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Abstract

Deep learning-based Structure-based drug design (SBDD)
is a crucial approach in pharmaceutical research, aiming to
generate ligand molecules with high binding affinity and
desirable properties for protein targets. While recent gen-
erative models have demonstrated competitive performance
in optimizing binding affinity and drug-likeness, they often
neglect the validity of the generated ligands. As a result,
many models produce invalid ligands, such as those with
protein-ligand clashes or unfavorable conformation energy,
limiting their practical application. To address this, we pro-
pose a multi-reward Direct Preference Optimization (DPO)
method to fine-tune models by jointly optimizing binding
affinity and validity. Experimental results demonstrate that
our method generates more realistic ligands than baseline
models and achieves higher binding affinity than the pre-
trained model. This advancement highlights the potential of
multi-reward optimization in enhancing the applicability of
generative models for pharmaceutical discovery.

Introduction
Designing ligand molecules with high binding affinity and
favorable properties for protein structures, a process called
structure-based drug design (SBDD), is a crucial aspect of
pharmaceutical research. In recent years, deep learning ap-
proaches have framed SBDD as a conditional generative
task, aiming to generate molecules tailored to specific pro-
teins. These methods have demonstrated competitive perfor-
mance, particularly in achieving strong protein-ligand bind-
ing affinities (Huang et al. 2024; Qu et al. 2024; Guan et al.
2023).

Conditional molecule generative models commonly focus
on minimizing the atom-wise coordinate discrepancies be-
tween the reference and generated molecules. Their perfor-
mance is usually evaluated based on the binding affinity and
drug-likeness of the generated molecules, with their validity
verified through simple valence rules. However, as shown in
recent work (Buttenschoen, Morris, and Deane 2024), the
concept of validity needs to be extended to the interaction
between generated molecules and proteins. For example, al-
though the generated molecule is valid alone, when the bind-
ing position is considered, there can be a crash between a
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Figure 1: Absolute values of Vina score, Vian Min, and Vina
Dock binding scores of the generated molecules with AliD-
iff (Gu et al. 2024) before and after the validity check. All
three binding scores are significantly decreased by 15%,
16%, and 13%, with the valid molecules. We use absolute
value for display purposes. The higher, the better.

molecule and protein, leading to an invalid binding position.
In their work, the binding performances of existing mod-
els are significantly decreased when the affinity is measured
on the molecules with valid positions. In our preliminary
study, we find that one of the most advanced SBDD meth-
ods, named AliDiff (Gu et al. 2024), still suffers from the
same issue. In Figure 1, we show the three binding scores of
the AliDiff before and after the validity check. The binding
scores decrease as we only consider the valid molecules.

Training a conditional generative model that satisfies
high binding affinities with valid geometric positions is a
challenging problem. At a molecular level, one may de-
fine a manifold of molecules to constrain the structure of
molecules (Jing et al. 2022). When the protein and molecule
interaction is considered, defining a proper manifold of the
interaction seems impossible.

Inspired by the recent advances in reinforcement learn-
ing with human feedback, we tackle the problem by fine-
tuning the pretrained generative models with feedback ob-
tained from external software that can check the validity of
the interaction. We propose a multi-reward direct preference
optimization (DPO) that fine-tunes a model with multiple re-
wards to incorporate the feedback on validity while keeping
the high binding affinity scores.



Experimental results show that our method generates
more realistic ligands than baseline generative models. Fur-
thermore, the fine-tuned model with our method can gener-
ate ligands with higher binding affinity than the pretrained
model.

Related Work
Structure Based Drug Design Structure-based drug de-
sign (SBDD) aims to design ligand molecules with high
binding affinity to a given protein structure and favorable
molecular properties. Autoregressive-based models gener-
ate molecules by sequentially placing individual atoms or
chemical groups within protein pockets (Luo et al. 2022;
Peng et al. 2022). Based on the success in the vision do-
main, diffusion models have been introduced to generate
ligand molecules by denoising the joint distribution of con-
tinuous atom positions and discrete atom types (Guan et al.
2023; Huang et al. 2024; Guan et al. 2024; Zhou et al. 2024).
Recently, based on a new class of generative model called
Bayesian flow networks (BFNs) (Graves et al. 2023), Mol-
CRAFT shows improved binding affinity with more stable
3D structure (Qu et al. 2024).

Direct Preference Optimization Aligning pre-trained
models with human preference shows remarkable efficacy
in large language models (LLMs) (Rafailov et al. 2024;
Ouyang et al. 2022) and text-to-image generative mod-
els (Wallace et al. 2023). The preference alignment has been
extended to a scenario where one can find multiple rewards
from different perspectives (Kim et al. 2024). In SBDD,
ALiDiff (Gu et al. 2024) firstly applies the direct preference
optimization in the SBDD task to improve binding scores.
However, as shown in Figure 1, the validity of generated
molecules with a single reward optimization is questionable.
In this work, we tackle this problem through a multi-reward
optimization. Our work is based on a recently proposed
molecule generative model, MolCRAFT (Qu et al. 2024). As
a preliminary, we introduce MolCRAFT with its backbone
network, Bayesian flow networks (BFNs). We then propose
a direct preference optimization (DPO) on BFN and multi-
reward optimization with DPO.

Preliminaries
Problem formulation In SBDD, the generative model in-
puts target protein as a binding site defined as P =

{(x(i)
P ,v

(i)
P )}NP

i=1, where x
(i)
P ∈ R3 and v

(i)
P ∈ RDP de-

note the i-th atom coordinates and type of NP protein
atoms, respectively. The molecules are defined as M =

{(x(i)
M,v

(i)
M)}NM

i=1 , where x(i)
M ∈ R3 and v

(i)
M ∈ RDM are co-

ordinate and type vectors, respectively. In short, we denote
each molecule as m = [x,v] where [·, ·] is the concatenation
of x ∈ RNM×3 and v ∈ RNM×K , given target protein as p.

SBDD aims to discover a molecule m given protein and
its binding site p. A set of proteins and reference molecules
is given as a training set. As a main performance metric,
external software such as AutoDock Vina (Eberhardt et al.
2021) is used to measure the binding affinity between the
protein and molecules. Along with the affinity score, var-
ious properties of the generated molecules can be used to

measure their validity.
MolCRAFT and Bayesian Flow Networks Mol-

CRAFT (Qu et al. 2024) uses Bayesian flow net-
work (Graves et al. 2023) as a backbone for conditional
molecule generative model given proteins. BFNs can be il-
lustrated as an exchange of messages between a sender and
a receiver distribution. Let y = [yx,yv] be a noise-injected
version of original molecule m. The sender pS sends the
noisy sample y to the receiver, similar to the forward dif-
fusion process in a diffusion model, and the receiver pR
guesses the sender from known parameters, similar to the
reverse denoising process.

Using different noise factors α = [αx, αv] for the coor-
dinate and type, the sender injects continuous noise for K
atom types by

pS(y|m,p) = N
(
yx|x, (αx)−1I

)
×

NM∏
i=1

N
(
yv(i)|αv(Ke(i)v − 1), αvKI

)
,

where e(i)v ∈ RK is a length-K one-hot vector for i-th atom.
On the other hand, the receiver estimates the sender using

the known parameters θ = [θx, θv] of Bayesian prior

pR(y|θ,p) = N
(
yx|Φx(θx,p), (αx)−1I

)
×

NM∏
i=1

(
K∑

k=1

Φv(i)(k|θv,p)·N
(
yv(i)|αv(Ke

(i)
k − 1),αvKI

))
,

where Φ is a neural network estimating original molecule by
[Φx(θx,p),Φv(θv,p)] and e

(i)
k ∈ RK is a length-K one-

hot vector where the k-th dimension is 1.
Sampling in the parameter space is effectively done by

Bayesian flow distribution pF :

pF (θt|m,p; t) = N
(
µ|γt · Φx(θx,p), γt(1− γt)I

)
·

Epv
S(yv

t−1|Φv(θv,p),p)

[
δ
(
θv − softmax(yv

t−1)
)]
.

For the noise factor α at time t and a hyperparameter of input
variance σ1, γt = 1 − αt

2lnσ1
is added to the predicted coor-

dinates Φx(θx,p) and for the atom type we sample the most
probable one by using Dirac delta δ. The interested reader is
referred to Qu et al. (2024) for a detailed description.

Direct Preference Optimization on BFNs
To improve the binding performance of the molecules while
satisfying the validity of the molecules, we fine-tune the
model with feedback obtained from validity-checking soft-
ware. Since the feedback is non-differentiable, we consider
the external validity score as a reward model and fine-tune
the model with a direct preference optimization method.

Based on the pre-computed rewards, we construct a pref-
erence molecular dataset as D = {(p,mw,ml)} where
p is the protein and mw,ml are winning-losing pair of
molecules based on reward scores. Similar to Diffusion-
DPO (Wallace et al. 2023), we can formulate the BFN-DPO



objective in SBDD with the preference dataset given a refer-
ence model pref and a target model pϕ as

LBFN-DPO =

− E (p,mw
0 ,ml

0)∼D,(mw
1:T ,ml

1:T )∼pϕ,θ
w
0:T∼pF (·|mw

0:T ),

θl
0:T∼pF (·|ml

0:T ),yw
0:T−1∼pR(·|θw

1:T ),yl
0:T−1∼pR(·|θl

1:T )[
log σ

(
β log

pϕ(y
w
0:T−1|θ

w
1:T )

pref(y
w
0:T−1|θ

w
1:T )

− β log
pϕ(y

l
0:T−1|θ

l
1:T )

pref(y
l
0:T−1|θ

l
1:T )

)]
,

where β is a hyperparameter balancing between pref and pϕ.
The model predicts the winning sample yw

t−1 over the losing
sample yl

t−1, with the parameters θwt and θlt each sampled
from Bayesian flow distribution pF at time t. We omit the
conditioning on protein p for brevity.

Expanding the equation further, we can show that the ob-
jective can be represented as a summation of the atom coor-
dinates and atom type preference losses as follows:

LBFN-DPO=−E(p,mw
0 ,ml

0)∼D,t∼[0,T ],θw
t ∼pF (·|mw

t ),θl
t∼pF (·|ml

t)[
Lx
t−1 + Lv

t−1

]
.

The coordinate loss is designed to directly train the model
output Φx(θxt ) to approximate the clean coordinate values
x0. The noise factor α at time t is multiplied during training.

Lx
t−1 = −E(p,xw

0 ,xl
0)∼D,t∼[0,T ],θx,w

t ∼pF (·|xw
t ),θx,l

t ∼pF (·|xl
t)[

log σ

(
−αx

t βT

2

(
∥xw

0 −Φx
ϕ(θ

x,w
t )∥2−∥xw

0 −Φx
ref(θ

x,w
t )∥2

−∥xl
0 − Φx

ϕ(θ
x,l
t )∥2 + ∥xl

0 − Φx
ref(θ

x,l
t )∥2

))]
Similarly, the type loss is designed to directly train the
model output Φv(θvt ) to approximate the clean atom types
ev0

, which is the NM × K matrix with each row as K-
dimensional one-hot vector.

Lv
t−1 = −E(p,vw

0 ,vl
0)∼D,t∼[0,T ],θv,w

t ∼pF (·|vw
t ),θv,l

t ∼pF (·|vl
t)[

log σ

(
− βT

((
ln pvS(.|evw

0
)− ln pvR(.|Φv

ϕ(θ
v,w
t ))

)
−
(
ln pvS(.|evw

0
)− ln pvR(.|Φv

ref(θ
v,w
t ))

)
−
(
ln pvS(.|evl

0
)− ln pvR(.|Φv

ϕ(θ
v,l
t ))

)
+
(
ln pvS(.|evl

0
)− ln pvR(.|Φv

ref(θ
v,l
t ))

)))]
Multi-Reward Direct Preference Optimization
Although one can directly fine-tune the model with a BFN-
DPO for the validity reward, fine-tuning a model with the
validity reward may have a negative influence on the perfor-
mance of binding affinity. To mitigate the problem, we use a
multi-reward DPO method to fine-tune the model with both
validity and affinity rewards.

We use the multi-reward DPO approach proposed in Kim
et al. (2024). We here include the details of the multi-reward
DPO for completeness. Without loss of generality, assume
that we have m different rewards for a given pair of a
molecule and protein. To perform a multi-reward DPO, an

average of the rewards is used as the final reward of a given
molecule. However, since the scale of each reward is dif-
ferent, a softmax function can be applied to normalize the
value of each reward. Specifically, let (m)Bi=1 be a B-batch
of generated molecules given protein and r

(j)
i be j-th reward

of the i-th molecule. The reward is normalized via the soft-
max function as

r̂
(j)
i =

exp
(
r
(j)
i /τj

)
∑B

i=1 exp
(
r
(j)
i /τj

) ,
where τj is a temperature parameter.

To further penalize the cases where the rewards disagree
significantly, Kim et al. (2024) proposes an uncertainty-
regularized ensemble. With the uncertainty regularized en-
semble, the final reward for molecule i becomes

r̄i = µr̂i − γ
1

m

m∑
j=1

(r̂
(j)
i − µr̂i)

2,

where µr̂i = 1
m

∑m
j=1 r̂

(j)
i and γ is a hyperparameter con-

trolling the penalty.
We finally use a variant of DPO, denoted as E2PO (Gu

et al. 2024), developed to prevent overfitting to the winning
data samples. LBFN-DPO alone has a risk of over-optimization
when it keeps greedily optimizing to winning samples. In-
stead, the following objective leads to more stable learning
by adding the second term to prevent overfitting.

LBFN-E2PO =− E[σ(r̄w − r̄l)LBFN-DPO

+ (1− σ(r̄w − r̄l))(2− LBFN-DPO)],

where w and l index the winning and losing cases.

Experiment
Experimental setting
We compare our multi-reward DPO method to the pretrained
model without DPO and the single-reward DPO that opti-
mizes solely for binding affinity or validity. We use Vina
Dock and strain energy as rewards for binding affinity and
validity, respectively. We fine-tune MolCRAFT (Qu et al.
2024) trained on PDBbind dataset (Liu et al. 2017) to ap-
ply DPO. We choose MolCRAFT as a backbone due to its
superior performance in generating valid molecules (cf., Ta-
ble 2). For each protein, win-lose pairs are selected from
molecules generated by the pretrained model, and DPO is
applied for fine-tuning. To ensure only valid molecules are
considered, valid molecules are filtered from 10,000 gener-
ated samples using the method proposed in PoseBuster (But-
tenschoen, Morris, and Deane 2024), and we report perfor-
mance on the valid molecules.

Evaluation metrics
We evaluate the generated molecules by our method on bind-
ing affinity, conformation validity, and molecular proper-
ties. Following the setup used in Ragoza, Masuda, and Koes
(2022), we use Vina Score, Vina Min, and Vina Dock mea-
sured with AutoDock Vina (Eberhardt et al. 2021) for bind-
ing affinity. The Vina Score measures the binding affinity of



Reward

Binding Affinity Conformation Stability Drug-like Properties

Vina Score (↓) Vina Min (↓) Vina Dock (↓) SE (↓) Clash (↓) SA (↑) QED (↑)

Avg. Med. Avg. Med. Avg. Med. 25% 50% 75% Avg. Avg. Avg.

No -6.23 -6.87 -7.02 -7.07 -7.60 -7.80 3.36 9.20 19.10 7.52 0.67 0.50
Vina Dock -6.27 -6.74 -7.14 -7.10 -7.77 -7.86 2.80 8.11 17.95 8.67 0.65 0.47

Strain Energy - - - - - - 1.68 4.57 9.37 7.82 0.67 0.47
Vina Dock + Strain Energy -6.98 -7.23 -7.88 -7.80 -8.58 -8.68 1.24 4.09 9.67 7.46 0.72 0.57

Table 1: Performance comparison across different reward methods. We mark the best, and the second-best performances in
bold and underline, respectively. (↓)/(↑) indicate whether a smaller/ larger number is better, respectively. (-) refers to the NaN
value of Binding Affinity, which AutoDock Vina fails to calculate due to the ligand and protein being too far apart.

Auto-regressive Diffusion BFN

Method AR Pocket2Mol TargetDiff DecompDiff DecompOpt IPDiff AliDiff MolCRAFT Ours(Luo et al. 2022) (Peng et al. 2022) (Guan et al. 2023) (Guan et al. 2024) (Zhou et al. 2024) (Huang et al. 2024) (Gu et al. 2024) (Qu et al. 2024)

Validity 59.1% 72.4% 50.6% 71.9% 48.8% 25.0% 18.6% 74.9% 82.5%

Table 2: The proportion of valid molecules for eight deep learning based SBDD models. We categorize the models into three
methods: Auto-regressive, diffusion, and BFN.

Binding Affinity Conformation Stability Reward Average
# rewards Vina Min Med.(↓) Vina Dock Med.(↓) SE Med.(↓) Winning-sample Losing-samples Difference
Dock + Energy rewards -7.80 -8.68 4.09 0.39 0.05 0.33
All rewards -7.25 -8.63 4.40 0.19 0.07 0.12

Table 3: Comparison between two rewards and seven rewards. A model fine-tuned with two rewards shows better binding
affinity scores than the model with all seven rewards.

the generated molecule as is. Vina Min measures the affin-
ity after optimizing the molecular structure without chang-
ing the docking position. Vina Dock measures the bind-
ing affinity after re-docking the molecule; hence, reconsider
the molecule’s position and orientation. Low scores indi-
cate stronger protein-ligand binding affinity. We report av-
erage and median scores for all Vina metrics. We report
strain energy (SE) measuring molecule conformation energy
and protein-ligand clash measuring the number of poten-
tial overlaps between ligand atoms and protein (Harris et al.
2023). For Drug-like properties, we use synthetic accessi-
bility (SA) (Ertl and Schuffenhauer 2009) and quantitative
estimation of drug-likeness (QED) (Bickerton et al. 2012).

Results
Quality of ligands Table 1 shows our multi-reward method
outperforms the original model. When compared with the
fine-tuning model with a single reward, the multi-reward
approach outperforms the single-reward models except for
75% of SE. The result presents that our multi-reward opti-
mization can generate more realistic drug-like ligands with
high binding affinity. Although the single reward model with
Vina Dock can still improve the binding affinity, it fails to
reduce the clashes between protein and ligand. On the other
hand, the multi-reward approach can satisfy both objectives
successfully.

Validity of ligands Note that the result in Table 1 is mea-
sured over the valid molecules. We also report the propor-
tion of valid molecules in Table 2. Our method generates
significantly more valid ligands compared to other genera-

tive models. AliDiff, a fine-tuned IPDiff (Huang et al. 2024)
with Vina Dock as a single reward, is known to achieve the
best binding performance so far. However, the model fails to
generate valid molecules in many cases.

Many-rewards optimization Our multi-reward approach
allows the ensemble of more than two rewards, making it
possible to fine-tune models with many evaluation metrics
as rewards. To test the performance of the many-rewards
model, we fine-tune the original model with all seven re-
wards reported in Table 1. We report the binding affinity of
two and seven rewards models in Table 3. The result shows
that a fine-tuned model with seven rewards performs worse
than the model with two rewards. To investigate this, we an-
alyze the reward values of winning and losing samples. Ta-
ble 3 shows that the average difference between winning and
losing cases with seven rewards is much closer than that of
the two rewards model. We conjecture that the small differ-
ence between winning and losing cases with seven rewards
introduces conflicts in the fine-tuning process, making it dif-
ficult for the model to optimize all properties.

Conclusion

In this work, we propose a multi-reward direct prefer-
ence optimization method that fine-tunes generative mod-
els by optimizing both binding affinity and ligand valid-
ity simultaneously. Our experiments show that the multi-
reward DPO outperforms baseline and single-reward mod-
els, achieving higher binding affinity and generating more
valid molecules.



Acknowledgements
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (RS2019-
II191906, Artificial Intelligence Graduate School Program
(POSTECH)) and National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (RS-
2024-00337955 and RS-2023-00217286).

References
Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.;
and Hopkins, A. L. 2012. Quantifying the chemical beauty
of drugs. Nature chemistry, 4(2): 90–98.
Buttenschoen, M.; Morris, G. M.; and Deane, C. M. 2024.
PoseBusters: AI-based docking methods fail to generate
physically valid poses or generalise to novel sequences.
Chemical Science, 15(9): 3130–3139.
Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; and Forli,
S. 2021. AutoDock Vina 1.2. 0: New docking methods, ex-
panded force field, and python bindings. Journal of chemical
information and modeling, 61(8): 3891–3898.
Ertl, P.; and Schuffenhauer, A. 2009. Estimation of synthetic
accessibility score of drug-like molecules based on molecu-
lar complexity and fragment contributions. Journal of chem-
informatics, 1: 1–11.
Graves, A.; Srivastava, R. K.; Atkinson, T.; and Gomez,
F. 2023. Bayesian flow networks. arXiv preprint
arXiv:2308.07037.
Gu, S.; Xu, M.; Powers, A.; Nie, W.; Geffner, T.; Kreis, K.;
Leskovec, J.; Vahdat, A.; and Ermon, S. 2024. Aligning
Target-Aware Molecule Diffusion Models with Exact En-
ergy Optimization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.
Guan, J.; Qian, W. W.; Peng, X.; Su, Y.; Peng, J.; and Ma, J.
2023. 3D Equivariant Diffusion for Target-Aware Molecule
Generation and Affinity Prediction. In International Confer-
ence on Learning Representations.
Guan, J.; Zhou, X.; Yang, Y.; Bao, Y.; Peng, J.; Ma, J.; Liu,
Q.; Wang, L.; and Gu, Q. 2024. DecompDiff: diffusion mod-
els with decomposed priors for structure-based drug design.
arXiv preprint arXiv:2403.07902.
Harris, C.; Didi, K.; Jamasb, A. R.; Joshi, C. K.; Mathis,
S. V.; Lio, P.; and Blundell, T. 2023. Benchmarking Gen-
erated Poses: How Rational is Structure-based Drug Design
with Generative Models? arXiv preprint arXiv:2308.07413.
Huang, Z.; Yang, L.; Zhou, X.; Zhang, Z.; Zhang, W.;
Zheng, X.; Chen, J.; Wang, Y.; Bin, C.; and Yang, W.
2024. Protein-ligand interaction prior for binding-aware 3d
molecule diffusion models. In The Twelfth International
Conference on Learning Representations.
Jing, B.; Corso, G.; Chang, J.; Barzilay, R.; and Jaakkola, T.
2022. Torsional diffusion for molecular conformer genera-
tion. Advances in Neural Information Processing Systems,
35: 24240–24253.
Kim, K.; Jeong, J.; An, M.; Ghavamzadeh, M.; Dvijotham,
K.; Shin, J.; and Lee, K. 2024. Confidence-aware Reward

Optimization for Fine-tuning Text-to-Image Models. arXiv
preprint arXiv:2404.01863.
Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; and Wang,
R. 2017. Forging the basis for developing protein–ligand in-
teraction scoring functions. Accounts of chemical research,
50(2): 302–309.
Luo, S.; Guan, J.; Ma, J.; and Peng, J. 2022. A
3D Generative Model for Structure-Based Drug Design.
arXiv:2203.10446.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.;
et al. 2022. Training language models to follow instructions
with human feedback. Advances in neural information pro-
cessing systems, 35: 27730–27744.
Peng, X.; Luo, S.; Guan, J.; Xie, Q.; Peng, J.; and Ma, J.
2022. Pocket2Mol: Efficient Molecular Sampling Based on
3D Protein Pockets. In Chaudhuri, K.; Jegelka, S.; Song, L.;
Szepesvari, C.; Niu, G.; and Sabato, S., eds., Proceedings
of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research,
17644–17655. PMLR.
Qu, Y.; Qiu, K.; Song, Y.; Gong, J.; Han, J.; Zheng, M.;
Zhou, H.; and Ma, W.-Y. 2024. MolCRAFT: Structure-
Based Drug Design in Continuous Parameter Space. arXiv
preprint arXiv:2404.12141.
Rafailov, R.; Sharma, A.; Mitchell, E.; Manning, C. D.; Er-
mon, S.; and Finn, C. 2024. Direct preference optimization:
Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36.
Ragoza, M.; Masuda, T.; and Koes, D. R. 2022. Generat-
ing 3D molecules conditional on receptor binding sites with
deep generative models. Chemical science, 13(9): 2701–
2713.
Wallace, B.; Dang, M.; Rafailov, R.; Zhou, L.; Lou, A.; Pu-
rushwalkam, S.; Ermon, S.; Xiong, C.; Joty, S.; and Naik, N.
2023. Diffusion Model Alignment Using Direct Preference
Optimization. arXiv:2311.12908.
Zhou, X.; Cheng, X.; Yang, Y.; Bao, Y.; Wang, L.; and Gu,
Q. 2024. DecompOpt: Controllable and Decomposed Dif-
fusion Models for Structure-based Molecular Optimization.
arXiv preprint arXiv:2403.13829.


