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Abstract

Passive Acoustic Monitoring (PAM) has emerged as a pivotal
technology for wildlife monitoring, generating vast amounts
of acoustic data. However, the successful application of
machine learning methods for sound event detection in
PAM datasets heavily relies on the availability of annotated
data, which can be laborious to acquire. In this study, we
investigate the effectiveness of transfer learning and active
learning techniques to address the data annotation challenge
in PAM. Transfer learning allows us to use pre-trained
models from related tasks or datasets to bootstrap the learning
process for sound event detection. Furthermore, active
learning promises strategic selection of the most informative
samples for annotation, effectively reducing the annotation
cost and improving model performance. We evaluate an
approach that combines transfer learning and active learning
to efficiently exploit existing annotated data and optimize the
annotation process for PAM datasets. Our transfer learning
observations show that embeddings produced by BirdNet,
a model trained on high signal-to-noise recordings of bird
vocalisations, can be effectively used for predicting anurans
in PAM data: a linear classifier constructed using these
embeddings outperforms the benchmark by 21.7 %. Our
results indicate that active learning is superior to random
sampling, although no clear winner emerges among the
strategies employed. The proposed method holds promise for
facilitating broader adoption of machine learning techniques
in PAM and advancing our understanding of biodiversity
dynamics through acoustic data analysis.

1 Introduction
Passive Acoustic Monitoring (PAM) has emerged as a
powerful technology for wildlife monitoring, allowing
researchers and biodiversity managers to gather extensive
acoustic data without disturbing natural habitats (Sugai
et al. 2019; Sugai and Llusia 2019). PAM systems
continuously record sounds from various environments,
offering valuable insights into animal behavior, species
richness, and ecosystem health, with important applications
in ecosystem management, rapid assessments of biodiversity
(Sueur et al. 2008), and basic research (Ross et al. 2023).
However, effectively utilizing this vast amount of data for

sound event detection poses significant challenges due to the
need for annotated data to train machine learning models.

The annotation of PAM datasets is a laborious and time-
consuming process carried out by experts. This bottleneck
hampers the rapid adoption of machine learning techniques
and impedes the exploration of acoustic data’s full potential.
While previous projects, e.g. (Gouvêa et al. 2023), focus
on annotating entire datasets (Kath, Gouvêa, and Sonntag
2023), our method uses transfer and active learning to
optimise sound event detection in PAM datasets without
necessarily examining the entire dataset.

Transfer learning shows remarkable success in various
domains, where models pre-trained on a large dataset can
be fine-tuned to perform specific tasks with limited labeled
data. By adapting knowledge from related audio tasks or
datasets, we can efficiently initialize and enhance sound
event detection models for PAM, mitigating the requirement
for extensive annotation efforts.

In addition to transfer learning, active learning offers a
strategic way to prioritize the most informative samples
for annotation (Kadir, Alam, and Sonntag 2023). Instead
of randomly labeling all data points, an active learning
algorithm seeks to intelligently selects samples that are
most uncertain or challenging to the model, enabling faster
convergence with fewer annotations.

This study explores the combination of transfer learning
and active learning as a means to facilitate the annotation
of PAM datasets, visualised in figure 1. Comparing 5
standard embedding models trained on data with different
relationships to PAM, we find that BirdNet (Kahl et al.
2021), a neural model trained on bird songs most closely
related to PAM, performs best. Using the embeddings of
the penultimate layer of BirdNet for several active learning
strategies, we find that most strategies outperform random
sampling. While we haven’t identified a single strategy that
consistently outperforms all others, our results show that
active learning significantly reduces the annotation cost.
We believe that this work can serve as a significant step
forward in the automation of sound event detection in PAM,
leading to a deeper understanding of biodiversity dynamics
and better-informed wildlife conservation strategies.
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Figure 1: Workflow for annotating passive acoustic
monitoring datasets, comparing the conventional approach
(left) with the proposed approach (right).

2 Related Work
Sound Event Detection in PAM Data analysis is
recognized as one of the bottlenecks in adoption of PAM
methods for biodiversity monitoring (Sugai and Llusia
2019). While acoustic indices are widely used in acoustic
monitoring of wildlife (Sueur et al. 2014; Campos et al.
2021), these are controversial and have been recently shown
to misrepresent biodiversity in some cases (Bicudo et al.
2023; Sethi et al. 2023). Species identification, while more
costly, plays an essential role in extracting ecologically
relevant information from bioacoustic datasets. Due to the
possible simultaneous occurrence of sounds from multiple
species in PAM datasets, species identification is a multi-
label sound event detection task. This machine learning
challenge is well suited to the capabilities of convolutional
neural networks (CNNs), as demonstrated in previous work
(Hershey et al. 2017). While the idea of using CNNs for
species identification in bioacoustics is not new (see Stowell
2022 for a survey), real-world applications are often limited
by the lack of annotated multi-label data. In fact, deep
learning models for species detection in PAM datasets are
often trained using single-label annotated focal recordings
(e.g., Kahl et al. 2021), neglecting the multi-label aspect
of PAM data. Furthermore, focal recordings differ from
PAM in that they are normally carried out with directional,
professional-grade recorders actively pointed to the sound
source (i.e., the specimens) by an expert in loco. These
recordings tend to be of high quality and signal-to-noise
ratio. For models trained with focal recordings for later
use for inference in PAM datasets, this difference in data
acquisition methods constitutes a form of domain-shift with
recognized deleterious effects on performance (Kahl et al.
2021). The alternative is to have experts annotate PAM
datasets, a laborious process. Therefore, practical few-shot
learning approaches for PAM are needed.

Transfer Learning One key technique in few-shot
learning is to transfer the knowledge and representations
learned from one task to another, often resulting in improved
efficiency and performance in the target task. The basic idea

behind transfer learning is that a model trained on a large and
diverse dataset for a source task can capture useful features
and patterns that are applicable to a related target task.
Instead of training a new model from scratch on the target
task, which might require a significant amount of labeled
data and computational resources, transfer learning allows
building upon the existing knowledge of the source model.

Along these lines, Tsalera, Papadakis, and Samarakou
(2021) use foundation CNNs pre-trained on large image
(ImageNet) and audio (AudioSet) datasets to solve sound
event detection tasks, and find that models pre-trained on
the audio domain perform better. Dufourq et al. (2022)
apply transfer learning to PAM datasets. They compare
12 different CNN architectures pre-trained on ImageNet
as feature extractors for single-species detection in PAM
datasets, and find that ResNets (101V2, 152V2) (He et al.
2016) performs best, followed by VGG16 (Simonyan and
Zisserman 2015); Dufourq et al. did not explore models pre-
trained on audio datasets. Çoban et al. (2020) use VGGish,
a VGG variant pre-trained on AudioSet, to detect sound
events in a PAM dataset; the event classes are coarse grained
(e.g., ‘songbird’, ‘waterbird’, and ‘insect’) as opposed to
fine grained (e.g., species identity). McGinn et al. (2023)
investigate the topology of fine grained, sub-species sound
events in the embedding space afforded by BirdNet, a CNN
trained on focal recordings of bird vocalizations labelled
at the species level (Kahl et al. 2021); they find that
different call types of a same species (e.g., drumming versus
vocalization) form distinct clusters, and that the vicinity of
each such cluster contains different calls of the same species,
rather than similar calls from distinct species. Ghani et al.
(2023) compare 5 models pre-trained on audio data on 6
PAM datasets and find that Perch1 and BirdNet, which differ
mainly in their training data, perform best.

Active Learning While transfer learning can provide a
solid starting point for sound event detection models, it
does not do away with the need for human-annotated data.
Active learning is a machine learning strategy that involves
selecting and labeling first the most informative or uncertain
examples in a dataset in order to improve the performance
of a model while minimizing the amount of labeled data
required. The core idea is to make the learning process
more efficient by selecting the instances that are expected to
provide the greatest reduction in uncertainty or error, rather
than labeling a randomly selected subset of instances or
all available data exhaustively. This is particularly useful in
situations where labeling data is expensive, time-consuming,
or otherwise resource-intensive.

Wang, Cartwright, and Bello (2022) use a synthetic
dataset built by recombining environmental sounds with
urban soundscape background to study how active learning
can improve upon random selection in the context of
prototype based classification with models trained with few-
shot episodes. Qian et al. (2017) use active learning to
improve on the data efficiency of bird species classifiers
applied to a museum sound collection (likely focal
recordings); their classifiers operate on low level descriptors,

1https://tfhub.dev/google/bird-vocalization-classifier/4



which are interpretable feature extractors that might afford
lower performance than deep learning methods. Allen et al.
(2021) use active learning to detect humpback whale songs
(single species) in a very large PAM dataset (187 000 h);
they use a randomly initialized ResNet-50 variant (no
transfer learning), and the small size of their validation
set (6.25 h, or 0.003 % of the data) precludes comparing
different active learning methods. Active learning is a
central element of human-in-the-loop machine learning
workflows (Monarch 2021). In a related application,
Ryazanov et al. (2021) implement a human-in-the-loop
system for marine acoustic event detection in which a
human expert oversees and validates novel training samples
synthesized by sampling the latent space of a variational
autoencoder (a form of data augmentation).

3 Methods
Datasets While other studies mostly use single-label
datasets, e.g. (Ghani et al. 2023), we take advantage
of AnuraSet, a recently released real-world benchmark
multi-label PAM dataset consisting of 27 h of audio plus
manually created expert annotations for 42 species of
anurans (frogs and toads) from two different biomes (Cañas
et al. 2023). Following the original authors, in our transfer
learning experiments we examine the overall performance of
AnuraSet and its partitions based on the number of positive
samples: frequent (>10 000), common (5 000-10 000) and
rare (<5 000). Our active learning experiments focus on
the common partition. In addition, we use a novel, small,
manually multi-label annotated portion of a multi-year PAM
dataset collected in Fernando de Noronha, Brazil. The
selected part, referred to here as the Noronha set, consists
of 1.25 h annotated by an expert for 5 species of oceanic
birds. For all experiments, we divide each audio file into
3-second segments referred to as ‘samples’. A sample is
considered positive for a given event class whenever event

101 102 103 104

# Samples with species present

0.0

0.2

0.4

0.6

0.8

F1
 S

co
re

SPHSUR
BOABIS

BOAFAB

DENMIN

LEPPOD
PHYALB

LEPLAT
PITAZUPHYCUV

DENNAN

SCIPER

BOAALB

SCIFUV

BOALUN

BOAALM
PHYSAU

BOARAN

LEPLAB
LEPFUS
ELABIC

LEPNOT

BOALEP

PHYDIS

DENCRU

ADEMAR

DENNAH

BOAPRA
ELAMAT

ADEDIP

RHIICT

PHYNAT
PHYMAR

SCIALT

DENELE
AMEPIC

SCIFUS
SCIRIZ

RHIORN
SCINAS

LEPELE
RHISCILEPFLA

Micro F1 Score

Macro F1 Score

frequent
common
rare

Figure 2: Transfer learning applied to AnuraSet using
features extracted from the last layer before the classification
layer of BirdNet. A linear classifier (logistic regression) is
used. The resulting F1 score for each species is plotted
against the number of samples containing that species.
Frequent, common and rare species are defined according
to (Cañas et al. 2023).
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Figure 3: UMAP plots for diffenerent embedding layers of
different embedding models for AnuraSet. Colors indicate
top 10 classes. For UMAP generation, we select randomly
5 000 samples. In the plot we show only samples that are
aligned to exactly one class.

occurrence overlaps with the sample, even if only partially
and briefly. All performance metrics reported are computed
on a held-out evaluation set except when otherwise stated.
For AnuraSet, the evaluation set is that of the original study
(Cañas et al. 2023); for the Noronha set, we randomly select
a third of the dataset.

Transfer Learning We explore the potential of several
standard pre-trained CNNs as feature extractors for sound
event detection at the species level in PAM (table 1). The
CNNs used here were trained on datasets from different
domains and modalities, with varying degrees of similarity
to the target modality (audio) and domain (multiple anuran
species in the PAM data). Following Dufourq et al. (2022),
we test ResNet152-V2 (He et al. 2016) and VGG16
(Simonyan and Zisserman 2015); these are CNNs pre-
trained on ImageNet (Deng et al. 2009), a dataset on the
visual modality. VGGish2, a variant of VGG11A (Simonyan
and Zisserman 2015), and YAMNet3, a MobileNet-V1
network (Howard et al. 2017), were pre-trained on AudioSet
(Gemmeke et al. 2017), a dataset from the same target
modality (audio) but a different domain (YouTube sound
clips). BirdNet (Kahl et al. 2021) was trained on data
from the target modality (audio) and a related domain (bird
vocalizations in focal recordings, also at species level).

Deep neural networks learn multiple representations of
different levels of abstraction: the first layers reflect low
level input features, while that last layers capture structure

2https://tfhub.dev/google/vggish/1
3https://tfhub.dev/google/yamnet/1



AnuraSet

Layer Frequent Common Rare All Noronha set

Model Pre-Training # from last Size Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1 Mic F1 Mac F1

BirdNet Bird vocalisations 1 1 024 0.901 0.888 0.788 0.786 0.488 0.402 0.799 0.591 0.455 0.527
2 6 144 0.866 0.847 0.746 0.743 0.468 0.440 0.755 0.555 0.727 0.554
3 4 608 0.876 0.856 0.749 0.759 0.484 0.431 0.772 0.572 0.704 0.490

VGGish AudioSet 0 128 0.609 0.564 0.266 0.224 0.005 0.025 0.414 0.326 0.077 0.094

YAMNet AudioSet 1 1 024 0.750 0.706 0.482 0.444 0.083 0.135 0.560 0.412 0.347 0.412

VGG16 ImageNet 1 4 096 0.680 0.577 0.410 0.400 0.031 0.087 0.466 0.332 0.112 0.128
2 4 096 0.716 0.642 0.466 0.458 0.049 0.137 0.476 0.359 0.130 0.158
3 25 088 0.851 0.817 0.701 0.684 0.373 0.341 0.726 0.528 0.313 0.371

ResNet152-V2 ImageNet 1 2 048 0.699 0.620 0.049 0.066 0.001 0.007 0.159 0.128 0.020 0.024

Table 1: Size and performance of embedding layers from different transfer learning models. The layers are labelled in reverse
order excluding the classification layer, with layer 1 being the last layer before the classification layer. We analysed the frequent,
common and rare part as well as the whole data set of AnuraSet, and the Noronha set. We provide micro (Mic) and macro
(Mac) F1 scores calculated for the evaluation set. Each score represents the average result of multiple independent runs (5 for
all AnuraSet experiments, 30 for Noronha set). The standard deviation is constantly less than 0.06.

more directly related to the predictions it makes (Bengio
2009). We evaluate embeddings at different layers within
the CNNs (table 1). For VGG16 we investigate the last
three layers before the final classification layer (‘fc2’,
‘fc1’, and ‘flatten’). For ResNet152-V2 we only investigate
the last embedding layer (‘avg pool’). Considering our
future goal of implementing a real-time pipeline with
transfer learning and active learning, we decide not to
explore further layers of both visual domain models due
to their large dimensionality (100 352 for both models).
As the models pre-trained on AudioSet were designed
to be used as feature extractors, we only use their last
embedding layer. For BirdNet we investigate the last three
embedding layers, batch normalization and dropout layers
excluded (‘GLOBAL AVG POOL’, ‘POST CONV 1’, and
‘BLOCK 4-4 ADD’); the latter layer is a convergence point
of a branched architecture, so we do not investigate further
layers. We refer to each layer by natural numbers reflecting
distance from the classification layer (e.g.,‘BirdNet-1’
denotes the last layer before the classification layer of the
BirdNet model).

Figure 3 shows low-dimensional representations of the
AnuraSet embeddings in each model/layer combination
that we generate using UMAP, a neighbour-embedding
method that attempts to preserve in the low-dimensional
representation the same distance between points as observed
in the high-dimensional embedding space (McInnes, Healy,
and Melville 2020). We compute UMAP embeddings for a
subset of 5 000 random samples from the top 10 classes of
AnuraSet.

Sound event detection performance of each embedding
is evaluated using a linear classifier (single fully connected
layer). As the samples may contain overlapping calls from
different species, we implement a multi-label classifier with
logistic activation and a binary cross-entropy loss function.

Linear classifiers are trained on frozen embeddings (no fine
tuning) for up to 1 000 epochs with early stopping based on
validation loss (minimum delta of 0.1, patience of 10 epochs,
with reinstatement of best weights). When the embedding
model outputs an array of time points for each input sample,
we treat it as a multiple instance learning problem (Wang,
Li, and Metze 2019) by applying the classifier to each time
point, and then pooling predictions with the exponential
softmax function y =

∑
i yi exp(yi)∑
i exp(yi)

, facilitating the training
process. We report the metrics micro and macro F1 scores
(see table 1). The results represent the mean computed over
multiple runs with different random seeds.

Active Learning We explore a range of sampling
strategies: uncertainty and diversity based, myopic (greedy)
and adaptive (batch mode), and combinations thereof. In all
cases, 5 % of the samples are selected at random.

ΦLC bi(y) = 1− |2y − 1| (1)

ΦRC bi(y) =
0.5− |y − 0.5|
0.5 + |y − 0.5|

(2)

ΦEN bi(y) = −y log2(y)− (1− y) log2(1− y) (3)

Uncertainty sampling strategies compute uncertainty
scores for each unlabelled sample and select those with
the highest scores. Multi-label tasks with n classes use
n binary classifiers, resulting in n uncertainty scores
per sample. Following Monarch (2021), we implement
‘least confidence’ (equation (1)), ‘ratio’ (equation (2)) and
‘entropy’ (equation (3)), where Φ∗∗ bi(y) is the uncertainty
score from method ** for binary classifiers and y is the
classifier output. To derive a single uncertainty score from
the n scores assigned to each sample, we explore averaging
and selecting the maximum value. ΦLC bi(y), ΦRC bi(y)
and ΦEN bi(y) have a strictly monotonic increase in the
range [0; 0.5] and a strictly monotonic decrease in the range



[0.5; 1]. Consequently, using the maximum score yields the
same selected sample. Therefore, we use a singular method
with maximum score aggregation and choose ΦRC bi(y).

Diversity sampling strategies aim for comprehensive
coverage of the data space, ensuring even distribution
and avoiding class imbalance. Diversity sampling selects
samples directly, ignoring class-specific scores and existing
labels, thus eliminating the need to combine scores, unlike
uncertainty sampling. We implement k-means clustering
using the Euclidean distance measure. Within each cluster,
we select the centroid (the sample with the smallest distance
to the cluster centre), an outlier (the sample farthest from
the nearest cluster centre) and three random samples. The
number of clusters is inversely determined; e.g., to annotate
20 samples at a rate of 5 samples per cluster, we use 4
clusters (Monarch 2021, chapter 3).

Adaptive sampling strategies reduce the redundancy
within the selected batch of samples for an iteration.
Adaptive uncertainty sampling uses the predictions of the
trained model to relabel the validation set as ‘correct’ or
‘incorrect’. The model’s last layer is replaced by a single
node and retrained using the generated labels. Iteratively,
the unlabelled set is fed into the model, samples that
are likely to be ‘incorrect’ are selected, added to the
‘correct’ labelled validation set and the model is retrained
(Konyushkova, Sznitman, and Fua 2017). Adaptive diversity
sampling minimises the distribution gap between training
and unlabelled data. After labelling the validation set
‘validation’ and the unlabelled set ‘unlabelled’, the model’s
last layer is replaced with a single node and retrained using
the generated labels. Iteratively, the unlabelled subset is
fed into the model, samples likely to be ‘unlabelled’ are
selected. They are iteratively added to the validation set
(Monarch 2021, chapter 5). Both adaptive strategies use 5
iterations in our implementation.

Combining active learning strategies addresses the
limitations of pure strategies. Uncertainty sampling selects
samples close to the decision boundaries, but may
introduce redundancy. Diversity sampling covers the entire
input space, but may miss critical regions. We therefore
investigate methods that combine uncertainty and diversity
strategies. Filtering pre-selects 50 % of the samples by
diversity sampling and uses uncertainty sampling to sample
from this pre-selection. We use this method for ‘combi:
ratio max + clustering’. Hybrid sampling selects 50 % of
the samples from each of the two methods. All other
combination methods use hybrid sampling.

Class labels are available for all samples used in this
study, and an active learning scenario is emulated by hiding
all labels from the classifier at first and incrementally
revealing the ones for each batch of samples queried by
the sampling methods. We use a batch size of 20 samples.
The classifier heads are identical to those from the transfer
learning experiment, always applied to data embeddings
with the same selected model (BirdNet-1, see section 4).

4 Results
An annotated PAM dataset typically serves one of two
primary purposes: as a resource for training new machine

learning models for later deployment for inference in a
related domain (e.g., geographical region, taxa), or as an
end product in itself for subsequent analysis of ecological
phenomena within the same domain. In this study, we
explore the potential of combining transfer learning and
active learning to accelerate the annotation of species-level
sound events in PAM datasets for both purposes.

Transfer Learning
We start by testing different pre-trained models as feature
extractors for species-level sound event detection in
AnuraSet. In order to gain intuition on the potential of each
embedding model, we generate low dimensional neighbor
embedding visualizations for high dimensional embeddings
of samples from the top 10 classes of AnuraSet (figure 3).
The BirdNet embeddings show a clear separation between
class clusters, with more pronounced differentiation in
layers closer to the final layer. VGGish and YAMNet
show effective cluster separation for only a subset of
clusters, while ResNet152-V2 embeddings appear as a
continuum, salt-and-pepper pattern in the low dimensional
representation. Cluster separation is visible for VGG16, with
more apparent separation for layers further away from the
top.

We then train linear classifiers on embeddings of the
AnuraSet (frequent, common, rare and all) and Noronha
datasets using all pre-trained models. The quantitative
results largely match the intuitions afforded by neighbor
embedding visualizations, with BirdNet performing best,
followed by intermediate layers of VGG16 (albeit with a
much smaller dimensionality, see table 1).

Overall, we find that BirdNet-1 performes best as a feature
extractor for multi-label classification for the PAM datasets
AnuraSet and Noronha set, resulting in the best macro F1
scores. The analysis of the frequent, common and rare parts
of AnuraSet shows that this result is independent of the
number of positive samples. Figure 2 shows the single class
F1 score for BirdNet-1 for each of the 42 classes from
AnuraSet. As reported in the original paper (Cañas et al.
2023), one can observe a strong correlation between F1
score and class size, and consequently a wide gap between
macro and micro F1 scores. BirdNet-1 is used as a feature
extractor for all subsequent active learning experiments.

Active Learning
We investigate the effect of active learning by emulating the
annotation of the common partition of the AnuraSet and the
Noronha set.

From a machine learning perspective, the two objectives
outlined in the beginning of section 4 diverge in the data
distribution. A machine learning model aims to classify
new data that comes from the same distribution as the
original dataset. Therefore, we construct evaluation sets
that reflected the distribution of the original training data.
For the AnuraSet, we use the identical evaluation set
used by the original authors (Cañas et al. 2023). For
the Noronha dataset, we randomly select a third of the
data to form the evaluation set. As illustrated in figure 1,
the process of annotating an entire dataset using active
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Figure 4: Active learning on the common partition of AnuraSet and Noronha set, using the embeddings of BirdNet-1. Macro
F1 score computed on evaluation data (left), and on the portion of the training data that remains unlabelled (right). Mean ±
SEM across multiple independent runs. Top: uncertainty-based sampling strategies (‘least confidence’, ‘ratio’ and ‘entropy’)
and score aggregation methods (‘max’ and ‘average’). Center: diversity-based sampling strategy (‘clustering’) and two adaptive
strategies (‘uncertainty’ and ‘diversity’). Bottom: mixed diversity- and uncertainty-based sampling strategies.

learning is an iterative process that relies on careful sample
selection strategies. This process leads to a distinction
in the distribution between the entire dataset and the
remaining unlabelled subset. Consequently, we will present
results specific to this remaining unlabelled subset. In
all active learning experiments, we use the embeddings
generated by BirdNet-1, which show the best transfer
learning performance. Due to the significant imbalance of
classes in the datasets, we used the macro F1 score as
the evaluation metric, and provide the corresponding macro
precision and macro recall values in appendix A. As a
baseline for active learning, all figures show the performance
of random sampling.

We investigate the uncertainty sampling strategies ‘least
confidence’, ‘ratio’ and ‘entropy’ with the score aggregation
methods ‘max’ and ‘average’ (‘avg’). The top row of

figure 4 shows the results of the F1 score. For both datasets,
for both the evaluation set and the unlabelled set, the
score aggregation method ‘max’ consistently outperforms
‘average,’ surpassing random sampling and converging just
below an F1 score of 0.8.

We further investigate the diversity sampling strategy
‘clustering’ and explore two adaptive approaches – one
for uncertainty and the other for diversity. The results of
the F1 score are shown in the center row of figure 4.
For both datasets, the adaptive uncertainty method shows a
slight performance advantage over other methods, both for
the evaluation set and the unlabelled set, with all methods
outperforming random sampling.

The bottom row of figure 4 shows the F1 score for the
combined sampling strategies. We choose the ‘ratio max’
uncertainty sampling strategy for the combination due to



the superior performance of the ‘max’ versions and the
simplicity of calculating the ratio. For both datasets, for
both the evaluation set and the unlabelled set, all combined
methods clearly outperform random sampling, with no
single method emerging as the clear best.

Looking at precision and recall in figure S1 and figure S2,
we observe a rapid convergence of precision around 0.9
for all methods. On the other hand, for most of the
methods, recall does not show any convergence and remains
significantly lower than precision, around 0.6 for the
Common part of the Anuraset and around 0.2 for the
Noronha set. While the choice of sampling method seems to
have a limited effect on precision, there is a clearly visible
effect on recall, where most methods clearly outperform
random sampling, leading to the ranking of F1 score
performance.

5 Discussion
In this investigation, we explored the application of
knowledge transfer from large models pre-trained on diverse
domains to the challenge of sound event detection in multi-
species PAM datasets. We found that the final embedding
layer of BirdNet, a CNN trained on focal recordings of bird
vocalisations (Kahl et al. 2021), provides the most effective
feature space. Notably, the linear classifier using BirdNet
embeddings outperforms the models examined by (Dufourq
et al. 2022) and (Cañas et al. 2023), beating the latter by
21.7 %.

Our findings unveil the effectiveness of active learning
in the realm of multi-label sound event detection for PAM,
combined with transfer learning. While previous active
learning efforts in sound event detection for PAM (Qian et al.
2017; Allen et al. 2021) have not utilized features extracted
with transfer learning, our study pioneered this intersection.
In our exploration of uncertainty-based sampling strategies,
originally designed for multi-class classification, we noted
their superior performance over random sampling in our
multi-label (multiple binary) classification scenario. It’s
pertinent to emphasize that the absence of a decisive
winner was expected given our focus on multi-label tasks,
in contrast to the multi-class setup these strategies were
designed for.

Although the creation of a fully functional data annotation
application falls beyond our current scope, we made a
deliberate inclusion of a dataset in this study that directly
aligns with the objectives of our methods. The Noronha
set, afflicted by the same challenge our methods aim
to mitigate—tedious data annotation—features a relatively
limited number of labels. Despite its scale, we deemed it
relevant to incorporate. We underscore the equivalence in
real-world context between the datasets used here; while
AnuraSet serves as a pivotal benchmark, it is crucial to
recognize its authenticity as well. The ongoing nature of
the AnuraSet project and its planned expansions further
attest to its practicality, despite the common bottleneck
of data annotation. Our aspiration is to contribute to the
enhancement of annotation efficiency.

The discussion around precision, characterized by notable
highs, juxtaposed against low recall demands attention.

The latter raised concerns since, within the active
learning framework, unattended events (false negatives)
are irrevocably lost unless manually verified. A potential
remedy could involve a workflow that mirrors medical
tests, starting with heightened sensitivity to false negatives
followed by a phase emphasizing specificity to false
positives. In our methodology, a similar approach could be
realized by adjusting learning to penalize false negatives,
possibly via weighted binary cross entropy loss or custom
loss functions as in (Tian et al. 2022).

While the observed low recall necessitates careful
consideration, it’s important to clarify that the scope of
this study didn’t encompass the optimization for accuracy
metrics, exemplified by F1 Score. Instead, our primary
goal was to identify efficient strategies that synergize
transfer learning and active learning. To potentially
elevate accuracy, strategies such as applying Per-Channel
Energy Normalization (PCEN) (Lostanlen, Salamon, and
Cartwright 2019), refining spectrogram feature engineering
(Dufourq et al. 2022), or employing transfer learning with
fine-tuning could be explored.

In our future endeavors, we intend to harness the
methodologies examined herein to drive the development of
a PAM data annotation tool. This endeavor will necessitate
evaluations of computational costs, such as matmul
operations, in conjunction with the metrics discussed in this
paper. Furthermore, empowering users with control over the
specificity/sensitivity trade-off could provide a customizable
solution to match their needs.
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Ecological Indicators, 120: 106953.
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Figure S1: Active learning on the common partition of AnuraSet, using the embeddings of BirdNet-1.. Macro precision/recall
score computed on evaluation data (left), and on the portion of the training data that remains unlabelled (right). Mean ± SEM
across multiple independent runs. Top: uncertainty-based sampling strategies (‘least confidence’, ‘ratio’ and ‘entropy’) and
score aggregation methods (‘max’ and ‘average’). Center: diversity-based sampling strategy (‘clustering’) and two adaptive
strategies (‘uncertainty’ and ‘diversity’). Bottom: mixed diversity- and uncertainty-based sampling strategies.
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Figure S2: Active learning on Noronha set, using the embeddings of BirdNet-1.. Macro precision/recall score computed
on evaluation data (left), and on the portion of the training data that remains unlabelled (right). Mean ± SEM across
multiple independent runs. Top: uncertainty-based sampling strategies (‘least confidence’, ‘ratio’ and ‘entropy’) and score
aggregation methods (‘max’ and ‘average’). Center: diversity-based sampling strategy (‘clustering’) and two adaptive strategies
(‘uncertainty’ and ‘diversity’). Bottom: mixed diversity- and uncertainty-based sampling strategies.


