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Abstract 

Peptides gain popularity in various fields of biotechnology 
and medicine due to their unique properties and functionality. 
Compared to small molecules, peptides offer higher selectiv-
ity and biocompatibility, making them attractive for the de-
velopment of new therapeutic agents. However, peptide en-
gineering and design remain challenging tasks requiring both 
experimental and computational approaches. In recent years, 
artificial intelligence (AI) has shown significant advances in 
chemistry, especially with the breakthrough of AlphaFold in 
protein structure prediction. This has stimulated growing in-
terest in AI-driven peptide engineering. Unfortunately, de 
novo peptide design remains a challenging task. Many deep 
learning models first perform engineering and feature selec-
tion before solving the actual problem, and their performance 
is limited by the formation of suitable mathematical represen-
tations. At present, there are no interpretable and compact 
representations that consider both chemical and sequential 
context. In this paper, we propose a novel approach to inter-
pretable peptide representation that overcomes the current 
limitations. The developed methodology allows us to create 
models with transparent decision making, improving their ap-
plicability by experimental scientists. Our development 
opens new possibilities for automated peptide design, accel-
erating the process of creating new therapeutic agents and ex-
panding the boundaries of AI applications in chemistry and 
biotechnology. 

Code — https://github.com/GenerativeMolMa-

chines/SeQuant 

1. Introduction 

The significant improvement of machine learning (ML) and 

artificial intelligence (AI) seems to have made it possible to 

dramatically accelerate the process of developing new 

drugs, reducing the cost of time and resources. They have 

already demonstrated their effectiveness in several areas, 

such as organic chemistry, where ML methods can predict 

the products of organic chemical reactions (Jorner et al. 

2021) and their activity (Lee, Yoo, and Kang 2020). Also, 

in the field of forecasting protein properties, a great success 

has been the creation of AlphaFold, an AI-based tool capa-

ble of predicting the three-dimensional structure of a protein 

based on its amino acid sequence (Abramson et al. 2024). 

AI and ML approaches are already used in the study of new 

protein drugs, ranging from classical ML based on various 

descriptors to deep learning (DL) models (Notin et al. 2024 

& Yang, Wu, and Arnold 2019). Nevertheless, it is im-

portant to note that the application of AI in this field is still 

in its early stages and de novo design remains a challenging 

task with only a hundred proteins known to be developed 

from scratch, which is remarkably small in comparison with 

the total number possible (Woolfson 2021). The complexity 

of creating new protein drugs highlights the necessity for 

advanced AI techniques in this area.  

 Protein drugs find application in areas such as medicine 

and biotechnology, acting as drugs (Wang et al. 2022), di-

agnostic agents (Uribe et al. 2021) and catalysts for various 

reactions (Lovelock et al. 2022). Currently, more than 80 

protein drugs are registered including 33 non-insulin peptide 

drugs and more than 170 are in active clinical development 

(Wang et al. 2022). These medicines are used in the treat-

ment of many diseases, including oncology (Fisher et al. 

2019), cardiovascular diseases (Peterson and Barry 2018), 

and there are also applications as antimicrobials (Torres et 

al. 2019). However, there is a need to develop novel active 

agents both to deal with new healthcare area challenges and 

to improve the treatment of long-known ones, such as can-

cer. The de novo design of protein drugs can take over 10 

years and require significant costs ranging from $161 mil-

lion to $4.54 billion (2019 US$) (Schlander et al. 2021). 

Such expenses are mainly caused by the most common 

method for studying new protein therapeutics - experimental 

screening, while modeling, although used, is resource-inten-

sive, time-consuming and does not always provide accurate 

results that correlate well with experimental data. 

 Several crucial challenges have been highlighted in terms 

of processing protein data: firstly, to the best of our 

knowledge, there are no interpretable descriptors, and exist-



 

 

ing approaches take into account either contextual infor-

mation or physicochemical properties. Secondly, most of 

the developed models use 20 basic proteinogenic amino ac-

ids, and there is no functionality to consider any modifica-

tions, which are capable of significantly influencing the re-

sulting properties of the proteins. These include the diffi-

culty of versatile model development, which creates many 

tools suitable for use only in a narrow area with various lim-

itations. Thirdly, existing AI and ML tools are often de-

manding on the amount of data, which is not always availa-

ble, and for some specific areas, accumulation of it in suffi-

cient quantities is not even possible. 

 This study presents SeQuant, a tool for creating peptide 

descriptors based on the physicochemical properties of 

amino acids. The neural net of SeQuant implies architecture 

capable of considering the context in the amino acid se-

quence, and the resulting descriptors also carry information 

about the properties of amino acids and the peptide chain, 

making it possible to interpret them. At the same time, the 

size of the feature space is significantly smaller than in other 

approaches. Thus, the proposed solution is expected to be 

superior to other available options. The tool is based on the 

convolutional autoencoder (CAE) architecture which allows 

transforming matrices of properties of individual monomers 

into more compact representations, where one-dimensional 

convolutions allow preserving the original physical meaning 

of individual properties of monomers, while considering the 

monomer context. The method involves reducing the dimen-

sionality along the amino acid chain to obtain a vector, 

where each element represents a specific property of the 

amino acids. The model offers interpretable peptide embed-

dings, which can be used for activity prediction tasks and 

during benchmarking they appear to be comparable with ex-

isting approaches, but with remaining physicochemical 

properties, which are important for the real application of 

the models in practice. 

2. Related works 

In classical ML, various models are used to solve classifica-

tion and regression problems (Woolfson 2021), such as ran-

dom forests (RF) (Breiman 2001) and support vector ma-

chines (SVM) (Cortes and Vapnik 1995). A common ele-

ment is the implementation of descriptors which are numer-

ical characterization of peptides (Xu et al. 2020). Often these 

are physico-chemical and composition properties, amino 

acid indices, or topological descriptors. In each specific 

case, a search is carried out for the most informative ones. 

Modern research uses combinations of various descriptors, 

and also introduces new ones that are specific to a particular 

field of study. A common problem with this approach is that 

it does not consider the context of the systems under study. 

One can learn more about the various descriptors, as well as 

the tools for obtaining them, in the review of Emonts and 

Buyel (2023). 

 Researchers also use the DL approach for peptides’ prop-

erties prediction. In this case, the initial data are most often 

the amino acid sequences themselves. They are encoded and 

fed into neural networks. Due to their high computing power 

and the ability to find patterns in data, such models demon-

strate prominent results in a wide range of problems, includ-

ing the prediction of protein functions (Bileschi et al. 2022 

& Luo et al. 2021), their structure (Kandathil, Greener, and 

Jones 2019 & Ismi, Pulungan, and Afiahayati 2022), and 

stability (Blaabjerg et al. 2023). A significant advantage of 

DL models lies in their capacity to consider both local and 

global contexts, thereby enabling the accommodation of the 

complexities inherent in protein structures. However, such 

models use sequence-only information without considering 

both amino acids as well as entire peptide properties and are 

extremely demanding on computing power, which are seri-

ous drawbacks. 

3. Methods 

Our approach was to use pre-calculated physicochemical 

descriptors of 20 main proteinogenic amino acids and 2 most 

common modifications as the initial data. For our research, 

we classified them as molecular and DFT-derived de-

scriptors. Each of the two groups is described in the corre-

sponding subsection. To describe the context and generate 

descriptors applicable in ML models, we implemented CAE 

architecture. Briefly, a matrix of descriptors is calculated 

based on a dictionary of known monomers, then it is used to 

form arrays of descriptors for each amino acid sequence, 

where the rows correspond to properties and the columns to 

amino acids. The resulting arrays are used as an input to 

CAE, and the resulting peptide descriptors are extracted 

from the CAE bottleneck layer; these are vectors, each of 

which characterizes a specific peptide. It is important to note 

that the decrease in dimensionality occurs along the axis of 

the amino acid chain length via 1-dimensional pooling to 

preserve the initial physical meaning behind amino acid de-

scriptors. The vector data, called latent representations, can 

then be used as descriptors for ML or DL models. The CAE 

learning was carried out on a server, the overall configura-

tion of which consists of 6 GPU A6000, 256 cores, AMD 

EPYC 7763 64-Core Processor, 512 GB RAM, using 2 GPU 

and 50 GB of RAM. The final model was trained in 75 

epochs for 4 days. 

Data collection and preprocessing 

To train the model, unlabeled peptide sequence data was ex-

tracted using a special self-made program. We parsed the 

NCBI database, and at this stage, filtering for duplicates and 

unknown monomers was performed according to the formed 



dictionary (20 natural proteinogenic amino acids + 2 modi-

fications with a common single-letter designation). During 

the procedure, we tried to collect the same number of pep-

tide sequences with a length from 5 to 96 for each to avoid 

bias in the trained model due to more common lengths. A 

total of 6,749,334 peptide sequences were obtained, the 

length distribution can be seen in Figure 1. This data was 

divided into training and testing sets in a ratio of 0.7 to 0.3. 

The resulting sets were initially used to train the CAE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Peptide length distribution in collected data. 

Pre-calculated molecular descriptors 

This group uses 43 molecular descriptors from the 

rdMolDescriptors module of the RDKit Python library. Af-

ter descriptor extraction, normalization within the range 

from -1 to 1 is performed within each parameter using the 

MinMaxScaler module of the scikit-learn library. Then, 

based on the obtained matrix and the matrix of descriptors 

of the second group (see Section DFT-derived de-

scriptors), arrays are formed for each amino acid sequence 

- each of them is a unique representation of the peptides, 

while padding up to a length of 96 amino acids was used: 

this length is sufficient to cover most peptides, the dimen-

sionality itself is determined by the sequence of one-dimen-

sional convolutions in the architecture of the developed neu-

ral net. 

DFT-derived descriptors 

This group of descriptors includes 3, namely descriptors 

based on the interaction energy of amino acids with divalent 

metal cations - calcium, magnesium and barium. They were 

obtained from the results of quantum-chemical calculations 

based on the density functional theory. The calculation itself 

is given in the work of Hu, Lenz-Himmer and Baldauf 

(2022) and the obtained data contained in the NOMAD da-

tabase. In the work calculations for 23,243 amino acid con-

formers and their complexes with the calcium, magnesium 

and barium cations including alternative possible side chain 

protonation states were performed. The authors report that 

the data cover 21,909 stationary points on the corresponding 

potential energy surfaces over a wide range of relative ener-

gies up to 4 eV (390 kJ/mol).  

 The database API, as well as a written parser were used 

to extract the free energy values of these conformations. All 

data were divided into 4 categories: free energy of amino 

acid complexes with magnesium, barium, calcium cations 

and free energy of simple amino acid conformations. Also, 

the free energy values of magnesium, calcium and barium 

cations were obtained from the NOMAD database. Then, for 

each amino acid, averaging was performed over the confor-

mations to obtain specific values for each. To obtain the in-

teraction energy descriptors themselves, the following oper-

ation was performed: the free energy of the amino acid and 

the free energy of the cation were subtracted from the free 

energy of the amino acid-cation complex. The result of the 

processing is a matrix of shape (22x3), where 22 is the num-

ber of amino acids, 3 is the number of descriptors obtained. 

Then, the descriptors, as in the first group, were normalized 

within each parameter using the MinMaxScaler module of 

the scikit-learn library. Next, as mentioned in the previous 

section, arrays are formed for each amino acid sequence. 

CAE architecture 

This study uses a CAE from the Keras framework to obtain 

peptide descriptors applicable in ML and DL. Autoencoders 

consist of 3 parts: an encoder, a decoder, and a latent space. 

Their operating principle is to compress input data and then 

restore the compressed representations to the original for-

mat. Training is based on the loss function - the difference 

between the restored and initial data. Autoencoders are 

mainly used to reduce the dimensionality of input data and 

feature selection. Compressed representations are extracted 

from a part of the latent space. 

 The developed architecture consists of 6 blocks of layers 

in each encoder and decoder parts. Each encoder block con-

sists of the following layers: Conv2D, BatchNormalization, 

LeakyReLU, AveragePooling2D, Dropout. The convolution 

layer was used to extract local dependencies in sequences. 

This was followed by a normalization layer to stabilize the 

distribution of activations. This is necessary to speed up 

training and improve the model's performance. Next came 

the activation layer using the LeakyReLU function. The 

fourth layer is the average pooling layer, which reduces the 

data dimensionality by averaging over (n, n) matrix ele-

ments, where n is the pooling parameter. This was necessary 

to highlight the most significant information and reduce the 

dimensionality. The last layer of the block is the dropout 

layer. It was used to regularize the model and prevent over-

fitting. During training, N (where N depends on the param-

eter specified in the layer) neurons were randomly reset to 

zero, which helps the model become more stable and gener-

alized. 



 

 

 The decoder uses fewer layers. One block consists of the 

following parts: Conv2DTranspose, BatchNormalization, 

LeakyReLU. In the last block of the decoder, the activation 

function is changed to the hyperbolic tangent function. 

Conv2DTranspose Layer is a transposed (inverse) version 

of the Conv2D layer and was used to increase the dimen-

sionality of the data and restore the original patterns that 

were compressed in the coding part. Next, a normalization 

layer was applied, as in the coding part, it accelerates con-

vergence and helps stabilize the training of the model. The 

last layer is the activation layer. It is important to note that 

in the last block, the activation function is the hyperbolic 

tangent function. Its use was due to the format of the input 

data: as described earlier, we normalized all arrays within 

the range from -1 to 1, and this function transforms the input 

data into this range. Thus, the use of this function was nec-

essary for normal data recovery to the original format. 

CAE training and optimization 

When developing the architecture, we searched for the opti-

mal one. For this purpose, from the entire data array, the ac-

quisition of which is described in the Data collection and 

preprocessing Section, we made a sample of 10,000 se-

quences for the training and test samples with stratification 

by the length of the sequences for faster architecture screen-

ing. On this sample, we searched for both the optimal archi-

tecture and selected the necessary hyperparameters. At the 

first stage, optimization was carried out by the number of 

average pooling layers; overall, 6 architectures were tested. 

After identifying the best result, the parameters of the con-

volution layer, namely the number of filters, were varied. At 

the same time, with the move into the depth of the neural 

network, the number of filters was reduced to 1 for reasons 

of reducing the dimensionality. At this stage, 7 architectures 

were tested. 

 Then, we began training the model on the full data. Due 

to its quantity, batching was applied, with preprocessing of 

each batch performed immediately before feeding it for 

training to reduce the requirements for RAM. The first re-

sults of training on full data turned out to be worse than ex-

pected (the error exceeded that of training on a sample by 

almost 3 times). When solving the problem, deep architec-

ture using attention layers were tested, and additional con-

volution layers were also checked. In each case, overtraining 

or no reduction in error was observed, learning was inter-

rupted by the early stopping function (at this stage, we have 

tested 10 different architecture options). Since deepening 

the architecture did not improve the situation, we returned 

to the hyperparameters of the model, the initially selected 

optimal architecture was used with a change in convolution 

parameters: here, the number of filters increases with the 

depth of the neural network to compensate for data loss 

when reducing dimensionality. It was trained with a batch 

size of 32 and a learning rate of 10-3.  However, results on 

benchmarking tasks seemed to be insufficient. The problem 

was identified in CAE embeddings, where a high sparsity 

was observed; therefore, we returned to architecture optimi-

zation. In this iteration, the original data was sampled into 3 

datasets with stratification based on amino acid frequency. 

The medium one (that consists of 370.413 peptides) was 

used for the neural net depth selection, where a small set 

(123.471 peptides) was used for hyperparameter tuning. 

This was done with Keras Tuner using the hyperband opti-

mization strategy. After optimization, we obtained several 

models which were compared on a benchmark task. The best 

one was fitted with entire balanced data. The learning curve 

graph shows that the model was trained with a mean squared 

error of reconstructing normalized data on the test set equal 

to 0.0803.   

4. Experiments 

Benchmark studies 

To evaluate the performance of the proposed approach we 

selected several benchmark datasets for classification task: 

prediction of the antimicrobial (Cao et al. 2023), anti-in-

flammatory (Raza et al. 2023), antidiabetic (Chen, Huang, 

and He 2022) and antioxidative (Qin et al. 2023) peptides. 

Their short description can be seen in Table 1. 

 

Dataset  Number of 

peptides 

Average 

length 

Bal-

anced 

Antimicrobial  8268 18.53 + 

Anti-

inflammatory 

3790 16.36 - 

Antidiabetic  472 19.60 + 

Antioxidative  2120 5.92 + 

Table 1. Brief description of benchmark datasets.  

 For comparison, we selected 3 common peptide encoding 

strategies, namely one-hot, BLOSUM62 and threemers en-

codings. For each dataset we obtained all encodings and us-

ing the same model, which is XGBClassifier, with default 

hyper parameters, binary classification was performed. 

Results and Discussion 

This subsection demonstrates how SeQuant can be used to 

accelerate de novo peptide design through in silico screening 



of the candidate compounds. SeQuant as a tool is imple-

mented as a Python programming language class with sev-

eral methods initialized when the class is declared. First, the 

extraction of the descriptors described in the previous sec-

tion occurs, a total of 46. Then, the original peptide se-

quences of a dataset are filtered by the maximum length of 

96 amino acids, as well as the presence of unknown mono-

mers (not included in the original dictionary). If a mismatch 

is found, a corresponding error is raised, reporting the pres-

ence of too long peptides or unknown amino acids. Then, 

latent representations are obtained using the model de-

scribed in the CAE architecture Section. They are the nec-

essary peptide embeddings, which can then be used in ML 

algorithms. The code itself, as well as the documentation for 

the tool and examples of use are available in the GitHub re-

pository. Also, there is an API for simplified access. For 

comparison we used several datasets described in the previ-

ous subsection. For each of them we provided binary classi-

fication with the same ML model. Table 2 shows the ob-

tained results. 

 SeQuant embeddings appear to be promising for most 

metrics they seem to be comparable with known encoding 

strategies. At the same time, One-Hot encoding tends to be 

surprisingly effective on these benchmarks in the binary 

classification task. This might be related to the compara-

tively small size of the datasets, insufficient to reveal the po-

tential of more complex encoding options. It is especially 

noticeable on the smallest of all datasets - Antidiabetic, a 

drop in key metrics (F1 score and MCC) can be seen when 

using SeQuant embeddings. Also, lower indicators are typi-

cal for the Anti-inflammatory dataset for all encoding strat-

egies. We attribute this to its imbalance - the fraction of rec-

ords with a positive label is approximately one third, which 

was not enough for good model training; the FN results were 

greater than the TP. Additionally, all datasets have mean 

peptide length lower than 20, which seems to be a problem 

for SeQuant, since we use CAE architecture with paddings 

for maximum length of 96 amino acids. It makes our tool 

sensitive for peptides’ length. In further work we plan to 

deal with this problem by investigating other architectures. 

Nevertheless, unlike other options, SeQuant embeddings 

have an important advantage - the possibility of chemical 

 

Task Encoding type Accuracy Precision Recall F1 score ROC AUC MCC 

Antimicrobial 

one-hot 0.798 0.811 0.778 0.794 0.798 0.597 

threemers 0.753 0.770 0.723 0.746 0.753 0.508 

blosum62 0.684 0.696 0.652 0.673 0.684 0.368 

sequant 0.711 0.726 0.677 0.701 0.711 0.423 

Antidiabetic 

one-hot 0.632 0.644 0.604 0.624 0.632 0.264 

threemers 0.589 0.592 0.604 0.598 0.589 0.179 

blosum62 0.663 0.660 0.688 0.673 0.663 0.326 

sequant 0.589 0.582 0.667 0.621 0.589 0.180 

Anti- inflammatory 

one-hot 0.664 0.579 0.441 0.501 0.621 0.260 

threemers 0.679 0.595 0.507 0.547 0.647 0.304 



 

 

blosum62 0.644 0.543 0.431 0.481 0.603 0.218 

sequant 0.668 0.585 0.473 0.523 0.631 0.276 

Antioxidative 

one-hot 0.906 0.913 0.896 0.905 0.906 0.811 

threemers 0.778 0.778 0.778 0.778 0.778 0.557 

blosum62 0.604 0.622 0.528 0.571 0.604 0.210 

sequant 0.750 0.750 0.750 0.750 0.750 0.500 

Table 2. SeQuant benchmarking results on selected datasets. 

interpretation of the results, since the elements of the em-

beddings retain the original meaning of the descriptors used 

to obtain them. Table 3 provides information on the top 10 

most important features of the SeQuant.  

 It can be noted that for the Antidiabetic dataset, even the 

top 10 features by importance do not allow dividing it by 

label, which is reflected in the metrics. For the remaining 

sets, at least 2 features have a p-value less than 0.05, 

Antimicrobial Antidiabetic Anti-inflammatory Antioxidative 

Feature IS p-value Feature IS p-value Feature IS p-value Feature IS p-value 

eNSR 0.045 2.1х10-48 echi2v 0.049 0.290 eNSC 0.101 2.8х10-29 eNSR 0.047 1.4х10-14 

eBIE 0.037 0.029 eNAB 0.042 0.892 eLBD 0.055 0.0006 eCIE 0.035 0.927 

eMIE 0.035 1.2х10-5 eNAH 0.041 0.780 eBIE 0.029 9.1х10-23 eNAH 0.034 0.444 

ePhi 0.034 1.8х10-21 eEM 0.034 0.407 eNSH 0.027 0.135 eLBD 0.033 0.085 

eNSC 0.031 1.6х10-10 eNRB 0.033 0.698 eNH 0.025 0.0002 echi4n 0.031 0.213 

eNA 0.029 2.0х10-16 echi0v 0.031 0.987 eLBA 0.025 0.012 eHKA 0.031 0.977 

eNAR 0.028 8.4х10-50 eMIE 0.030 0.777 eMIE 0.024 2.1х10-53 eNBA 0.031 0.002 

eHKA 0.027 0.112 eCCP 0.029 0.790 eEM 0.023 0.636 echi3n 0.031 0.440 

eNBA 0.026 0.121 eNSH 0.029 0.492 echi0n 0.023 4.0х10-11 eNAlR 0.030 0.672 

eCCP 0.025 0.405 eCMR 0.028 0.701 eNAH 0.023 7.5х10-9 echi0v 0.029 0.804 

Table 3. Feature Importance (FI) of the SeQuant embeddings for various tasks. Top 10 models features, their importance 

scores (IS) and significance of differences (p-value) based on the t-test results. The p-value indicates the probability that the 

observed differences occurred by chance, with smaller values indicating a more significant relationship, the significance level 

here is 0.05. IS reflects the contribution of each feature to the model predictions. Below is a transcript of the feature names 

from the table: eNSR - embedded NumSaturatedRings, eBIE - embedded Ba interaction energy, eMIE - embedded Mg inter-

action energy, ePhi - embedded Phi, eNSC - embedded NumAtomStereoCenters, eNA - embedded NumAtoms, eNAR - em-



bedded NumAromaticRings, eHKA - embedded hallKierAlpha, eNBA - embedded NumBridgeheadAtoms, eCCP - embed-

ded CrippenClogP, echi2v - embedded chi2v, eNAB - embedded NumAmideBonds, eNAH - embedded NumAromaticHeter-

ocycles, eEM - embedded exactmw, eNRB - embedded NumRotatableBonds, echi0v - embedded chi0v, eNSH - embedded 

NumSaturatedHeterocycles, eCMR - embedded CrippenMR, eLBD - embedded lipinskiHBD, eNH - embedded NumHet-

eroatoms, eLBA - embedded lipinskiHBA, echi0n - embedded chi0n, eCIE - embedded Ca interaction energy, echi4n - em-

bedded chi4n, echi3n - embedded chi3n, eNAlR - embedded NumAliphaticRings, echi0v - embedded chi0v 

indicating a low probability that the distributions of these 

feature values belong to the same group. This, in turn, sug-

gests the potential for label-based object separation with 

their usage. In addition, DFT descriptors appear to show sta-

tistically significant associations with peptide activity, mak-

ing them useful for its prediction. For Antimicrobial dataset 

this is probably related to the antimicrobial peptides’ mech-

anism of action: a common case is their effect on cell mem-

branes (Zasloff 2002). In turn, Mg²⁺ and Ca²⁺ form bridges 

between negatively charged groups of phospholipids and 

lipopolysaccharides, stabilizing the cell wall and making it 

more resistant to external influences (Vaara 1992). Thus, the 

interaction energy of metal cations with peptides may be sig-

nificant for predicting their antibacterial activity. Ba²⁺, alt-

hough less abundant in biological systems, has properties 

similar to magnesium and calcium. It can replace these ions 

in certain biological structures. The interaction of peptides 

with Ba²⁺ might reflect their ability to bind to divalent cati-

ons, which is important for their activity against bacterial 

membranes. Also, the influence of DFT descriptors on pre-

dicting peptide activities may be due to the effect of metal 

ions on peptide conformation, which is important for their 

functions. 

5. Conclusions 

In this study, we developed SeQuant, a CAE-based tool for 

predicting peptide properties. It offers embeddings for ML 

and DL models that consider the physicochemical properties 

of compounds. On benchmark datasets, they appeared to be 

comparable to known variants of amino acid sequence en-

coding. However, the metrics obtained with SeQuant did not 

show superiority in the tasks taken. We attribute this to sev-

eral fundamental limitations of the used architecture: con-

volutional autoencoders are highly dependent on the dimen-

sionality of the input data, in this case, the length of pep-

tides. We tried to mitigate this problem by balancing the 

training data by length and amino acid frequency, but it 

seems that the problem was not completely solved. The sec-

ond drawback that affects the result, we believe, is the oper-

ating principle of the applied autoencoder - during training 

it was fitted with discrete values, and the resulting embed-

dings have a low density. This might affect the performance 

of the model using the latent representations of SeQuant. In 

the continuation of this work, we plan to consider the second 

drawback by using a variational autoencoder - this type of 

architecture, unlike the convolutional one, gives dense rep-

resentations. 
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