Johner, and
Granata 2001; Albajar, Bornatici, and Engelmann 2009)
parameters, fitted for typical ITER profiles, are applied.

• Ion orbit loss (IOL) (Stacey 2011, 2013; Wilks and
Stacey 2016) is considered only for the edge node, with
approximated loss timescales equated to transport times.
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3.3 Particle and Energy Balance Equations
Based on the aforementioned assumptions, the multinodal
burning plasma model is presented into the following parti-
cle and energy balance equations.

Particle Balance Equations Particle balance equations
for deuterons (D), tritons (T), and alpha particles (α) in the
core and edge nodes are

dncore
σ

dt
= Score

σ,ext + Score
σ,fus + Score

σtran, (1)

dnedge
σ

dt
= Sedge

σ,ext + Sedge
σ,fus + Sedge

σ,tran + Sedge
σ,IOL, (2)

where σ ∈ {D,T, α }. The electron densities are computed
from the charge neutrality:

nnode
e = zDn

node
D + zTn

node
T + zαn

node
α +

∑
z

zzn
node
z , (3)

where node ∈ { core, edge } and z is for impurity particles.
The particle source and sink terms are as follows.

The external particle sources are computed by summing
the neutral beam injection (NBI), gas puffing (GAS), shatter
pellet injection (SPI), and other external particle sources:

Snode
σ,ext = Snode

σ,NBI + Snode
σ,GAS + Snode

σ,SPI + . . . , (4)

where σ ∈ {D,T, α }. In this research, only particle sources
from the NBI (Wesson and Campbell 2011) are considered.
The fusion terms are computed from the D-T fusion reac-
tions (Stacey 2012) by

Snode
D,fus = Snode

T,fus = −nnode
D nnode

T ⟨σv⟩fus , (5)

Snode
α,fus = nnode

D nnode
T ⟨σv⟩fus , (6)

where ⟨σv⟩fus is the fusion reactivity (Bosch and Hale 1992).
The particle transport terms in the core and edge nodes are
computed by

Score
σ,tran = −ncore

σ − nedge
σ

τ core→edge
P,σ

, (7)

Sedge
σ,tran =

Vcore

Vedge

ncore
σ − nedge

σ

τ core→edge
P,σ

− nedge
σ

τ edge→sol
P,σ

, (8)

where τ core→edge
P,σ (or τ edge→sol

P,σ ) is the particle transport time
from the core (or edge) node to the edge (or SOL) node.
These particle transport times (Liu 2022) are calculated by

τ core→edge
P,σ =

r2core

2rcore

∆rcore-edge

Dcore
σ

, (9)

τ edge→sol
P,σ =

r2edge − r2core

2redge

∆redge-sol

Dedge
σ

, (10)

where Dcore
σ and Dedge

σ are the core and edge particle dif-
fusivities respectively. The ion orbit loss (IOL) terms are
computed by Sedge

σ,IOL = −F edge
σ,orb/τ

edge
P,σ,IOL ·n

edge
σ , where F edge

σ,orb
is the particle loss fraction (Stacey 2011; Stacey and Schu-
mann 2015), and τ edge

P,σ,IOL is the particle IOL timescale.

Energy Balance Equations Energy balance equations for
deuterons, tritons, alpha particles, and electrons in the core
and edge nodes are

dU core
σ

dt
= P core

σaux + P core
σ,fus +Qcore

σ + P core
σ,tran, (11)

dU edge
σ

dt
= P edge

σ,aux + P edge
σ,fus +Qedge

σ + P edge
σ,tran + P edge

σ,IOL, (12)

dU core
e

dt
= P core

Ω + P core
e,aux + P core

e,fus − P core
R +Qcore

e

+ P core
e,tran,

(13)

dU edge
e

dt
= P edge

Ω + P edge
e,aux + P edge

e,fus − P core
R +Qedge

e

+ P edge
e,tran,

(14)

where σ ∈ {D,T, α }, the nodal energy density is defined as
U node
σ = 3/2 · nnode

σ T node
σ . The energy source and sink terms

are as follows.
The ohmic heating power (Stacey 2012) is computed

from the plasma current IP by

P node
Ω

(
W/m3

)
= 2.8× 10−9 ZeffI

2
P

a4T
3/2
e

, (15)

where Zeff is the effective atomic number, the plasma cur-
rent IP is in A, the minor radius a in m, and the nodal elec-
tron temperature Te = T node

e in keV. The auxiliary heating
terms contain the neutral beam injection (NBI) and radiofre-
quency (RF) heating (including ion cyclotron heating (ICH),
electron cyclotron heating (ECH), and lower hybrid heating
(LH)):

P node
i,aux = P node

i,NBI + P node
i,ICH, (16)

P node
e,aux = P node

e,NBI + P node
e,ECH + P node

σ,LH. (17)

The fusion power is

P node
σ,fus = nnode

D nnode
T ⟨σv⟩fus Ufσ, (18)

where Ufσ is the fusion energy transferred to the species σ
calculated by NBI heating formulas (Wesson and Campbell
2011). The delay effect between fusion alpha heating to elec-
trons and ions is considered by a slowing-down timescale
τ node
se as τse = (3

√
2πT

3/2
e )/(m

1/2
e mbAD). The fusion re-

action rate Snode
fus for core ions is evaluated at

T node
i (t− τse) ≈ T node

i (t)− dT node
i

dt

∣∣∣∣
t

· τse, (19)

so the fusion heating to ions is postponed by this timescale
compared with electrons. Collisional energies transferred
between ions and electrons are

Qnode
α = Qnode

αD +Qnode
αT +Qnode

αe , (20)

Qnode
e = −Qnode

αe −Qnode
De −Qnode

Te , (21)

Qnode
D = −Qnode

αD +Qnode
DT +Qnode

De , (22)

Qnode
T = −Qnode

αT −Qnode
DT +Qnode

Te , (23)

where Qnode
σσ′ is the energy transferred from the species σ′

to σ (Stacey 2012). The radiation terms from electron
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cyclotron radiation (ECR) (Albajar, Johner, and Granata
2001), bremsstrahlung (Stacey 2012), and impurity radia-
tion (Stacey 2012; Roberts 1981; Morozov, Baronova, and
Senichenkov 2007) are computed by

P node
R = P node

ECR + P node
brem + P node

imp . (24)
The energy transport terms in the core and edge nodes are

P core
σ,tran = −U core

σ − U edge
σ

τ core→edge
E,σ

, (25)

P edge
σ,tran =

Vcore

Vedge

U core
σ − U edge

σ

τ core→edge
E,σ

− U edge
σ

τ edge→sol
E,σ

, (26)

where τ core→edge
E,σ (or τ edge→sol

E,σ ) is the energy transport time
from the core (or edge) node to the edge (or SOL) node.
These energy transport times (Liu 2022) are solved from

τ core→edge
E,σ =

r2core

2rcore

∆rcore-edge

χcore
σ

, (27)

τ edge→sol
E,σ =

r2edge − r2core

2redge

∆redge-sol

χedge
σ

, (28)

where χcore
σ and χedge

σ are the core and edge thermal diffusiv-
ities respectively. The IOL terms for the edge node are com-
puted by P edge

D,IOL = −Eedge
D,orb/τ

edge
E,D,IOL ·U

edge
D , where Eedge

D,orb is
the energy loss fraction (Stacey 2011; Stacey and Schumann
2015), and τ edge

E,D,IOL is the energy IOL timescale.

3.4 Diffusivity Models
To compute internodal transport times, it is essential to have
formulas for particle and thermal diffusivities. An empiri-
cal scaling for the effective thermal diffusivity in ELMy H-
mode tokamak plasmas (Becker 2004) is given by:

χH98(ρ) = αHB−3.5
T ne(ρ)

0.9Te(ρ) |∇Te(ρ)|1.2

· q(ρ)3.0κ(ρ)−2.9M−0.6R0.7a−0.2
(
m2/s

)
,

(29)

where the thermal diffusivity χH98 in m2/s, normalized ra-
dius ρ = r/a, coefficient αH = 0.123, toroidal magnetic
field BT in T, electron density ne in 1019 m−3, electron
temperature Te in keV, electron temperature gradient ∇Te
in keV/m, safety factor q = qψ , local elongation κ, hy-
drogenic atomic mass number M in 1 amu, major radius
R in m, and minor radius a in m. The particle and ther-
mal diffusivities for electrons and ions (Becker and Kardaun
2006) can be assumed as χe(ρ) = χi(ρ) = χH98(ρ) and
Di(ρ) = 0.6χH98(ρ). This empirical scaling was used as
the baseline by Liu and Stacey (2024).

For modeling ITER plasmas accurately, we apply a para-
metric diffusivity formula for diffusivities (Liu and Stacey
2024):

χ(ρ)

1m2/s
= αH

(
BT
1T

)αB
(

ne(ρ)

1019 m−3

)αn

·
(
Te(ρ)

1 keV

)αT
( |∇Te(ρ)|
1 keV/m

)α∇T

q(ρ)αq

· κ(ρ)ακ

(
M

1 amu

)αM
(

R

1m

)αR ( a

1m

)αa

.

(30)

where αH , αB , . . . , αa are parameters to be determined.
This diffusivity formula can be expressed in vector form as
lnχnode = bnode + Wnode lnxnode, where χnode represents
the internodal diffusivities vector, bnode is the bias vector,
Wnode is the weight matrix, and xnode is the vector of corre-
sponding physical values.

4 Computational Framework
In this study, we enhance the computational framework of
NeuralPlasmaODE (Liu and Stacey 2024) to simulate burn-
ing plasma dynamics in ITER. The framework consists of
several modules designed for processing experimental data,
simulating plasma behavior, and optimizing model parame-
ters. Figure 2 shows a workflow diagram of this framework.
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Figure 2: Computational framework of NeuralPlasmaODE,
including cylinders as datasets, squares as modules, solid
lines as forward flows, and dashed lines as back propaga-
tion processes.

Initially, a data module reads inputs such as two-
dimensional plasma profiles and one-dimensional global pa-
rameters. A preprocessing module then standardizes these
inputs into uniform time sequences and performs volume
averaging on two-dimensional signals to derive nodal par-
ticle densities and temperatures. Central to the framework
is a diffusivity model that calculates particle and thermal
diffusivities based on experimental conditions, along with
a transport time model that determines the timescales for
particle and energy transport between nodes. These models
feed into a reactor simulation module that integrates sources,
sinks, and transport terms into a dynamical system. This sys-
tem is solved using the neural ordinary differential equation
(Neural ODE) (Chen et al. 2018) solver, which outputs es-
timated particle densities and temperatures. These estimates
are then refined through an optimization module, which cal-
culates the mean square error (MSE) between model pre-
dictions and experimental data. Using back-propagation for
gradient computation and gradient descent for parameter up-
dates, this module ensures the model parameters are opti-
mized for accurate plasma behavior representation.

4



5 Simulations for ITER Plasmas
In this section, we present our simulations for ITER plas-
mas, including introducing the various simulation scenarios,
discussing the simulation methodology, and analyzing the
simulation results.

5.1 Simulation Scenarios
The multinodal burning plasma model (NeuralPlasmaODE)
is applied to simulate the ITER deuterium-tritium (D-T)
plasma. The ITER heating and current drive (H&CD) sys-
tem (IAEA 2002; Shimada et al. 2007; Henderson et al.
2015) includes 33 MW neutral beam injection (NB), 20 MW
ion cyclotron heating (IC), and 20 MW electron cyclotron
heating (EC) in the initial campaign, with potential upgrades
to 50 MW NB, 40 MW IC, 40 MW EC, and 40 MW lower
hybrid heating (LH) in the future. The ITER tokamak can
operate in both inductive and non-inductive modes. In the
inductive mode, the ohmic current is the primary contribu-
tor to the total toroidal current, while in the non-inductive
mode, highly energetic neutral atom injection and powerful
radiofrequency radiation drive most of the toroidal current.
For this study, we select inductive scenario 2, hybrid sce-
nario 3, and non-inductive scenario 4 from the ITER design
(IAEA 2002). Their typical operating conditions are shown
in Table 1. The important parameters are contained, includ-
ing geometries, electromagnetic values, auxiliary heating
powers, densities, temperatures, and impurity fractions. Ad-
ditionally, the typical radial profiles of electron and ion tem-
peratures, and electron and helium densities are depicted in
Figure 3. These profiles are integrated over the core and edge
nodes to obtain nodal densities and temperatures, which are
used to adjust the diffusivity parameters.
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Figure 3: Typical radial profiles of plasma temperatures and
densities in the ITER inductive and non-inductive operation
scenarios (reproduced with permission from IAEA (2002)).

For simulating the ITER design scenarios, we model sev-
eral essential particle and energy sources. For external par-
ticle sources, neutral beam injection introduces negative
deuteron particles into the tokamak plasma, with an equal
amount of tritons assumed to be supplied to maintain a bal-
ance between deuteron and triton particles. For external en-
ergy sources, neutral beam and radiofrequency (RF) heating
systems provide auxiliary heating. In the inductively driven
scenario, Wagner et al. (2010) concluded that the exact pro-
portions of NB, IC, and EC heating are not critical, but IC

heating should be utilized to heat ions directly. Therefore,
we assume all RF heating power is deposited into ions in
this scenario.

5.2 Simulation Methodology
To accurately model the ITER burning plasma, the parame-
ters in the diffusivity model need to be properly tuned using
machine learning. In the previous study on simulating DIII-
D plasmas with NeuralPlasmaODE, Liu and Stacey (2024)
split experimental data into training and testing datasets. The
training dataset was used to tune parameters in the diffusiv-
ity model, while the testing dataset evaluated the optimized
model. However, since the ITER is still under construction
and its experimental data are unavailable, we adopt transfer
learning (Weiss, Khoshgoftaar, and Wang 2016), where the
diffusivity parameters learned from DIII-D deuterium plas-
mas are transferred to ITER plasmas. We then apply a fine-
tuning method to these diffusivity parameters using burning
simulation results from prior research (IAEA 2002; Green
et al. 2003) as optimization targets. The parameters in the
diffusivity model are adjusted to match the ITER design sce-
narios during the current flat-top phase. Such current flat-top
phase is used as the training set, while the plasma start-up
phase serves as the testing set.

The optimization objective is defined as a vector including
densities and temperatures in the core and edge nodes:[

nnode
D

1019 m−3
,

nnode
α

1018 m−3
,

nnode
e

1019 m−3
,
T node
D

1 keV
,
T node
e

1 keV

]
, (31)

with the nodal diffusivity parameters initialized to those of
the DIII-D plasma. Densities and temperatures are initial-
ized at current flat-top values instead of a cold plasma, with
a time step of 0.2 s and a total simulation time of 10 s. After
14 epochs, the mean squared error (MSE) loss for scenario
2 in the current flat-top phase drops from 6.7085 to 0.0016
with a learning rate of 0.02. The optimized multinodal model
is then used to simulate both inductive and hybrid scenar-
ios. For non-inductive scenarios, diffusivity parameters are
transferred from inductive scenarios and trained on scenario
4 with 2 epochs and a learning rate of 0.02, reducing the
MSE loss from 13.2741 to 0.6333. After the optimization,
initial temperatures are reset to 2 keV in the core node and
1 keV in the edge node for all species, with particle densities
from Table 1 and Figure 3, except alpha particle densities set
to 1017 m−3. The fine-tuned multinodal model is then sim-
ulated for ITER scenarios during the plasma start-up phase
over a total time of 15 s for testing.

5.3 Simulation Results
In this subsection, we show the results of our simulations
for the different ITER operation scenarios. The outcomes for
inductive, hybrid, and non-inductive scenarios are analyzed
and discussed in detail.

Inductive Operation Scenario The inductive scenario
represents a mode of operation where the majority of the
plasma current is driven by ohmic heating and auxiliary
heating systems. The simulation results for inductive sce-
nario 2 are presented in Figure 4, showing the densities and
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Inductive Hybrid Non-Inductive
Parameter Symbol Scenario 2 Scenario 3 Scenario 4

Major radius R0 (m) 6.2 6.2 6.35
Minor radius a (m) 2.0 2.0 1.85
Volume V (m3) 831 831 794
Surface S (m2) 683 683 -
Elongation at the 95% flux surface κ95 1.70 1.70 1.85
Triangularity at the 95% flux surface δ95 0.33 0.33 0.40

Toroidal magnetic field at the magnetic axis BT (T) 5.3 5.3 5.18
Plasma current IP (MA) 15 13.8 9.0
Safety factor at the 95% flux surface q95 3.0 3.3 5.3

Volume-averaged electron density ⟨ne⟩ (1019 m−3) 10.1 9.3 6.7
Volume-averaged ion temperature ⟨Ti⟩ (keV) 8.0 8.4 12.5
Volume-averaged electron temperature ⟨Te⟩ (keV) 8.8 9.6 12.3

Fusion power Pfus (MW) 400 400 356
Auxiliary heating power Paux (MW) 40 73 59
Radiofrequency heating power PRF (MW) 7 40 -
Lower hybrid heating power PLH (MW) - - 29
Neutral beam heating power PNBI (MW) 33 33 30
Fusion energy gain factor Q 10 5.4 6.0
Energy confinement time τE (s) 3.7 2.73 3.1
Burn time t (s) 400 1070 3000

Helium fraction fHe (%) 3.2 2.5 4.1
Beryllium fraction fBe (%) 2.0 2.0 2.0
Argon fraction fAr (%) 0.12 0.19 0.26
Effective impurity charge Zeff 1.66 1.85 2.07
Radiation power Prad (MW) 47 55 37.6

Table 1: Typical parameters of inductive, hybrid, and non-inductive ITER operation scenarios (reproduced with permission
from IAEA (2002)).

temperatures of deuterons, alpha particles, and electrons.
Triton densities and temperatures are omitted as they are ap-
proximately the same as those of deuterons. Additionally,
the temperatures of alpha particles are shown only for the
cold ones, excluding fusion alpha particles at 3.5MeV until
they transfer their energy to electrons and ions. The results
indicate that core and edge temperatures reach a steady state
at around 11 s, and no energy excursion due to fusion alpha
heating is observed.
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Figure 4: Densities and temperatures of ITER inductive op-
eration scenario 2.

Figure 5 depicts the power changes over time, with posi-

tive values indicating energy gain and negative values indi-
cating energy loss. At the start of the simulation, ohmic heat-
ing (P core

oh ) and auxiliary heating (P core
σ,aux) provide most of the

energy to core electrons and ions until the core ion tempera-
ture becomes high enough to initiate fusion reactions. Fusion
alpha particles first heat the electrons (P core

e,fus), after which
the heated electrons transfer their energy to ions through
Coulomb collisions (Qcore

i = −Qcore
e ). Meanwhile, fusion

heating is also deposited directly to core ions (P core
i,fus). The

fusion heating is then removed by radiation power (P core
rad )

and transport loss (P core
σ,tran).
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Figure 5: Powers of ITER inductive operation scenario 2.
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Hybrid Operation Scenario A hybrid mode of operation,
where a significant fraction of the plasma current is driven
by non-inductive current drive power and the bootstrap cur-
rent, is a promising route for establishing steady-state or
non-inductive modes in ITER (IAEA 2002). To verify ther-
mal stability with fusion alpha heating, we selected scenario
3 for simulation using the multinodal burning plasma dy-
namics model. The results for this scenario are shown in Fig-
ures 6 and 7, first displaying the densities and temperatures,
followed by the power profiles. The ion and electron tem-
peratures reach a steady state at around 6 s, which is shorter
than in the inductive scenarios due to the higher auxiliary
heating power. This increased auxiliary heating is offset by
higher radiation and transport losses, preventing any power
excursion in this hybrid scenario simulation.
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Figure 6: Densities and temperatures of ITER hybrid opera-
tion scenario 3.
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Figure 7: Powers of ITER hybrid operation scenario 3.

Non-Inductive Operation Scenario The non-inductive
operation scenario selected for this study is weak negative
shear (WNS) scenario 4. Compared to the inductive profiles,
the typical radial profiles in Figure 3 show a higher core
temperature with a steeper temperature gradient. The plasma
current in the non-inductive scenario is lower than in the in-
ductive one, but the safety factor at the 95% flux surface is
higher. Additionally, the plasma current is roughly equally
divided between current drive and bootstrap current. The
simulation results for the non-inductive scenario 4 are pre-
sented in Figures 8 and 9. The ion and electron temperatures
reach a steady state at around 12 s. Compared to inductive

scenario 2, non-inductive scenario 4 exhibits higher fusion
and auxiliary heating. Additionally, the energy transported
from core electrons to the edge is significantly greater. How-
ever, Coulomb collisional energy transfer occurs from ions
to electrons since the core electron temperature is lower than
the core ion temperature. No energy excursion due to fusion
alpha heating is observed in this simulation.
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Figure 8: Densities and temperatures of ITER non-inductive
operation scenario 4.
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Figure 9: Powers of ITER non-inductive operation scenario
4.

6 Conclusion
In this research, we simulate ITER deuterium-tritium (D-
T) plasmas using NeuralPlasmaODE, a multi-region multi-
timescale transport model, to understand complex energy
transfer processes. By employing neural ordinary differen-
tial equations (Neural ODEs) and leveraging transfer learn-
ing with parameters derived from DIII-D experimental data,
we enhance simulation efficiency and accuracy. The model
is applied to both inductive and non-inductive operational
scenarios of ITER, showing that in inductive scenarios, core
electrons dissipate energy through various radiation mech-
anisms, while in non-inductive scenarios, most plasma cur-
rent is generated non-inductively, leading to higher core tem-
peratures and significant energy transport to the edge. In
both scenarios, radiation and transport processes effectively
prevent thermal runaway instability, highlighting the poten-
tial of machine learning to advance our understanding and
control of burning plasma dynamics in fusion reactors.
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