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Abstract

Machine learning (ML) methods have shown great potential
for weather downscaling. These data-driven approaches pro-
vide a more efficient alternative for producing high-resolution
weather datasets and forecasts compared to physics-based
numerical simulations. Neural operators, which learn solu-
tion operators for a family of partial differential equations
(PDEs), have shown great success in scientific ML applica-
tions involving physics-driven datasets. Neural operators are
grid-resolution-invariant and are often evaluated on higher
grid resolutions than they are trained on, i.e., zero-shot super-
resolution. Given their promising zero-shot super-resolution
performance on dynamical systems emulation, we present a
critical investigation of their zero-shot weather downscaling
capabilities, which is when models are tasked with producing
high-resolution outputs using higher upsampling factors than
are seen during training. To this end, we create two realistic
downscaling experiments with challenging upsampling fac-
tors (e.g., 8x and 15x) across data from different simulations:
the European Centre for Medium-Range Weather Forecasts
Reanalysis version 5 (ERA5) and the Wind Integration Na-
tional Dataset Toolkit (WTK). While neural operator-based
downscaling models perform better than interpolation and a
simple convolutional baseline, we show the surprising perfor-
mance of an approach that combines a powerful transformer-
based model with parameter-free interpolation at zero-shot
weather downscaling. We find that this Swin-Transformer-
based approach mostly outperforms models with neural op-
erator layers in terms of average error metrics, whereas an
Enhanced Super-Resolution Generative Adversarial Network
(ESRGAN)-based approach is better than most models in
terms of capturing the physics of the ground truth data. We
suggest their use in future work as strong baselines.

1 Introduction
Downscaling techniques are used to obtain high-resolution
(HR) data from their coarse low-resolution (LR) counter-
parts. The HR data often includes finer details of physi-
cal phenomena than the LR data in complex earth systems
such as weather. Downscaling provides insights into climate
change and its effects, e.g., the small-scale features and de-
tailed information are crucial for analyzing extreme weather
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events that can only be observed at high resolutions. Down-
scaling can also help upsample medium-range weather fore-
casts (Jiang et al. 2023) and is useful for optimal grid plan-
ning and management of renewable resources such as wind
energy (Buster et al. 2024; Stengel et al. 2020; Benton et al.
2024; Kurinchi-Vendhan et al. 2021; Ren et al. 2023).

Although earth system processes such as weather and cli-
mate can be approximately expressed as systems of partial
differential equations (PDEs), solving these models numer-
ically at sufficiently high resolutions for many practical ap-
plications is computationally infeasible. Data-driven down-
scaling approaches, which promise better efficiency than
numerical physics-based solvers, have shown great poten-
tial (Ren et al. 2023; Kurinchi-Vendhan et al. 2021; Yang
et al. 2023; Jiang et al. 2023; Mikhaylov et al. 2024; Buster
et al. 2024). While statistical downscaling methods (Pierce,
Cayan, and Thrasher 2014; Wood et al. 2004; Kaczmarska,
Isham, and Onof 2014) have been used traditionally, deep
learning techniques, in particular, have gained attention due
to their ability to efficiently learn complex relationships
from large amounts of data. Moreover, the rapid advance-
ment of deep learning in the computer vision field of super-
resolution has been adapted with success for downscaling in
the atmospheric sciences (Ren et al. 2023; Chen et al. 2022;
Kurinchi-Vendhan et al. 2021).

Neural operators (Kovachki et al. 2023) have recently
been applied to many scientific machine learning (ML) tasks
involving the emulation of physical systems. Unlike tradi-
tional neural networks, neural operators approximate a map-
ping between infinite-dimensional function spaces. For ex-
ample, neural operators can be used to learn the solution op-
erator for an entire family of PDEs, such as Navier Stokes
and Darcy flow (Li et al. 2021). For this application, neural
operators are much more efficient than traditional numerical
solvers which run on finely discretized grids. Once trained,
neural operators are fast to solve any new instance of the
PDE (Kovachki et al. 2023; Li et al. 2021). Neural operators
have demonstrated the ability to perform zero-shot super-
resolution (Li et al. 2021; Rahman, Ross, and Azizzade-
nesheli 2023; Raonic et al. 2023) when emulating physical
systems. That is, they can be trained on coarse resolution
data and then tested “zero-shot” on a previously unseen fine
discretization of a grid.

Neural operator’s ability to perform zero-shot super-
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Figure 1: Overview of the neural operator and non-neural-operator zero-shot weather downscaling approaches. We show 5x to
15x zero-shot downscaling as an example. (a,b) For neural operators, the interpolation scale factor is the same as the upsampling
factor, e.g., the bicubic interpolation layer upsamples to 5x during training and 15x during evaluation. (c) For regular neural
networks (e.g., SwinIR), the model is trained to output at 5x (e.g., using a learnable upsampler such as sub-pixel convolution).
At test time, the model generates a 5x output which is then interpolated 3x more to produce the final 15x HR output.

resolution raises the question of whether they can be applied
to perform zero-shot weather downscaling. Currently, down-
scaling pipelines train models to map an LR input to an HR
output at an upsampling factor (the ratio of the size of the
HR grid to the LR grid), and they are evaluated on gener-
ating downscaled outputs with the upsampling factor seen
during training. In zero-shot weather downscaling, a model
is trained with a (small) upsampling factor and then the same
model is tasked with producing an HR output at an unseen
and higher upsampling factor at test time. The success of
neural operators at zero-shot super-resolution when emulat-
ing dynamical systems suggests they hold promise for this
task as well.

We design challenging experiments to investigate whether
neural-operator-based models have an enhanced ability to
perform zero-shot weather downscaling. We adapt and ex-
pand the learning framework for applying neural operators
to this setting as proposed in Yang et al. (2023). One of the
key difficulties of zero-shot weather downscaling is general-
izing to an upsampling factor where the data at the finest spa-
tial scales contains physical phenomena unseen at the high-
est resolutions seen during training. We design experiments

that aim to test this setting by using large upsampling fac-
tors (e.g., 8x and 15x) and high target resolutions (e.g., 2km
x 2km wind speed data).

Overall, our work investigates the zero-shot downscaling
potential of neural operators. To summarize, our contribu-
tions are:

1. We provide a comparative analysis based on two chal-
lenging weather downscaling problems, between various
neural operator and non-neural-operator methods with
large upsampling factors (e.g., 8x and 15x) and fine grid
resolutions (e.g., 2km x 2km wind speed).

2. We examine whether neural operator layers provide
unique advantages when testing downscaling models on
upsampling factors higher than those seen during train-
ing, i.e., zero-shot downscaling. Our results instead show
the surprising success of an approach that combines a
powerful transformer-based model with a parameter-free
interpolation step at zero-shot weather downscaling.

3. We find that this Swin-Transformer-based approach
mostly outperforms all neural operator models in terms
of average error metrics, whereas an Enhanced Super-



Resolution Generative Adversarial Network (ESRGAN)-
based approach is better than most models in capturing
the physics of the system, and suggests their use in future
work as strong baselines. However, these approaches still
don’t capture variations at smaller spatial scales well, in-
cluding the physical characteristics of turbulence in the
HR data. This suggests a potential for improvement in
transformer or GAN-based methods and neural-operator-
based methods for zero-shot weather downscaling.

2 Related Work
Weather downscaling with deep learning Deep learning
models have recently shown promise at weather downscal-
ing tasks such as precipitation downscaling (Watson et al.
2020; Chaudhuri and Robertson 2020; Harris et al. 2022).
These end-to-end differentiable approaches directly learn
to map low-resolution inputs to high-resolution outputs.
The most popular approaches such as the Super-Resolution
Convolutional Neural Network (SRCNN) (Dong et al.
2015) are based on architectures introduced by the com-
puter vision community for super-resolution (Wang, Chen,
and Hoi 2020). These models are used as key baselines in
our experiments, thus, we describe them in more detail in
Section 4. Works (Buster et al. 2024; Stengel et al. 2020;
Tran et al. 2020; Harilal et al. 2022) downscale renewable
energy datasets such as wind and solar, as energy system
planning depends on high-resolution estimates of these
resources. Buster et. al (2024) use a custom GAN by
Stengel et al. (2020) (which is similar to ESRGAN (Wang
et al. 2018)) trained on Global Climate Models (GCMs)
projections to generate high-resolution spatial and temporal
features capturing small-scale details otherwise lost in the
coarse GCM models. Benton et al. (2024) use the custom
GAN (Stengel et al. 2020) for spatiotemporal downscaling
of wind data to learn a mapping from low-resolution
European Centre for Medium-Range Weather Forecasts
Reanalysis version 5 (ERA5) (Hersbach et al. 2020) to
high-resolution Wind Integration National Dataset Toolkit
(WTK) (Draxl et al. 2015). Through this work, we also
perform downscaling of wind data using ERA5 and WTK
datasets, but to investigate the utility of neural operator
models for the weather downscaling task with a specific
emphasis on zero-shot downscaling.

Related benchmarks for weather downscaling Su-
perBench (Ren et al. 2023) introduces super-resolution
datasets and benchmarks for scientific applications such
as fluid flow, cosmology, and weather downscaling. Their
work compares various deep learning methods and analyzes
the physics-preserving properties of these models. Rain-
Net (Chen et al. 2022) is one of the first large-scale datasets
for spatial precipitation downscaling, spanning over 17
years and covering important meteorological phenomena.
Their work also presents an extensive evaluation of many
deep learning models. WiSoSuper (Kurinchi-Vendhan et al.
2021) is a benchmark for wind and solar super-resolution.
The dataset released by WiSoSuper is based on the National
Renewable Energy Laboratory’s (NREL’s) WTK and
National Solar Radiation Database (NSRDB) (Sengupta

et al. 2018) datasets. They compare generative models
introduced in Stengel et al. (2020) with other GAN and
convolutional neural network (CNN)-based models. In con-
trast to these benchmarking efforts, our work benchmarks
models for weather downscaling but with a focus on neural
operator models and zero-shot weather downscaling. In a
concurrent work focusing on climate downscaling (Prasad
et al. 2024), CNNs, transformers (Alexey 2020), and
neural-operator-based models are compared in terms of
their ability to pretrain on diverse climate datasets so as to
learn transferrable representations across multiple climate
variables and spatial regions.

3 Background
Neural operators Operator learning models such as neu-
ral operators (Kovachki et al. 2023) are composed of layers
that learn mappings between infinite-dimensional function
spaces. In doing so, they approximately learn a continuous
operator, which can be realized at any arbitrary grid dis-
cretization of the input and output. Thus, neural operators do
not depend on the discretization of the grid they are trained
on, and we expect them to generalize to grid resolutions dif-
ferent than the ones they are trained on. Li et al. (2021) in-
troduced Fourier neural operators (FNOs), expressing neu-
ral operators as a combination of linear integral operators
to incorporate the non-local properties of the solution op-
erator with Fourier Transform and non-linear local activa-
tion functions (Kovachki et al. 2023), which helps to model
non-linear systems and their high-frequency modes. They
show improved performance over convolution-based mod-
els for complex non-linear PDEs such as the Navier-Stokes
equation. With the Fourier layers, the parameters are learned
in the Fourier domain, which enables FNOs to be invariant
to the grid discretization or resolution. Since neural opera-
tors such as FNOs learn resolution-invariant approximations
of continuous operators, we aim to understand whether this
provides advantages for zero-shot weather downscaling.

Yang et al. (2023) adapt Fourier neural operators
(FNOs) (Li et al. 2021) to perform downscaling on ERA5
and PDE data. Their proposed model, which they refer to
as DFNO, outperforms CNN and GAN-based models. They
also evaluate zero-shot downscaling on unseen upsampling
factors to observe the model’s zero-shot generalization
potential. We adapt and expand this downscaling pipeline
in our benchmarking study. Our work differs from this
paper as we investigate higher upsampling factors (8x and
15x) for training and zero-shot evaluations as opposed
to 2x and 4x in their work. We also create a realistic set
of experiments that includes LR and HR data sourced
from different simulations (ERA5 to WTK downscaling,
as described in Section 4.2) and compare various neural
operator approaches against strong baselines including
powerful transformers.

Weather downscaling In weather downscaling, we
are given a snapshot of LR weather data (e.g., an image)
with a goal of upsampling this data to a higher target resolu-
tion. Mathematically, in the standard downscaling problem
we have the LR input grid x ∈ Rℎ×𝑤×𝑐, and a target, HR



output, y ∈ Rℎ′×𝑤′×𝑐, where ℎ, 𝑤 ∈ N, 𝑐 is the number of
atmospheric variables, and ℎ × 𝑤 is a lower resolution than
ℎ′ ×𝑤′. Deep-learning-based downscaling techniques intro-
duced in Section 2 learn an approximation 𝑓 between two
finite-dimensional vector spaces 𝑓 : Rℎ×𝑤×𝑐 → Rℎ′×𝑤′×𝑐.
We refer to the setting where models are trained and
tested on the same upsampling factor as standard weather
downscaling. In this work, we restrict our focus to only
static downscaling problems, i.e., each snapshot represents
a single instant in time.

Zero-shot weather downscaling In our work, we wish
to evaluate the extent to which downscaling models built
with resolution-invariant neural operator layers generalize
when tested on previously unseen, higher upsampling
factors compared to approaches without such layers. The
simplest way to obtain an HR image at any arbitrarily fine
discretization is a non-learned interpolation scheme such as
bicubic interpolation.

We are looking into neural-operator-based downscaling
models that learn a mapping G† : Rℎ×𝑤×𝑐 → U from
x ∈ Rℎ×𝑤×𝑐 to a function 𝑢 ∈ U. We aim to obtain HR
outputs y ∈ Rℎ′×𝑤′×𝑐 from a discretization of 𝑢, where U is
an infinite-dimensional function space (Li et al. 2021; Yang
et al. 2023). A neural-operator-based downscaling frame-
work (Yang et al. 2023) (Figure 1b) learns a parametric
approximation of a mapping from the finite-dimensional
LR input space to the infinite-dimensional space, 𝐺 𝜃 (x) :
Rℎ×𝑤×𝑐 → U, as an approximation of G† such that
𝐺 𝜃 (x) := F𝜃 (𝑇−1 ( 𝑓𝜃 (x))), with 𝜃 as the parameters of
the model. It is comprised of (a) neural network layers
that first learn to map LR inputs to an embedding vector,
𝑓𝜃 : Rℎ×𝑤×𝑐 → R𝑑 , (b) a discretization inversion oper-
ator that converts the vector to a function (𝑒 ∈ E) with
𝑇−1 : R𝑑 → E(𝐷;R𝑑𝑒 ), and (c) neural operator layers
F𝜃 : E → U that learn to map the function to another
function, which can be discretized to produce the HR out-
put y ∈ Rℎ′×𝑤′×𝑐. We refer to these approaches as Down-
scaling NO models (e.g. DFNO (Yang et al. 2023)). In or-
der to use vanilla FNOs without resolution-dependent neu-
ral network layers (a) (as seen in Figure 1(a)), we learn
𝐺 𝜃 (x) := F𝜃 (𝑇−1 (x)). Several improvements have since
been proposed over FNOs (Guibas et al. 2021; Rahman,
Ross, and Azizzadenesheli 2023; Raonic et al. 2023) which
we include in our downscaling study and describe in further
detail later (Section 4).

4 Methodology
We use two experimental setups to compare the perfor-
mance of neural operators and non-neural-operator-based
methods at both standard and zero-shot weather down-
scaling. First, we downscale ERA5 data, where we learn a
mapping from coarsened LR ERA5 to HR ERA5. In our
second experiment, we downscale from LR ERA5 to HR
WTK. We expect the second task to be more challeng-
ing as it presents a more realistic downscaling scenario
where the LR inputs belong to a different simulation than
the HR data. Thus, we do not assume the LR is a coars-
ened version of the HR (Ren et al. 2023; Benton et al. 2024).

Downscaling Neural Operator models We compare
(vanilla) FNO with Downscaling FNO (DFNO), Down-
scaling U-shaped Neural Operator (Rahman, Ross, and
Azizzadenesheli 2023) (DUNO), Downscaling Convolu-
tional Neural Operator (Raonic et al. 2023) (DCNO), and
Downscaling Adaptive Fourier Neural Operator (Guibas
et al. 2021) (DAFNO). The Downscaling (D) models are
based on Yang et al. (2023) (as described in Section 3)
with FNO, UNO, CNO, and AFNO as the neural operator
layers in the modeling framework. We show details of this
model in Figure 1(b). The low-resolution (LR) image first
passes through a set of Residual-in-Residual Dense Block
(RRDB) blocks, where an RRDB block is composed of
multiple levels of residual and dense networks as introduced
in ESRGAN (Wang et al. 2018). Then, the embedding
is interpolated corresponding to the upsampling factor
using bicubic interpolation to obtain a high-resolution
output. Finally, this goes through neural operator layers to
produce the final downscaled HR image. We can think of
this last stage as a post-processing step over the features
extracted by the RRDB layers followed by the interpolation.
All the Downscaling (D) models are trained with the
mean-squared-error (MSE) loss. To perform zero-shot
downscaling with either the FNO or DXNO (e.g. DFNO)
models at the test time on higher upsampling factors than
the ones seen during the training, we use the interpolation
layer to increase the resolution by the corresponding
higher upsampling factor. Figure 1(a) shows the vanilla
FNO model as used in our downscaling pipeline where
FNO is post-processing the interpolation output. Further
details on the four neural operator models are provided in
Appendix A, and hyperparameter and model training details
are presented in Appendix B.2.

Baseline models We compare all the neural opera-
tor models with four baselines: (1) bicubic interpolation,
(2) SRCNN, (3) ESRGAN, (4) EDSR, and (5) SwinIR.
Super-Resolution Convolutional Neural Network or SR-
CNN (Dong et al. 2015) is the first CNN-based model to
perform single image or spatial super-resolution. SRCNN
first upsamples the LR input with bicubic interpolation fol-
lowed by lightweight CNN layers to obtain the HR image.
Enhanced Deep Super-Resolution Network (EDSR) (Lim
et al. 2017) introduces deep residual CNN networks to do
super-resolution where the CNN layers are followed by an
upsampling block performing sub-pixel convolution (Shi
et al. 2016). Enhanced Super-Resolution Generative Adver-
sarial Network (ESRGAN) (Wang et al. 2018) is a GAN-
based architecture where the generator is composed of many
Residual-in-Residual Dense Block (RRDB) blocks. The
model is trained with pixel and perceptual loss along with
adversarial loss, the perceptual loss minimizes the errors
in the feature space and helps improve the visual quality
of the generated super-resolved image (Ledig et al. 2017).
Swin Transformer for Image Restoration (SwinIR) (Liang
et al. 2021) has the advantages of both the CNN and Swin
transformer (Liu et al. 2021) layers. It captures long-range
dependencies and learns robust features to improve super-
resolution performance with the residual Swin Transformer



blocks (RSTB) which is composed of many Swin Trans-
former layers stacked together with residual connections.

We refer to the implementation of these models as re-
leased in the SuperBench (Ren et al. 2023) work, hyperpa-
rameter details are added in Appendix B.2. Unlike neural
operators, these models have architectures that expect their
inputs and outputs to have the same grid resolution at both
training and test time. Thus, we add a bicubic interpolation
module on the output obtained from these models to produce
outputs at higher upsampling factors than seen during train-
ing for our zero-shot downscaling experiments (Figure 1(c)).

See Appendix B.3 comparing the parameter count of all
the neural operator and non-neural-operator-based models.
Notably, we tested the vanilla FNO downscaling framework
(Figure 1(a)), by moving the bicubic interpolation module
after the FNO layers (as in baseline models, Figure 1(c)),
which led to worse performance compared to our proposed
pipeline with interpolation before the FNO layers.

4.1 ERA5 to ERA5 downscaling
For our first experiment, we downscale coarsened LR ERA5
to HR ERA5. We use the ERA5 dataset for the entire globe
at 25-km spatial resolution. We compare all models using
two downscaling paradigms:
1. Standard downscaling: We train and test all the neural

operators and baseline models with the same upsampling
factor of 8x. An upsampling factor of 8x maps LR images
of size 90x180 to HR outputs of size 720x1440.

2. Zero-shot downscaling: We first train all the models with
an upsampling factor of 4x. Then, during testing, we ob-
serve their ability to produce outputs at a higher 8x up-
sampling factor.

Dataset details We use the European Centre for Medium-
Range Weather Forecasts Reanalysis version (ERA5)
dataset released as a part of the SuperBench (Ren et al.
2023) paper. The data is at a 0.25-degree (25km) grid res-
olution over the globe, i.e., each image has size 720x1440.
We have three atmospheric variables (three channels): (1)
wind speed,

√
𝑢2 + 𝑣2, 𝑢 and 𝑣 being the two components of

wind velocity at 10m from the surface, (2) temperature at
2m from the surface, and (3) total column water vapor. This
ERA5 dataset consists of image snapshots sampled at 24-
hour intervals over an eight year period. Years 2008, 2010,
2011, and 2013 are used for training while 2012 and 2007
are reserved as a validation set for tuning hyperparameters.
The years 2014 and 2015 are set aside for testing. Following
Ren et al. (2023), we extract eight patches of size 64x64 (for
the zero-shot downscaling) from each image to obtain HR
images for training. The LR images are created by coarsen-
ing the HR patches with bicubic interpolation. We normalize
each channel separately with a mean and standard deviation
before training. Appendix B.1 has more details.

4.2 ERA5 to WTK downscaling
For this second experiment, we focus on downscaling from
LR ERA5 to HR WTK. It should be noted that the LR data
in this setup is not obtained by coarsening the HR data but
comes from another simulation. We include this experiment

to observe the performance of neural operators in a challeng-
ing and more realistic setup; for e.g., where ERA5 serves as
boundary conditions for dynamical downscaling with a Nu-
merical Weather Prediction model (Benton et al. 2024). The
HR WTK dataset is available over two regions in the US at
a 2-km resolution (Benton et al. 2024) and we use two vari-
ables: the 𝑢 and 𝑣 components of the wind velocity at 10m
from the surface for this task. We perform the following ex-
periments with the ERA5 to WTK downscaling setup:

1. Standard downscaling: We train and test all the neural op-
erators and the baseline models with an upsampling fac-
tor of 5x, to go from 30-km to 6-km. The LR and the HR
sizes are 53x53 and 265x265 for one region and 40x106
and 200x530 for the other region.

2. Zero-shot downscaling: For the zero-shot setup, we use
the models trained with the 5x upsampling and evaluate
them on an upsampling factor of 15, going from 30-km to
2-km. While the LR sizes are the same as above, the HR
sizes for the zero-shot case are 795x795 for one region
and 600x1590 for the second region.

Dataset details We use the National Renewable Energy
Laboratory’s (NREL’s) Wind Integration National Dataset
Toolkit (Draxl et al. 2015) (WTK) as the ground truth
dataset. WTK has a spatial resolution of 2-km and a tempo-
ral resolution of 1-hour. We get LR images from the ERA5
dataset (Hersbach et al. 2020), available at 30-km (∼0.28 de-
gree) spatial resolution and 1-hour temporal resolution. This
data has two channels, the 𝑢 and 𝑣 components of the wind
velocity at 10m from the surface. We have paired ERA5 and
WTK datasets over two regions in the US, with image sizes
∼800x800 and ∼600x1600 respectively (see (Benton et al.
2024) for more details).

Models are trained to map from coarse 30-km ERA5 to
fine 6-km WTK with a 5x upsampling factor. This HR data
is created by coarsening the WTK grid from 2-km to 6-km
resolution. We realign, i.e. regrid 30-km ERA5 to the 6-km
WTK coarsened grid using inverse distance weighted inter-
polation. For zero-shot experiments, we map the 30-km low-
resolution ERA5 to the original 2-km resolution WTK (a
15x upsampling) for evaluation. The year 2007 is split 80/20
between the training and validation. We keep the year 2010
for testing. While training, we ensure that every batch has an
equal number of LR and HR pairs from both regions. We ex-
tract patches of size 160x160 from the WTK image tiles to
obtain the HR images and the corresponding coarse patches
(32x32) from ERA5 image tiles as the LR images for train-
ing (Benton et al. 2024). This patch size is a hyperparameter
tuned on the validation set. We normalize each channel sep-
arately with a mean and standard deviation before training.
See Appendix B.1 for more details.

4.3 Evaluation metrics
Our study quantitatively analyzes model performance using
the following: (1) Error metrics: We use four pixel-level
error measures: mean-squared-error (MSE), mean-absolute-
error (MAE), 𝐿∞ norm (IN), and the Peak signal-to-noise
ratio (PSNR (Ren et al. 2023)). IN is the maximum pixel
error between two images and it informs us about the tails



of the pixel error distribution (Ren et al. 2023). (2) En-
ergy spectrum: We plot the kinetic energy spectrum (Kol-
mogorov 1991) for each model which shows a distribution
of energy across various wavenumbers (Buster et al. 2024;
Stengel et al. 2020; Kurinchi-Vendhan et al. 2021; Benton
et al. 2024). These are normalized kinetic energy plots, with
wavenumbers measured relative to the domain (or the spa-
tial region) size. We compare each of the models with the
energy curve for the ground truth HR. These plots describe
how well the models capture physically realistic variations at
smaller spatial scales in their downscaled outputs, for exam-
ple, providing information about the physical characteristics
of the turbulence of wind flow captured in model outputs.

5 Evaluation
5.1 ERA5 to ERA5 downscaling
Error Metrics We show the results for the ERA5 to ERA5
standard downscaling experiments and zero-shot experi-
ments in Table 1. Standard downscaling compares models
trained and evaluated with an upsampling factor of 8x. We
observe that SwinIR outperforms every other model in terms
of MSE, MAE, IN, and PSNR. DCNO is a close second
and the best-performing neural operator model. The DFNO
model shows improved results over the vanilla FNO indi-
cating the advantage of adding convolutional RRDB layers
that learn spatial domain features useful for downscaling
(as shown in ESRGAN (Wang et al. 2018)). Table 1 zero-
shot results show a performance comparison between mod-
els trained on a 4x upsampling factor but evaluated zero-shot
on generating 8x upsampled HR outputs. The zero-shot ex-
periments show that the SwinIR is still the best-performing
model. While DUNO is best among the neural operator
models at zero-shot downscaling, DCNO performs much
worse than it did on standard downscaling. All the neural
operator models are better than bicubic and SRCNN.

Energy Spectrum Figure 2 shows zero-shot downscaled
wind speed for the SwinIR, ESRGAN, DFNO, DUNO,
DCNO, and DAFNO models, alongside the LR, HR, and
bicubic interpolated images. We refer to the energy spec-
trum plot in Figure 3a to show the kinetic energy distribu-
tions as functions of wavenumber, across all the downscal-
ing models for the task of zero-shot downscaling. SwinIR
best captures the physical properties of the ground truth at
low-medium wavenumbers, ESRGAN is better at medium-
high wavenumbers but DAFNO is the best at the highest
wavenumbers, even though they underestimate the energy
content at higher wavenumbers. For the highest wavenum-
bers or the dissipation range, this underestimation is most
significant (for all the models except DAFNO). This is not
surprising, as, for example, it is challenging for the models
to fill in smaller-scale physical features if they do not see
this level of detail when training on smaller upsampling fac-
tors. DCNO matches the HR curve for lower wavenumbers
but falls behind ESRGAN at higher wavenumbers. DUNO
and EDSR are close to but fall behind SwinIR. We observe
that SwinIR, ESRGAN, and EDSR produce peaks at the
very high-end wavenumbers but the neural operator models
except DAFNO do not introduce this high-end noise. See

Appendix C, Figure 5a for the standard downscaling energy
spectrum plot.

Figure 2: ERA5 wind speed visualizations in 𝑚/𝑠 generated
from the zero-shot downscaling. We zoom in on a small re-
gion for better comparison. SwinIR captures better and finer
details of the HR image, over neural operator models, espe-
cially in the zoomed-in region. It is also better over regions
with complex terrain (e.g. the mountain ranges in North and
South America).

5.2 ERA5 to WTK downscaling
Error Metrics We show the results for the ERA5 to WTK
downscaling in Table 2. As discussed in Section 4.2, using
ERA5 as the LR for this setup makes it more challenging
as the LR data is obtained from a different simulation rather
than using a coarsened version of the HR data. Table 2 shows
the (1) standard downscaling results obtained from evaluat-
ing the models mapping ERA5 to WTK for a 5x upsampling
factor and (2) zero-shot downscaling results where we eval-
uate the models trained on 5x upsampling to generate HR
outputs at a 15x upsampling factor. SwinIR remains the best-
performing model in both setups. DCNO achieves the best
standard downscaling scores among the neural operators but
is poor at zero-shot downscaling, as can be seen in Table 2
zero-shot results, where it performs worse than bicubic inter-
polation. We also observe DAFNO to be performing worse
than bicubic interpolation at zero-shot downscaling. EDSR
is a close second to SwinIR in both experiments. DUNO per-
forms better than the other neural operators (and bicubic as
well as SRCNN) at zero-shot downscaling.

Energy Spectrum The energy spectrum plot for the
ERA5 to WTK zero-shot downscaling experiment is pre-
sented in Figure 3b. ESRGAN comes closest to matching the
HR energy spectrum for the zero-shot downscaling. How-
ever, as seen in Section 5.1, these models still underesti-
mate the energy content in the high wavenumber range. We
observe that SwinIR and EDSR follow behind ESRGAN,
but they outperform all the neural operator-based models.
DAFNO no longer shows good performance for this experi-
mental setup. FNO performs the worst, consistent with their
performance in terms of the average error metrics (as seen
in Table 2). Figure 4 compares the zero-shot downscaled
wind speed outputs for the bicubic interpolation, ESRGAN,



Table 1: ERA5 to ERA5 wind speed downscaling results. MSE has units (𝑚/𝑠)2, MAE 𝑚/𝑠 and IN 𝑚/𝑠. We bold the
best-performing model among all the models and underline the best-performing neural operator model. Results for the other
channels are added to the Appendix C.

Standard Downscaling Zero-shot Downscaling
is NO? MSE ↓ MAE ↓ IN ↓ PSNR ↑ MSE ↓ MAE ↓ IN ↓ PSNR ↑

bicubic ✗ 1.23 0.73 14.82 27.53 1.23 0.73 14.82 27.53
SRCNN ✗ 1.14 0.7 14.75 27.83 1.06 0.67 14.56 28.18
ESRGAN ✗ 1.29 0.75 15.43 27.3 0.85 0.6 14.51 29.1
EDSR ✗ 0.51 0.44 13.6 31.33 0.54 0.45 13.66 31.1
SwinIR ✗ 0.36 0.38 12.17 32.84 0.51 0.44 13.2 31.34
FNO ✓ 1.36 0.85 14.58 27.09 0.95 0.68 14.17 28.64
DFNO ✓ 0.75 0.58 12.53 29.67 0.66 0.51 13.28 30.26
DUNO ✓ 0.69 0.53 13.36 30.04 0.63 0.5 13.56 30.44
DAFNO ✓ 0.65 0.51 13.77 30.29 0.66 0.52 14.01 30.23
DCNO ✓ 0.45 0.43 12.98 31.93 0.92 0.65 14.89 28.76

Table 2: ERA5 to WTK wind speed downscaling results. MSE has units (𝑚/𝑠)2, MAE 𝑚/𝑠 and IN 𝑚/𝑠. We aggregate the
error metrics over u and v wind velocity channels. We bold the best-performing model among all the models and underline the
best-performing neural operator model.

Standard Downscaling Zero-shot Downscaling
is NO? MSE ↓ MAE ↓ IN ↓ PSNR ↑ MSE ↓ MAE ↓ IN ↓ PSNR ↑

bicubic ✗ 3.56 1.18 12.87 18.4 4.07 1.25 16.59 19.91
SRCNN ✗ 3.16 1.11 12.62 18.83 3.65 1.18 16.39 20.31
ESRGAN ✗ 2.75 1.05 13.06 19.27 3.12 1.11 15.96 20.8
EDSR ✗ 2.46 0.98 11.89 19.85 2.92 1.05 15.61 21.2
SwinIR ✗ 2.29 0.95 11.69 20.11 2.73 1.02 15.33 21.43
FNO ✓ 5.23 1.76 14.36 15.24 5.2 1.75 17.82 17.35
DFNO ✓ 3.04 1.26 12.56 17.86 3.53 1.33 16.14 19.4
DUNO ✓ 2.81 1.09 12.11 18.97 3.3 1.16 15.85 20.43
DAFNO ✓ 2.71 1.02 12.12 19.47 4.17 1.19 17.5 19.51
DCNO ✓ 2.47 0.99 11.77 19.79 4.66 1.32 17.32 19.51

SwinIR, DFNO, DUNO, DCNO, and DAFNO models. See
Appendix C, Figure 5b for the standard downscaling energy
spectrum plot.

6 Discussion
In the literature, neural operators have performed well at
zero-shot super-resolution (Kovachki et al. 2023; Li et al.
2021; Rahman, Ross, and Azizzadenesheli 2023; Raonic
et al. 2023) when trained to predict the solution of a PDE
or when trained to act as an emulator of a time-dependent
dynamical system. Their resolution invariance property has
also been utilized in Jiang et al. (2023) to train an FNO to
act as an emulator for zero-shot super-resolution of weather
forecasts. However, our results show that the neural oper-
ators under-perform the non-neural operators at zero-shot
weather downscaling. Importantly, physical system emula-
tion differs from our static downscaling setting, where we
train on pairs of low and high-resolution images. In our case,
the neural operators are trained to learn a mapping between
resolutions, and are tested on their ability to generalize zero-

shot to higher upsampling factors. We believe this distinc-
tion is important to help contextualize our results, which
show that neural operators have difficulty with this task.

Our results show that bicubic interpolation followed by
a vanilla FNO performs poorly at weather downscaling. In
most cases, this performs worse than bicubic interpolation
alone. FNO learns spectral features in Fourier space which
makes it resolution-invariant—these features are not inher-
ently tied to the resolution of the training dataset. Weather
downscaling may benefit from learning spatial features tied
to the specific input and output grid resolutions. This could
be limiting the vanilla FNO’s ability to downscale well.
We also evaluate neural operator models with convolu-
tional RRDB blocks before the neural operator layers (the
DXNO models (Section 4)), which improves the downscal-
ing performance significantly. The DCNO models, based on
CNOs (Raonic et al. 2023), adapt U-Net (Ronneberger, Fis-
cher, and Brox 2015) style convolutions to approximately
learn an operator mapping. They perform close to the best
model SwinIR in the standard downscaling experiments, but,



(a)

(b)

Figure 3: Figures (a) and (b) show kinetic energy spectrum
plots for the ERA5 to ERA5 and ERA5 to WTK zero-shot
downscaling, respectively. Kinetic Energy is normalized and
wavenumber is measured relative to the domain size.

their performance drops significantly in the zero-shot setup,
as CNO uses explicit up/down-sampling and thus cannot be
applied to different resolutions without some degraded per-
formance (Liu-Schiaffini et al. 2024).

ESRGAN proves to be the best model for capturing the
physical properties of the data at medium-high wavenum-
bers for ERA5 to ERA5 and all wavenumbers for ERA5 to
WTK experiments, as measured in our work by kinetic en-
ergy plots, for zero-shot downscaling. It is important to note
that zero-shot downscaling is a challenging task as we ex-
pect the models to produce outputs that have super-resolved
physics at the finer scale without training on them. It is
possible that ESRGAN learns to generate downscaled out-
puts with better visual quality because of its architectural
design and use of perceptual loss, which may help in cap-
turing the HR physics across spatial scales, yet, we observe
that all models underestimate the energy content in the high-

Figure 4: WTK wind speed visualization in 𝑚/𝑠 generated
from the zero-shot downscaling (figure shows results on one
of the two regions). We observe ESRGAN’s downscaled
outputs (followed by SwinIR’s) to be sharper with better de-
tails than the neural operator models.

wavenumber range for zero-shot downscaling. It seems that
SwinIR learns superior-quality features at the smaller up-
sampling factor during training, enabling an interpolation
on top of SwinIR to generate downscaled outputs better
than other models as shown by the average error metrics.
Our results suggest that residual Swin-Transformer blocks
(RSTB) as adopted in SwinIR are better at extracting high-
quality features than RRDB blocks, which can potentially
help inform future architectures for downscaling. We rec-
ommend that researchers benchmark against powerful non-
operator-learning methods with interpolation as strong base-
lines. However, given that SwinIR and ESRGAN need to use
bicubic interpolation (which has no learnable parameters) to
do zero-shot downscaling, it could be fundamentally limited
in its ability to downscale small-scale physics unseen dur-
ing training. It is also possible that the set of neural operator
models we explored can be improved. Overall, all models
appear to be quite far from solving our downscaling tasks.

7 Conclusion
This work comprehensively benchmarks neural operators
on the task of weather downscaling, with a particular em-
phasis on critically investigating the zero-shot downscaling
capabilities of neural operators. Our analyses involve two
studies over (1) learning a mapping from coarsened ERA5
to high-resolution ERA5, and (2) learning a mapping from
low-resolution ERA5 wind data to a high-resolution wind
data (WTK, 2km x 2km). Our zero-shot downscaling exper-
iments involve challenging upsampling factors: 8x and 15x
over the two studies respectively.

With an extensive evaluation using various error metrics
and kinetic energy spectrum plots, we show that resolution-
invariant neural operators are outperformed by the Swin-
Transformer and ESRGAN-based models, even at zero-shot
downscaling. This was surprising, as resolution-invariant
neural operators were previously shown to be good at
zero-shot super-resolution for emulating dynamical systems.
While our current study presents limitations of neural oper-
ators at weather downscaling, future research may consider



improving the neural operator downscaling frameworks with
better feature encoders (Wei and Zhang 2023) or advanced
hybrid neural-operator-transformer models (Luo, Qian, and
Yoon 2024).
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A Neural-operator-based model details
The four neural operator models we compare are:

1. FNO (Li et al. 2021) FNO uses a combination of linear
integral operators and non-linear local activation func-
tions to learn the operator mapping on complex PDEs
such as the Navier-Stokes equation. We incorporate lo-
calized operator layers (Liu-Schiaffini et al. 2024) into



the FNO model as they help in learning better local fea-
tures and showed improved performance in our down-
scaling task compared to FNO without the local layers.
We tested adding these localized operators into the other
FNO-based models: DFNO and DUNO, but it did not
improve their performance.

2. UNO (Rahman, Ross, and Azizzadenesheli 2023) is in-
troduced as a deep and memory-efficient architecture that
allows for faster training than FNOs. This neural opera-
tor has a U-shaped architecture and learns the mapping
between function spaces at different domains based on
its encoder-decoder framework.

3. AFNO (Guibas et al. 2021), a transformer model that
uses FNOs for efficient token-mixing instead of the tra-
ditional self-attention layers. AFNOs have been used as
an integral part of FourCastNet (Pathak et al. 2022), a
data-driven weather forecasting model.

4. CNO (Raonic et al. 2023) adapts CNNs for learning op-
erators and processing the inputs and outputs as function
spaces. They adopt a UNet-based modeling framework
to learn a mapping between bandlimited functions (Vet-
terli, Kovačević, and Goyal 2014), this can help them
to learn operators that reduce aliasing errors (Bartolucci
et al. 2024) which occur when the neural operator models
try to learn a continuous operator on a finite, discretized
grid.

B Training details
B.1 Additional data details
1. ERA5 to ERA5 downscaling: The number of samples

(image snapshots) in training, validation, and test are
1460, 730, and 730 respectively. Refer to the main text
for the size details (height, width, channels) of each
image.

We train all the models two times in this setup.
Standard downscaling: This involves training all the
models with an upsampling factor of 8x. Following Ren
et al. (2023), we do not use the entire image snapshots
but random crops of the images for training. We extract
eight patches of size 128x128 from each image snapshot
to obtain HR image data for training. The corresponding
LR image patches of size 16x16 are created by coarsen-
ing the HR patches with bicubic interpolation.
Zero-shot downscaling: This involves training all the
models with an upsampling factor of 4x. For this case,
we extract eight patches of size 64x64 from each image
snapshot to obtain HR image data for training. The
corresponding LR image patches of size 16x16 are
created by coarsening the HR patches with bicubic
interpolation.

2. ERA5 to WTK downscaling: We work with two
regions in the US. For each of the regions: the number
of samples (image snapshots) in training, validation, and
test are 7008, 1752, and 8760 respectively. Refer to the
main text for the size details (height, width, channels) of
each image.

All the models are trained just once in this setup,
with an upsampling factor of 5x. We again use random
crops of the images for training. We extract eight patches
of size 160x160 from each image snapshot to obtain HR
(WTK) image data for training. The LR image patches
of size 32x32 are obtained from the corresponding
ERA5 image snapshots. We train a single model for both
regions, ensuring that every training batch has an equal
number of LR and HR pairs from both regions.

The crop size for the ERA5 to ERA5 experiments is the
same as the one used in Ren et al. (2023). We tune the crop
size for the ERA5 to WTK downscaling experiments and
obtain the optimal crop size reported above.

B.2 Hyperparameters
All the models are trained for 400 epochs.

Neural-operator-based models :
All the hyperparameters are tuned over the valida-
tion dataset. We perform a sweep over learning rates:
{0.005,0.0001,0.00001} for all models. The models are
trained using the ADAM (Kingma and Ba 2015) optimizer
with a batch size of 32, weight decay of 1e-4, and a step
learning rate scheduler with a step size of 60. For the
Downscaling (D) models, we add the RRDB module, a part
of the ESRGAN framework (Wang et al. 2018) before the
neural operator layers implementation. We perform a sweep
over the number of RRDB blocks: {6,12,24} for all the
downscaling models.
1. FNO We follow the original implementation of FNO

from (Li et al. 2021; Kovachki et al. 2023) using most of
the default model hyperparameters. We perform a hyper-
parameter sweep over the number of hidden channels in
the lifting and projection blocks, selecting 256 for them,
and the number of modes to keep in the Fourier layers, 16
being the best. The best learning rate for the FNO model
is found to be 0.005. We use the 𝑙 𝑝 loss with 𝑝 = 2,
reduced over 𝑑𝑖𝑚 = 0 as defined in the original imple-
mentation.

2. DFNO We keep the selected values for the lifting, projec-
tion channels, and the number of models, obtained from
tuning the above FNO model. The best learning rate for
training DFNO is found to be 0.0001, and the optimal
number of RRDB blocks is selected as 12. MSE is used
as the loss function.

3. DUNO We follow the UNO model implementation re-
leased as a part of FNO’s original implementation (Li
et al. 2021; Kovachki et al. 2023). While we use most
of the default model hyperparameters, we do hyperpa-
rameter tuning on the hidden channels (initial width of
UNO), selecting 64 as optimal, and the number of output
channels of each Fourier layer, selecting them as 64. We
found the best learning rate to be 0.0001, and the optimal
number of RRDB blocks is 12. MSE is used as the loss
function.

4. DAFNO We follow the implementation of the AFNO
network from the FourCastNet (Pathak et al. 2022) im-



plementation. With most model hyperparameters as de-
fault, we perform a hyperparameter sweep over the patch
size, choosing 8 as optimal, and the number of blocks
(block as defined in (Guibas et al. 2021)), selecting 8. It
should be noted that the optimal patch size is found to be
4 when training for the ERA5 to ERA5 zero-shot down-
scaling setup. For the DAFNO training, we find the best
values for the learning rate to be 0.0001, and the num-
ber of RRDB blocks to be 12. MSE is used as the loss
function.

5. DCNO We follow the original CNO implementation
from Raonic et al. (2023) with most of the the default
model hyperparameters. We tune the number of layers
(upsampling/downsampling blocks) and find the optimal
to be 3. For the DCNO training, we find the best values
for the learning rate to be 0.0001, and the number of
RRDB blocks to be 12. MSE is used as the loss function.

Baseline models :
The implementations of SRCNN, EDSR, and SwinIR model
pipelines follow the implementations provided by Ren et
al. (2023). We follow an open-source implementation of
ESRGAN from Li (2023) for our ESRGAN downscal-
ing framework. We keep most of the hyperparameters
and training setups from these implementations, but we
train each of the baseline models for a fixed 400 epochs
(consistent with the neural-operator-based models). We
also do a hyperparameter sweep over the learning rates:
{0.001,0.0001,0.00001} for all the baseline models, using
the validation dataset to tune this hyperparameter. For the
ERA5 to ERA5 experiments: we find the optimal learning
rate as 0.0001 for EDSR, SwinIR, and ESRGAN, and 0.001
for SRCNN. For the ERA5 to WTK experiments: we find
the optimal learning rate as 0.0001 for SRCNN, SwinIR, and
ESRGAN, and 0.001 for EDSR.

B.3 Model parameters
C Additional results

Table 3: Model parameters for all the Baseline and Neural-
operator-based models used in the ERA5 to WTK down-
scaling setup. SwinIR achieves superior average error met-
rics (e.g., MSE), as shown in Table 2, while having only
marginally higher model parameters than the downscaling
neural-operator-based models (except DAFNO). ESRGAN
is superior in matching the ground truth energy spectrum
(Figure 3b) and is second to DAFNO in parameter count.

Model #Parameters
SRCNN 0.063M
ESRGAN 39.18M
EDSR 2.144M
SwinIR 12.526M

FNO 1.24M
DFNO 9.89M
DUNO 9.36M
DAFNO 69.15M
DCNO 11.33M



Table 4: ERA5 to ERA5 temperature downscaling results. MSE has units (𝐾)2, MAE 𝐾 and IN 𝐾 . We bold the best-
performing model among all the models and underline the best-performing neural operator model.

Standard Downscaling Zero-shot Downscaling
is NO? MSE ↓ MAE ↓ IN ↓ PSNR ↑ MSE ↓ MAE ↓ IN ↓ PSNR ↑

bicubic ✗ 2.47 0.89 20.41 45.99 2.47 0.89 20.41 45.99
SRCNN ✗ 2.09 0.83 20.94 46.74 1.95 0.78 20.35 47.02
ESRGAN ✗ 3.75 1.27 45.5 44.18 1.54 0.82 16.88 48.04
EDSR ✗ 0.68 0.44 15.5 51.6 0.81 0.47 15.91 50.84
SwinIR ✗ 0.39 0.35 11.17 54.04 0.81 0.46 16.27 50.84
FNO ✓ 1.93 0.9 18.42 47.06 1.34 0.73 17.82 48.64
DFNO ✓ 1.46 0.74 18.44 48.3 1.06 0.61 16.93 49.65
DUNO ✓ 0.88 0.52 15.61 50.47 0.94 0.53 17.18 50.2
DAFNO ✓ 0.9 0.56 15.45 50.39 1.21 0.68 32.75 49.1
DCNO ✓ 0.45 0.4 11.11 53.38 1.85 0.81 16.72 47.26

Table 5: ERA5 to ERA5 total column water vapor downscaling results. MSE has units (𝑘𝑔/𝑚2)2, MAE 𝑘𝑔/𝑚2 and IN
𝑘𝑔/𝑚2. We bold the best-performing model among all the models and underline the best-performing neural operator model.

Standard Downscaling Zero-shot Downscaling
is NO? MSE ↓ MAE ↓ IN ↓ PSNR ↑ MSE ↓ MAE ↓ IN ↓ PSNR ↑

bicubic ✗ 2.72 0.98 29.44 33.18 2.72 0.98 29.44 33.18
SRCNN ✗ 2.59 0.96 29.24 33.4 2.27 0.89 29.01 33.97
ESRGAN ✗ 3.1 0.94 48.3 32.61 1.71 0.79 26.17 35.19
EDSR ✗ 0.94 0.55 23.76 37.81 2.92 1.05 15.61 21.2
SwinIR ✗ 0.61 0.47 15.83 39.69 1.14 0.57 25.45 36.97
FNO ✓ 3.18 1.12 29.22 32.49 1.83 0.78 28.38 34.9
DFNO ✓ 1.95 0.83 29.74 34.63 1.64 0.75 27.77 35.38
DUNO ✓ 1.18 0.64 25.47 36.81 1.38 0.66 26.14 36.13
DAFNO ✓ 1.16 0.65 25.28 36.87 1.85 0.84 26.62 34.84
DCNO ✓ 0.67 0.51 13.53 39.23 2.53 1.01 28.45 33.48

(a) (b)

Figure 5: Figures (a) and (b) show kinetic energy spectrum plots for the ERA5 to ERA5 and ERA5 to WTK standard downscal-
ing, respectively. Kinetic Energy is normalized and wavenumber is measured relative to the domain size. ESRGAN matches
the HR spectrum for both setups, even at higher wavenumbers. DAFNO is second to ESRGAN at high wavenumbers for the
ERA5 to ERA5 standard downscaling. SwinIR and EDSR rank second to ESRGAN for the ERA5 to WTK setup.


