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Abstract

Neutrinos, characterized by their small mass and weak in-
teractions, are among the most elusive particles within the
Standard Model (SM) of particle physics. Nevertheless, gain-
ing a deep understanding of neutrinos is indispensable for
unveiling the fundamental physical laws of the Universe,
comprehending its evolutionary mechanisms, and potentially
providing critical clues for new physics beyond the SM.
The SNO+ experiment aims to investigate neutrino proper-
ties through high precision detection. SNO+ produces huge
amount of data with complex interaction properties and ran-
dom fluctuation that constitute challenges for precise inter-
action classification, reconstruction, and simulation. To ad-
dress these challenges, we have developed ATHANOR, a
deep learning analysis pipeline with a modular design that
automates data preprocessing, model construction, training,
and result visualization. By integrating high-quality simu-
lated data, which follows all known physical laws, and cal-
ibration data, ATHANOR can also provide a unique platform
for understanding deep learning model uncertainties and en-
hancing interpretability. In preliminary applications to event
position reconstruction in SNO+, ATHANOR outperformed
traditional methods in a more efficient way.

Introduction
1.1 The Importance and Challenges of Neutrino Physics

Neutrinos are among the most mysterious fundamental par-
ticles in the observable Universe. They possess an extremely
small mass and interact very weakly with other matter. This
unique property makes neutrinos indispensable in under-
standing cosmic evolution, supernova explosions, solar en-
ergy production, and the processes of nucleosynthesis. In-
depth studies of neutrinos not only help reveal the funda-
mental rules governing the Universe and its evolutionary his-
tory but may also guide us toward discovering new physics
beyond the SM. But, the weak interaction between neutrinos
and electrons/nuclei makes their detection exceedingly dif-
ficult, posing a significant challenge in the field of physics
research. The SNO+ (Sudbury Neutrino Observatory Plus)
experiment (SNO+ 2021a) was established in this context,
aiming to measure the properties of neutrinos through pre-
cise detection of neutrino events. Located in the SNOLAB
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underground laboratory in Canada, SNO+ builds upon and
upgrades the hardware facilities of the original SNO experi-
ment, which was awarded the 2015 Nobel Prize in Physics.
Its goal is to detect neutrino interactions using specially
researched and optimized scintillators, thereby providing a
high-precision data platform for neutrino physics research.
Through meticulous design and deep shielding measures,
the experiment effectively reduces radiation backgrounds,
offering an ideal environment for exploring this subtle yet
crucial particle.

1.2 The Potential of Deep Learning in High-Energy Physics

As a frontier field of artificial intelligence technology, deep
learning (DL) has achieved groundbreaking results in ar-
eas such as computer vision and natural language process-
ing, thanks to its powerful nonlinear modeling capabili-
ties and advantages in automatic feature extraction. Simi-
lar to these fields, data from large-scale high-energy physics
(HEP) experiments also exhibit characteristics such as com-
plexity and significant backgrounds levels. By employing
deep learning, physicists can automatically extract complex
features from raw measurement data, capturing nonlinear re-
lationships between the data, thereby significantly enhanc-
ing the accuracy and efficiency of data analysis. For in-
stance, models based on self-attention mechanisms can learn
the spatiotemporal distribution information of photomulti-
plier tube (PMT) hit data in SNO+, which has the poten-
tial to enable more accurate reconstruction of the neutrino
events. This not only helps physicists better understand the
various particle interactions occurring within the detector
but also provides great potential for exploring new physical
phenomena.

1.3 Bidirectional Advancement Between HEP and DL

There is an increasingly significant bidirectional advance-
ment between HEP and deep learning. HEP experiments
provide unique data and testing platforms for the develop-
ment of deep learning, meanwhile deep learning offers ad-
vanced data processing tools for HEP experiments. On one
hand, HEP experiments can use high-precision simulation
data based on physical principles to effectively train the DL
models and validate their predictive results of DL models,
therefore enhancing the models’ reliability and interpretabil-
ity. For instance, by embedding prior physical knowledge



into the model and incorporating constraints such as en-
ergy and momentum conservation into the loss function,
the model’s predictions can better align with known phys-
ical laws. On the other hand, deep learning models, with
their powerful nonlinear modeling capabilities, excel at han-
dling huge amounts of data with complex non-linear space-
time relationship and random noisy fluctuations produced by
HEP experiments. This bidirectional advancement not only
propels the development of HEP experiments but also opens
new directions in the evolution of deep learning.

1.4 Main Contributions

The main contributions of this paper include: First, we have
constructed the ATHANOR analysis pipeline, achieving full
automation from data preprocessing and model construction
and training to result analysis and visualization. This tool
is designed for HEP researchers who are not specialists in
deep learning, enabling them to easily utilize and modify
deep learning frameworks for data analysis, thus promoting
the integrated development of deep learning and high-energy
physics. Second, we have embedded physics-based con-
straints into the framework’s design and model training pro-
cess, improving the model’s physical consistency and pre-
dictive accuracy. Finally, we have applied the ATHANOR
pipeline to the interaction position reconstruction task in
SNO+, achieving preliminary results that validate the func-
tionality of the pipeline.

1.5 Paper Structure

The organization of this paper is as follows: Section 2 in-
troduces the SNO+ detector and its data characteristics, an-
alyzing the main challenges in data analysis; Section 3 de-
tails the construction of the ATHANOR deep learning anal-
ysis pipeline; Section 4 presents the application and exper-
imental results of ATHANOR in the SNO+ interaction re-
construction task; and Section 5 discusses the limitations of
the current model and outlines future research directions.

The SNO+ Detector and Data Characteristics
2.1 Overview of the SNO+ Detector

The SNO+ detector, Figure 1, is located in the SNO-
LAB deep underground laboratory, buried approximately
two kilometers beneath the Earth’s surface. This depth ef-
fectively shields cosmic rays and environmental radiation,
providing ideal conditions for precise neutrino measure-
ments. The core of the SNO+ detector consists of a spher-
ical acrylic vessel with a diameter of 12 meters, filled with
about 780 tonnes of high-purity liquid scintillator (linear
alkylbenzene, LAB). To enhance the optical properties and
light yield of the scintillator, 2 tonnes of dissolved PPO
(2,5-diphenyloxazole) and a small amount of Bis-MSB (1,4-
bis(2-methylstyryl)benzene) are added. The inclusion of
PPO and Bis-MSB significantly increases the numbers of
photons that can be detected, thereby enhancing the exper-
iment’s signal response capability (SNO+ 2021b). This en-
hanced sensitivity enables the SNO+ experiment to detect
particle interactions, especially neutrinos, with greater pre-
cision, ushering in a new phase of data collection. In the

Figure 1: Surrounding SNO+ detector are 9,362 high-sensitivity,
8-inch inward-facing PMTs, distributed and precisely arranged on
a geodesic sphere with a radius of 8.89 meters, forming a well-
covered optical detection array (SNO+ 2021a). The spatial posi-
tions of each PMT have been precisely measured, providing cru-
cial geometric information for the spatial reconstruction of in-
teraction events. The outer layer of the detector is enveloped by
approximately 7,000 tonnes of ultra-pure water, which not only
further shields against environmental radioactive backgrounds but
also serves as a medium for detecting Cherenkov radiation from
high-energy charged particles. The detector is designed to maxi-
mize sensitivity to neutrino interactions and enhance reconstruc-
tion accuracy.

future, SNO+ plans to add 130Te to the liquid scintillator
to search for neutrinoless double-beta decay, which, if ob-
served, could prove that neutrinos are Majorana particles
and is unambiguous new physics signal (SNO+ 2022).

2.2 Working Principle and Scientific Goals

SNO+ detects neutrinos through their interactions with nu-
clei or electrons within the liquid scintillator. When a neu-
trino interacts with the medium, it deposits energy that ex-
cites the scintillator molecules, which then de-excite and
emit photons following specific time profiles. The photons
propagate through the medium (some of the photons would
be absorbed, scattered, and/or reflected during the propaga-
tion), and eventually some photons would be detected by
the PMTs. The photon propagation process would gener-
ate random fluctuation in the data. By analyzing the time,
charge, and spatial distribution of the photons collected by
the PMTs, it is possible to reconstruct physical quantities



such as the vertex position, energy, and direction of neu-
trino events. These enable SNO+ to investigate a range of
important physics topics, including neutrinoless double-beta
decay, solar neutrino oscillations, geo-neutrinos, supernova
neutrinos, and other particle decay processes. These stud-
ies are crucial for gaining a deeper understanding of neu-
trino mass, oscillation mechanisms, and exploring dark mat-
ter (SNO+ 2023).

2.3 Data Characteristics and Analytical Challenges

In SNO+ and many other HEP experiments, the measured
data consists of long sequences of hit information, often
containing noise, random fluctuations, and complex in-
ternal correlations. DL models, particularly those based
on self-attention mechanisms (?) or selective structured
state-space models (Gu and Dao 2024) , excel at handling
long sequences by capturing global dependencies and
learning intricate non-linear relationships. With training on
large datasets, these models adapt to various experimental
conditions, thereby achieving strong generalization capa-
bilities. Furthermore, deep learning benefits from hardware
accelerations, such as GPUs, which significantly enhance
computational efficiency. These features make deep learning
well-suited for the precise, efficient, and automated analysis
of HEP data.

ATHANOR Deep Learning Analysis Pipeline
To address the complex data processing challenges pre-
sented by the SNO+ experiment, we developed ATHANOR,
a DL analysis pipeline built upon PyTorch. Designed with
efficiency, modularity, and scalability in mind, ATHANOR
enables HEP researchers, including those without extensive
deep learning experience, to process data effectively,
construct models, and ensure reproducible results. The
pipeline is structured as a series of Python packages, each
corresponding to a specific component of the analysis
workflow, and within each package, multiple modules
implement specific functionalities. Figure 2 illustrates the
workflow of the ATHANOR as applied in SNO+.

The Data Handler package preprocesses raw PMT data.
It includes modules for data cleaning, normalization, and
format conversion, transforming complex raw inputs into
structured data suitable for deep learning models. By
removing noise and outliers and incorporating precise PMT
spatial positions, the Data Handler ensures data integrity
and enables models to capture essential spatial correlations
inherent in the detector geometry.

The Architecture Library provides a collection of advanced
deep learning architectures implemented in PyTorch,
including self-attention mechanisms, selective structured
state-space models, and graph transformer networks (Yun
et al. 2020). These architectures are chosen for their ability
to handle the high-dimensional, complex, and noisy data
of the SNO+ experiment. Some are directly available in
PyTorch, while others are custom-defined in ATHANOR
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Figure 2: Measured data from the detector and simulation
data generated by the GEANT4 (Agostinelli et al. 2003)
based RAT software are preprocessed by the Data Handler
package to prepare them for model training and evaluation.
The preprocessed data is then divided into Training and Test-
ing Datasets. Researchers select and adapt suitable architec-
tures from ATHANOR’s modular library. After training, the
model is evaluated using the Testing Dataset, and the results
are passed to the Analysis Modules for detailed performance
assessment. If required, the Feedback Loop facilitates the re-
design and optimization of the model until the desired per-
formance is reached. Upon satisfactory evaluation, an Anal-
ysis Report is generated, ensuring transparency and repro-
ducibility.

with specific classes and equations. Defining these architec-
tures within ATHANOR allows researchers to easily modify
them to better adapt to specific data analysis needs, offering
a high degree of flexibility in model development.

The Model Constructor and Trainer package facilitates
model building and training. Physical constraints can be in-
tegrated directly into the modeling process to enhance pre-
dictive accuracy and ensure consistency with known physi-
cal laws. The loss function balances data fidelity with adher-
ence to physical principles:

L = Ldata + λLphysics

where Ldata is the data fidelity term, Lphysics represents
physical constraints, and λ balances their influence. Lever-
aging PyTorch’s capabilities, this package utilizes GPU
acceleration and parallel computing to efficiently handle
large-scale datasets. Optimization strategies such as learn-
ing rate scheduling, regularization, and early stopping are
employed to prevent overfitting and improve generalization.

After training, the Model Inference and Analysis package
applies the trained models to new data for prediction and
evaluates performance using metrics like mean squared
error and mean absolute error. Visualization tools generate
loss curves, metric trends, and three-dimensional event
reconstructions, aiding in interpreting model performance
and identifying areas for improvement.



ATHANOR offers both a command-line interface (CLI) and
a graphical user interface (GUI), providing user-friendly
access to the pipeline’s functionalities. Researchers can
perform data processing, model training, inference, and
analysis without deep programming expertise. Configura-
tion files manage essential parameters, including model
architectures, training hyperparameters, and data paths,
ensuring experimental reproducibility and facilitating easy
adjustments to accommodate different analysis require-
ments.

A key feature of ATHANOR is the integration of physical
constraints within the architectures and loss functions.
By embedding physical laws directly into the modeling
process, we ensure that predictions are not only data-driven
but also physically consistent, enhancing reliability and
interpretability. This approach allows models to respect
known physical principles, which is crucial in HEP applica-
tions and contributes to a deeper understanding of neutrino
properties.

To lower the technical barrier for users unfamiliar with deep
learning, we have fine-tuned a Llama-based large language
model to provide assistance within ATHANOR. This feature
helps users learn how to operate the pipeline, troubleshoot
issues during model training, and obtain answers to common
questions, further enhancing the pipeline’s accessibility to
the HEP community.

Application of ATHANOR in SNO+
To validate ATHANOR, we employed it to develop a
regression model consisting of a self-attention mechanism
(?) combined with a neural network, using Monte Carlo
simulation data from the SNO+ experiment for interaction
position reconstruction. Position reconstruction is a chal-
lenging yet important task in experimental data analysis,
it is the basis of all the other reconstruction tasks and can
be used to reject backgrounds. The simulation data was
generated using the RAT framework, accurately modeling
neutrino interactions and detector responses to simulate data
as exactly the same with real experimental data as possible.
The figure-of-merit for evaluating the interaction position
reconstruction performance is the distance between the pre-
dicted (reconstructed) position and the mc-true (simulated)
position, or called the reconstruction error. The smaller the
reconstruction error, the better the performance. During
model training, we incrementally expanded the dataset
to assess ATHANOR’s performance scalability, ensuring
training and test sets remained independent to prevent
overfitting. Data augmentation further enhanced model
generalization across different experimental conditions. The
training process utilized techniques such as learning rate
scheduling and early stopping to optimize performance.

ATHANOR outperformed traditional methods like maxi-
mum likelihood estimation (MLE) in event position recon-
struction. While MLE tends to perform well in certain en-
ergy regions but struggles in others, ATHANOR consis-
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Figure 3: Comparing the position reconstruction perfor-
mances of ATHANOR and MLE. MLE is a type of classic
and commonly used method for interaction reconstruction
in HEP. ATHANOR achieves smaller reconstruction error
than MLE does. For all events in the detector volume (solid
lines) and the events in fiducial core volume (dotted lines),
ATHANOR has better performance.

tently delivered superior results across all energy ranges
(0 to 5 MeV in our study). It achieved high accuracy
throughout the entire detector volume, including challeng-
ing edge regions where MLE often falters. Figure 3 illus-
trates the advantage of deep learning in capturing com-
plex, non-linear relationships inherent in HEP data anal-
ysis. Moreover, ATHANOR’s GPU acceleration and par-
allel computing capabilities provided a faster reconstruc-
tion speed compared to MLE. Comparative analysis showed
that ATHANOR outperformed traditional MLE methods
in both accuracy and efficiency. Similar performance has
been achieved with other DL studies by SNO+ collabora-
tors (Mark and Cal 2024). Leveraging DL’s capabilities and
GPU acceleration, ATHANOR efficiently processed com-
plex, high-dimensional data, automatically learning intricate
patterns to achieve superior reconstruction.

Discussion
We have introduced ATHANOR, a deep learning analysis
pipeline that effectively addresses the challenges of high-
dimensional, complex data in HEP. Applied to interaction
position reconstruction in SNO+, ATHANOR outperforms
traditional methods, demonstrating deep learning’s great
potential in this domain. Its modular design ensures
adaptability to various experimental conditions and data
characteristics, making it a valuable tool for physicists.

Future work will explore advanced model architectures
better suited to HEP data, such as Graph Transformer
Networks (GTNs) and Physics-Informed (PI) models, to
further enhance performance and interpretability. Incor-
porating additional physical constraints and developing
physics-guided interpretability methods will address the
”black box” nature of deep learning models, providing
deeper insights into their internal mechanisms and fostering



greater trust in their predictions. Expanding training data
diversity and employing techniques like self-supervised
learning will enhance generalization capabilities, ensuring
robustness across a wider range of experimental scenarios.
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