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Abstract

Large pre-trained foundation models are becoming prevalent
and have a high risk impact in domains of the physical sci-
ences. Uncertainty analysis of prediction results can help en-
gender trust in the model outcomes and indicate reliability to
decision makers. In this paper, we introduce a method for un-
certainty quantification and characterization tailored to chem-
ical foundation models, with a focus on predicting molecular
properties. Our approach is tested on a variety of datasets
including the widely-used QM9 dataset, ESOL, FreeSolv,
Lipophilicity and LD50. We apply our method to a SMILES-
based foundation model, comparing the uncertainty profiles
between fine-tuned and frozen model versions. We also pro-
vide comparison to a conformal prediction method: normal-
ized conformal regressor. Results demonstrate the effective-
ness of our approach in identifying and quantifying uncer-
tainties, offering insights into model reliability, the impact of
model fine-tuning on prediction results and a comparison to
well known method.

Introduction
Foundation models for chemical applications, particularly in
predicting molecular and reaction properties, have seen sig-
nificant advancements, with improvements in the accuracy
of predictions for quantum-mechanical properties (Soares
et al. 2024; Ross et al. 2022), reaction yields (Jablonka et al.
2024; Boulougouri, Vandergheynst, and Probst 2024), and
reaction kinetics (Probst, Schwaller, and Reymond 2022).
Additionally, substantial progress has been made in areas
such as retrosynthesis (Yang et al. 2024) and forward reac-
tion prediction (Schwaller et al. 2019), further demonstrat-
ing the potential of these models in practical chemistry.

Despite these advancements, many foundation models
struggle when applied to real-world scenarios (Varshney
and Alemzadeh 2017; Angelov et al. 2021). This short-
coming often arises from issues related to generalization,
where models fail to accurately predict outcomes outside the
narrow domain of the training data (Figueroa et al. 2012).
Furthermore, models frequently lack robust mechanisms to
identify and filter out erroneous predictions, particularly in
edge cases, which can severely impact their reliability in
practical applications (Soares and Angelov 2019). A critical
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factor contributing to these challenges is the misalignment
between the training and test datasets and the actual applica-
tion domain (Angelov and Soares 2021). When the datasets
used in model development do not accurately reflect the con-
ditions and variability present in real-world applications, the
resulting models may be ill-suited for the intended tasks,
leading to significant deviations in performance (Bayram,
Ahmed, and Kassler 2022).

The selection of test sets is particularly crucial, as an inap-
propriate choice can either overestimate or, more commonly,
underestimate the model’s predictive errors in real-world use
(Baumann and Baumann 2014). This underestimation is of-
ten more prevalent and problematic, as it can lead to an over-
confidence in the model’s capabilities, ultimately resulting
in poor decision-making in applied contexts.

Furthermore, the unique nature of chemical data and the
specific requirements of chemical modeling introduce addi-
tional complexities (Baumann and Baumann 2014). Unlike
other fields where general guidelines for optimizing foun-
dation models may be broadly applicable, chemical models
require careful consideration of factors such as input repre-
sentations, model architectures, and the intrinsic properties
of the datasets used (Horawalavithana et al. 2022; Takeda
et al. 2023). These elements differ significantly from those
in other domains, making it essential to tailor optimization
strategies specifically to the chemical context to achieve ac-
curate and reliable predictions.

Here, we propose a comprehensive investigation into the
uncertainties inherent in the predictions of a chemical foun-
dation model, specifically when predicting molecular prop-
erties across diverse datasets like QM9, ESOL, FreeSolv,
Lipophilicity and LD50. Additionally, we will examine how
these uncertainties vary between a fine-tuned version of the
model and a version where the model parameters remain
frozen during these property predictions. Lastly, we provide
a comparison of our method to an existing method: normal-
ized conformal regressor.

Overview of the proposed approach
This section presents an overview of the proposed uncer-
tainty analysis pipeline, detailing its structure and method-
ology. Additionally, we discuss the method that we compare
to : normalized conformal regressor. Lastly we briefly de-
scribe the SMILES-based foundation model utilized in this



experiment.

Uncertainty Analysis Using Domain & Error Space
In this subsection we describe the method to train
and validate uncertainty of predictions. Given a
set of disjoint sets for train, validation and test,
Xtrain, Xval, Xtest, ytrain, yval, ytest, where X’s are
embeddings from the foundation model and y’s are the
ground truth for the task. We either use a pre-trained model
for prediction or we train a regression model using the
Xtrain embeddings as features. From the regression pre-
dictions (yval pred, ytest pred) we obtain eval, etest which
is abs(y pred − y). Using these, we run the algorithms to
train and validate uncertainty analysis using algorithms 1
and 2.

Algorithm 1: Train Uncertainty Characterization
1: Input: Xval, eval

2: Output: Clusters of validation data to characterize uncertainty
3: Construct graph G = (V,E) where V and E are empty sets
4: Sort eval in ascending order
5: Let evalunique

be unique values in eval

6: for n in range(0,length(evalunique
) do

7: v = evalunique
[n]

8: Construct subgraph Hn = (Vn, En) where Vn and En are empty sets
9: Select Vn = {eval(i)...eval(j)} ⊂ eval where all values equal v
10: Add edges to En to connect every two distinct vertices in Vn

11: Add all vertices from Vn to V

12: Add all edges from En to E

13: if ∃Vn−1 then
14: Add edges to E by connecting all vertices in Vn−1 to all vertices in Vn

15: Vn−1 = Vn

16: Perform hierarchical clustering using Xval and the graph G to obtain a set of
clusters C.

Algorithm 2: Validation of Fitted Uncertainty
1: Input: C, Xtest, ytest, alpha

2: Output: Uncertainty characterization for all test items
3: Classify items in Xtest to one of the clusters c ∈ C.
4: Compute Cc p, the 1 − alphath percentile value, for validation data in each

cluster c ∈ C

5: Compute the lower and upper bounds (lb and ub respectively) of uncertainty for
each k ∈ ytest with k ± Cc p.

6: Compute interval Ik = ubk − lbk for each k ∈ ytest.
7: For all values in ytest outside of the interval, mark items as Outside p (uncertain),

else as Inside p.
8: For all yval, let Iyval

= Q95(yval) − Q5(yval).
9: Size of the Interval Average, SI A = 1/|ytest|

∑
k∈ytest

Ik .
10: Relative Size of the Interval Average, RSI A = SI A/Iyval

.

Algorithm 1 takes as inputs the features and errors of val-
idation set, Xval and eval respectively. We construct a graph
G = (V,E) where V and E are empty sets. We sort the
validation errors values in ascending order and obtain a list
of all unique values present in there. For each nth unique
value, we create a subgraph Hn = (Vn, En) by adding as
many number of vertices as there are items with that value
to Vn, and add edges to En such that each vertex in Vn is

connected to every other vertex in Vn. Add the vertices Vn

and edges En to V and E respectively. Next, each subgraph
Hn is fully connected to the subgraph created before itself
Hn−1, such that there exists an edge from every vertex in Vn

to every vertex in Vn−1. Add these new edges to E. Save the
Vn in Vn−1 for use in the next iteration. In the last step, we
perform a hierarchical clustering (the Agglomerative Clus-
tering implemented by scikit-learn) using Xval as features
and the adjacency matrix of graph G as connectivity param-
eters, and obtain a set of clusters C.

Algorithm 2 takes C, Xtest, ytest, alpha as inputs. C are
the clusters of validation data produced from Algorithm 1.
The significance level, is provided using alpha. We train
a classifier on the data in C and classify each test sample
to one of the clusters. For each cluster, we compute the
1 − alphath percentile value (Cc p) for all validation data
in the cluster. For each test sample k ∈ ytest, we com-
pute the lower (lbk) and upper (ubk) bound with k ± Cc p

and set interval Ik = ubk − lbk. All ytest outside of the
interval are marked as items Outside p (uncertain), else as
Inside p. We compute SI A as the average size of the in-
terval by taking into account the intervals for all test sam-
ples. We also compute RSI A by dividing SI A by Iyval

=
Q95(yval)−Q5(yval) to allow comparison across datasets.

Enhanced Adaptability Through Normalized
Conformal Regressor
In this paper, we investigate the use of normalized conformal
regressor to improve the adaptability of prediction intervals
by incorporating difficulty estimates (Johansson, Boström,
and Löfström 2021). Traditional conformal intervals are uni-
form in size, failing to account for instance-specific variabil-
ity. Normalization is achieved through a DifficultyEstimator
from the crepes.extras library (Boström 2022), which
estimates difficulty based on k-nearest neighbors using three
approaches: (i) Euclidean distances to the nearest neighbors,
(ii) standard deviation of the target values among neighbors,
and (iii) absolute errors of the neighbors (Boström 2024).

A parameter β (defaulting to 0.01) regulates the nor-
malization process, with optional min-max scaling to stan-
dardize difficulty estimates across different estimators. The
normalization process employs a leave-one-out protocol to
compute scaling bounds for k-nearest neighbor methods.
This study focuses on the first method, leveraging distances
to the k = 25 nearest neighbors to construct normalized
prediction intervals. These intervals are adjusted to reflect
instance-specific difficulty, offering a robust methodology
for enhanced predictive modeling under varying levels of
uncertainty.

SMILES foundation model
For our proposed approach, we utilized the SMI-TED289M

foundation model as the SMILES encoder (Soares et al.
2024). SMI-TED289M (shown in the Figue 1) is a large-
scale, open-source encoder-decoder model pre-trained on a
curated dataset of 91 million SMILES strings from Pub-
Chem, encompassing 4 billion molecular tokens. This model
has demonstrated superior performance compared to state-
of-the-art methods across various molecular tasks.



Experiments
We utilize the proposed method to analyze uncertainty
in molecular property prediction. Our approach is tested
on the widely-used QM9 dataset, targeting key quantum
properties such as the highest occupied molecular or-
bital (ϵhomo) energy, the lowest unoccupied molecular or-
bital (ϵlumo) energy, and the dipole moment (⟨R2⟩). Ad-
ditionally we utilize other datasets like water solubility
(ESOL), hydration free energy of small molecules in
water (FreeSolv), Octanol/water distribution coefficient
of molecules (Lipophilicity) and the median lethal dose
(LD50). While the LD50 dataset is obtained from (Fein-
stein et al. 2021), the others were taken from the benchmark
dataset MoleculeNet (Wu et al. 2018). Due to the huge size
and hence increased processing time, we utilized only 15%
of data sampled from each set from the QM9 dataset. We
adopt the original train/valid/test set splits for all the tasks
to ensure an unbiased assessment. We evaluate the predic-
tions from two versions of the SMI-TED289M model: one
with frozen weights and another fine-tuned for the tasks. We
repeated the experiments for our method with 10 different
random seeds. For the comparison method of normalized
conformal regressor we were able to use the only available
output from finetuned model that was from a single random
seed.

Results and Discussion
Tables 1 and 2 highlight the primary results of this paper.
The regression results from the fine-tuned versions of the
model produced superior results compared to the one with
frozen weights.

Impact of fine tuning model
Normalized conformal regressor By applying Confor-
mal Prediction techniques to estimate the confidence interval
of predicted molecular properties, we can see that overall
the finetuned model outperforms the frozen model for this
purpose. The finetuned model presents a more similar cov-
erage in relation to the to the 95% target. Despite sometimes
the frozen model achieving a better coverage, exceeding the
95% for properties (e.g., 98.23% for ESOL and 95.981%
for ϵlumo), it is achieved at the cost of generating larger
and over-conservative intervals. For some of the properties
(ϵhomo, ϵlumo and ⟨R2⟩), the finetuned model presents com-
parable coverage with smaller intervals.

The property LD50 is the only exception in which the
finetuned model produces larger interval compared to the
frozen model, despite also providing a slightly higher cover-
age. This indicates that fine-tuning may increase uncertainty
for certain properties and this behaviour requires a deeper
analysis of some circumstances.

Uncertainty analysis using domain & error space The
experiments conducted with our proposed method for un-
certainty analysis using domain and error space revealed
that overall the finetuned models performed significantly
better than the respective frozen models (check Table 3).
For properties ϵhomo, ϵlumo, Lipophilicity and LD50 the
coverage was significantly larger. The higher coverage for

Lipophilicity however came at the expense of significantly
larger values for interval sizes, while the same for LD50 was
not significant. Interestingly, these properties were the ones
for which we has larger amount of data compared to ESOL
and FreeSolv.

⟨R2⟩ and ESOL were an exception to this where the
frozen model performed significantly better. These observa-
tions for ⟨R2⟩ combined with the results shown in Figure 4
exhibit the difficulty of task in comparison to ϵlumo for ex-
ample. There were no significant differences in the perfor-
mance for the two versions of the model for FreeSolv.

Overall, for both the methods tested, the finetuned model
offers more precise confidence intervals without compro-
mising coverage, demonstrating improved performance over
the frozen model in most cases. This suggests that finetuning
can be more suitable for the task of uncertainty estimation.

A comparison of the two methods
The normalized conformal regressor method and the method
we proposed both detected superior performance from the
finetuned versions of the model for majority of the tasks.
While the first provided superior coverage (close to 95%)
for both models and across tasks, our method’s performance
suffered whenever the dataset size was very small. Our
method was able to provide smaller intervals for all tasks
with the frozen model and a few tasks with the finetuned
model. In comparison the other method worked best when
the model was superior (finetuned).

Conclusion
In conclusion, this paper introduces a novel method for
quantifying and characterizing uncertainties in chemical
foundation models. We conduct experiments across a vari-
ety of datasets. Our approach, applied to the SMILES-based
SMI-TED289M model, effectively differentiates uncertainty
profiles between fine-tuned and frozen model versions. The
results demonstrate that fine-tuning substantially improves
the model’s predictions and reduces uncertainty for most
properties, particularly for ϵhomo, ϵlumo, Lipophilicity and
LD50. However, the uncertainty values for ⟨R2⟩ between
model versions highlight the complexities involved in pre-
dicting various quantum properties. This emphasizes the
necessity of robust uncertainty quantification methods to
ensure the reliability and trustworthiness of predictions in
chemical modeling.

One promising direction as a future work, is to refine
the cluster calculation process, exploring more sophisticated
methods that can better capture the underlying structure
of the data. Additionally, we aim to improve the interval
size estimation by incorporating proximity-based measures,
which can provide a more nuanced understanding of the
relationships between samples. By focusing on the local
neighborhood of each sample, we can develop more accu-
rate and informative interval estimates that reflect the inher-
ent uncertainty of the clustering process. By pursuing these
advancements, we envision a more robust and reliable un-
certainty quantification framework that can be applied to a
wide range of real-world applications, ultimately leading to
more informed decision-making and improved outcomes.



Table 1: Results of applying the Normalized Conformal Regressor method on two versions of the SMI-TED289M model for the
ϵhomo, ϵlumo, ⟨R2⟩, ESOL, FreeSolv, Lipophilicity and LD50 tasks.

Experiment Type Target InsideP OutsideP Size Of Interval Average Relative Size Of Interval Average

Finetuned ϵhomo 95.418 4.582 0.016 0.235
ϵlumo 95.717 4.283 0.017 0.116
⟨R2⟩ 95.120 4.880 90.525 0.111
ESOL 96.460 3.540 3.080 0.384

FreeSolv 95.385 4.615 6.018 0.528
Lipophilicity 94.524 5.476 1.937 0.561

LD50 96.286 3.714 6.914 2.510
Frozen ϵhomo 95.269 ± 0.278 4.731 ± 0.278 0.052 ± 0.001 0.754 ± 0.009

ϵlumo 95.981 ± 0.205 4.019 ± 0.205 0.090 ± 0.001 0.616 ± 0.008

⟨R2⟩ 94.781 ± 0.325 5.219 ± 0.325 700.315 ± 10.831 0.859 ± 0.013

ESOL 98.230 ± 1.533 1.770 ± 1.533 5.011 ± 0.455 0.624 ± 0.057

FreeSolv 94.308 ± 1.202 5.692 ± 1.202 8.689 ± 0.517 0.763 ± 0.045

Lipophilicity 95.738 ± 0.419 4.262 ± 0.419 3.293 ± 0.084 0.953 ± 0.024

LD50 95.533 ± 0.117 4.467 ± 0.117 3.014 ± 0.019 1.094 ± 0.007

Table 2: Results of applying the proposed method on two versions of the SMI-TED289M model for the ϵhomo, ϵlumo, ⟨R2⟩,
ESOL, FreeSolv, Lipophilicity and LD50 tasks.

Experiment Type Target InsideP OutsideP Size Of Interval Average Relative Size Of Interval Average

Finetuned ϵhomo 93.137 ± 0.037 6.863 ± 0.037 0.013 ± 0.000 0.190 ± 0.002

ϵlumo 97.669 ± 0.030 2.331 ± 0.030 0.020 ± 0.000 0.140 ± 0.000

⟨R2⟩ 62.196 ± 0.286 37.804 ± 0.286 264.903 ± 6.476 0.325 ± 0.008

ESOL 46.814 ± 2.356 53.186 ± 2.356 0.783 ± 0.054 0.098 ± 0.007

FreeSolv 60.462 ± 1.692 39.538 ± 1.692 1.907 ± 0.054 0.167 ± 0.005

Lipophilicity 95.881 ± 0.543 4.119 ± 0.543 4.269 ± 0.031 1.235 ± 0.009

ld50 81.925 ± 0.267 18.075 ± 0.267 2.154 ± 0.010 0.782 ± 0.004

Frozen ϵhomo 64.417 ± 10.129 35.583 ± 10.129 0.022 ± 0.004 0.317 ± 0.062

ϵlumo 64.313 ± 11.622 35.687 ± 11.622 0.035 ± 0.010 0.242 ± 0.070

⟨R2⟩ 74.726 ± 10.822 25.274 ± 10.822 577.405 ± 272.818 0.709 ± 0.335

ESOL 64.513 ± 6.803 35.487 ± 6.803 2.106 ± 0.821 0.262 ± 0.102

FreeSolv 63.538 ± 8.286 36.462 ± 8.286 2.655 ± 0.484 0.233 ± 0.042

Lipophilicity 57.119 ± 10.201 42.881 ± 10.201 1.359 ± 0.252 0.393 ± 0.073

ld50 61.621 ± 9.371 38.379 ± 9.371 1.836 ± 1.257 0.666 ± 0.456
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Appendix

Figure 1: This figure illustrates the architecture of SMI-
TED289M .



Table 3: Results of statistical testing (t-test) for the proposed method to compare the frozen and finetuned versions of the SMI-
TED289M model for the ϵhomo, ϵlumo, ⟨R2⟩, ESOL, FreeSolv, Lipophilicity and LD50 tasks.

Target Metric FrozenMean FrozenStd FinetunedMean FinetunedStd t p

ϵhomo InsideP 64.417300 10.129100 93.137500 0.037300 -8.498298 0.000014
ϵlumo InsideP 64.312700 11.622500 97.669300 0.029900 -8.599189 0.000012
⟨R2⟩ InsideP 74.726100 10.822000 62.196200 0.285600 3.486434 0.006869
ESOL InsideP 64.513300 6.802700 46.814200 2.356400 6.819943 0.000077
FreeSolv InsideP 63.538500 8.286300 60.461500 1.692300 1.150447 0.279609
Lipophilicity InsideP 57.119000 10.200600 95.881000 0.543500 -11.685147 0.000001
LD50 InsideP 61.620800 9.371300 81.924700 0.266900 -6.579965 0.000102
ϵhomo OutsideP 35.582700 10.129100 6.862500 0.037300 8.498298 0.000014
ϵlumo OutsideP 35.687300 11.622500 2.330700 0.029900 8.599189 0.000012
⟨R2⟩ OutsideP 25.273900 10.822000 37.803800 0.285600 -3.486434 0.006869
ESO OutsideP 35.486700 6.802700 53.185800 2.356400 -6.819943 0.000077
FreeSolv OutsideP 36.461500 8.286300 39.538500 1.692300 -1.150447 0.279609
Lipophilicity OutsideP 42.881000 10.200600 4.119000 0.543500 11.685147 0.000001
LD50 OutsideP 38.379200 9.371300 18.075300 0.266900 6.579965 0.000102
ϵhomo SizeOfIntervalAverage 0.021900 0.004300 0.013100 0.000100 6.106024 0.000178
ϵlumo SizeOfIntervalAverage 0.035100 0.010200 0.020300 0.000000 4.367917 0.001803
⟨R2⟩ SizeOfIntervalAverage 577.404700 272.818500 264.903400 6.475600 3.430510 0.007502
ESO SizeOfIntervalAverage 2.106300 0.820700 0.782900 0.054000 4.693416 0.001131
FreeSolv SizeOfIntervalAverage 2.655400 0.483700 1.907000 0.054000 4.671083 0.001167
Lipophilicity SizeOfIntervalAverage 1.359200 0.251800 4.268800 0.031100 -36.388550 0.000000
LD50 SizeOfIntervalAverage 1.835700 1.256800 2.154400 0.009900 -0.758642 0.467468
ϵhomo RelativeSizeOfIntervalAverage 0.317400 0.062100 0.190400 0.001500 6.106024 0.000178
ϵlumo RelativeSizeOfIntervalAverage 0.241600 0.069900 0.139700 0.000100 4.367917 0.001803
⟨R2⟩ RelativeSizeOfIntervalAverage 0.708600 0.334800 0.325100 0.007900 3.430510 0.007502
ESO RelativeSizeOfIntervalAverage 0.262400 0.102200 0.097500 0.006700 4.693416 0.001131
FreeSolv RelativeSizeOfIntervalAverage 0.233100 0.042500 0.167400 0.004700 4.671083 0.001167
Lipophilicity RelativeSizeOfIntervalAverage 0.393400 0.072900 1.235500 0.009000 -36.388550 0.000000
LD50 RelativeSizeOfIntervalAverage 0.666400 0.456200 0.782100 0.003600 -0.758642 0.467468

(a) ϵhomo frozen model (b) ϵhomo finetuned model

Figure 2: Results for ϵhomo obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.



(a) ϵlumo frozen model (b) ϵlumo finetuned model

Figure 3: Results for ϵlumo obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.

(a) ⟨R2⟩ frozen model (b) ⟨R2⟩ finetuned model

Figure 4: Results for ⟨R2⟩ obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.

(a) ESOL frozen model (b) ESOL finetuned model

Figure 5: Results for ESOL obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.



(a) FreeSolv frozen model (b) FreeSolv finetuned model

Figure 6: Results for FreeSolv obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.

(a) Lipophilicity frozen model (b) Lipophilicity finetuned model

Figure 7: Results for Lipophilicity obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.

(a) LD50 frozen model (b) LD50 finetuned model

Figure 8: Results for LD50 obtained with SMI-TED289M frozen and fine-tuned versions, with our proposed method.


