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Abstract
Understanding the principles of protein folding is a corner-
stone of computational biology, with implications for drug
design, bioengineering, and the understanding of fundamen-
tal biological processes. Lattice protein folding models offer
a simplified yet powerful framework for studying the com-
plexities of protein folding, enabling the exploration of en-
ergetically optimal folds under constrained conditions. How-
ever, finding these optimal folds is a computationally chal-
lenging combinatorial optimization problem. In this work,
we introduce a novel upper-bound training scheme that em-
ploys masking to identify the lowest-energy folds in two-
dimensional Hydrophobic-Polar (HP) lattice protein folding.
By leveraging Dilated Recurrent Neural Networks (RNNs)
integrated with an annealing process driven by temperature-
like fluctuations, our method accurately predicts optimal
folds for benchmark systems of up to 50 beads. Our approach
also effectively masks invalid folds from being sampled with-
out compromising the autoregressive sampling properties of
RNNs. This scheme is generalizable to three spatial dimen-
sions and can be extended to lattice protein models with
larger alphabets. Our findings emphasize the potential of ad-
vanced machine learning techniques in tackling complex pro-
tein folding problems and a broader class of constrained com-
binatorial optimization challenges.

Introduction & Previous Work
Protein folding is a biological process in which a linear se-
quence of amino acids adopts a three-dimensional structure.
A correct fold or a misfold can significantly affect the bio-
logical health of a living organism (Englander and Mayne
2014). As a result, an accurate understanding of how pro-
teins fold is critical in biology and drug discovery (Dill
et al. 2008). The curse of dimensionality of the protein fold-
ing space makes it challenging to address using standard
computer simulations (som 2005). Lattice protein folding
provides a simplified yet insightful framework for study-
ing protein folding dynamics by reducing the complexity
of the search space. In the regular lattice, each cell may
house an amino acid. It is also common to further sim-
plify this folding process by reducing all 20 types of amino
acids to only two types: hydrophobic and polar amino acids,
also called beads. These simplifications correspond to the
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Hydrophobic-polar (HP) lattice protein folding model (Dill
1985). Despite these simplifications, finding the fold with
the lowest energy (global minima) is NP-complete for both
2D and 3D HP lattice models (Lau and Dill 1989).

Machine learning tools have already addressed the ques-
tion of protein folding in different settings. In the continu-
ous folding space, AlphaFold, a machine learning-based ap-
proach has achieved remarkable performance on the predic-
tion of protein structures compared to state-of-the-art meth-
ods (Jumper et al. 2021). In the discrete folding space, ma-
chine learning approaches have also addressed the HP pro-
tein folding model in 2D. In particular, FoldingZero (Li et al.
2018) combines deep reinforcement learning (RL) with a
two-head deep convolutional neural network (HPNet) and a
modified tree search algorithm. This work investigated chain
sizes up to 85 with successful runs matching the optimal en-
ergy for sizes up to 20. Another RL study (Yu, Schreck, and
Ma 2020) also investigated HP chains up to 36 beads us-
ing various RL methods such as policy and value iteration,
Monte Carlo Tree Search, and AlphaGo Zero with pretrain-
ing. According to their results, the adoption of the AlphaGo
Zero algorithm exhibits superior performance in compari-
son to the other methods. Finally, by far the strongest RL
work (Yang et al. 2023) obtains optimal folds for HP chains
up to 50 beads. They largely attribute the success of their
method to the incorporation of Long Short Term Mem-
ory (LSTM) architectures in their procedure, which capture
long-range interactions in the folding process.

Our work demonstrates the ability of dilated recurrent
neural networks (RNNs) (Chang et al. 2017) supplemented
with temperature annealing to solve instances of the 2D HP
lattice folding model. In all the previous studies, sampling
invalid folds has been discouraged by introducing an en-
ergy penalty. In our work, we use masking to sample valid
folds from RNNs autoregressively to enhance convergence
and training stability. We also introduce a novel scheme by
introducing a free energy upper bound that stabilizes and en-
hances RNNs training on the 2D HP model, while preserv-
ing their ability to generate folds in the valid folding space
autoregressively.

The plan of this paper is as follows: in the methods sec-
tion, we describe the mathematical details of the HP model
and the variational annealing framework that we use in con-
junction with dilated RNNs. Additionally, we present our



scheme for projecting dilated RNNs autoregressive sam-
pling to valid folds and show our derived upper bound train-
ing which enhances the trainability of RNNs. Finally, in the
Results and Discussion section, we highlight empirical ev-
idence in favor of annealing and upper-bound training. We
also highlight that our method can find ground state folds up
to 50 beads, showing competitive results compared to other
machine learning approaches in the literature.

Methods
The HP Model
A fully folded protein chain can be conveniently repre-
sented on the 2D Cartesian plane. Let Γ = (γ0, . . . , γN ) ∈
{0, 1}N+1 represent an HP protein sequence having N + 1
beads. Here, 0 and 1 denote the ’H’ and ’P’ beads respec-
tively. A chain Γ having N + 1 beads implies that N is
the number of moves starting from bead γ0. For a complete
fold of Γ, let the Cartesian coordinates of each bead in Γ
be (x0, y0), . . . , (xN , yN ) respectively where ∀i;xi, yi ∈ Z.
A fold requires every pair of consecutive beads to be a unit
distance away from each other, either on the x-axis or on the
y−axis, but not both. In other words, the following condition

∀i; |xi − xi+1|+ |yi − yi+1| = 1 (1)

is enforced. A hard constraint on this problem is that a fold
must be a self-avoiding walk (SAW), meaning no two beads
can have overlapping coordinates. Thus, the constraint

∀i ̸= j; (xi, yi) ̸= (xj , yj) (2)

must also hold true for a valid fold. To map a protein se-
quence Γ to some (valid or invalid) fold, we define a se-
quence of moves to be the solution d ∈ {0, 1, 2, 3}N . A
move di ∈ d dictates the coordinates of bead γi in a fold
given the coordinates of the previous bead γi−1 which are
(xi−1, yi−1). Specifically, for 1 ≤ i ≤ N , the next bead
position is given as follows:

(xi, yi) =


(xi−1 − 1, yi−1), di = 0

(xi−1 + 1, yi−1), di = 1

(xi−1, yi−1 + 1), di = 2

(xi−1, yi−1 − 1), di = 3.

The initial position (x0, y0) can be set to any reference co-
ordinates, such as (0, 0), which we use in this work. Seman-
tically, our chosen convention is such that moves 0, 1, 2, and
3 corresponds to placing the current bead γi to the ’left of’,
’right of’, ’above’, and ’below’ the previous bead γi−1 re-
spectively on the Cartesian plane.

The energy of a fold d given by E(d) is defined as the
negative of the number of neighboring or adjacent ‘H-H’
pairs in the folding space that are not consecutive in the pro-
tein sequence itself, as illustrated in Fig. 1. We can denote
this number as NHH. To formulate E(d) mathematically, we
first define the function M : Z× Z→ {0, 1} as

M(x, y) =

{
1, if (x, y) is occupied by an H bead
0, otherwise.

H P

(a) (b) (c)

Figure 1: For the protein sequence ’PHHPHHPH’, encoded
as Γ = (1, 0, 0, 1, 0, 0, 1, 0), we may have three folds as
shown above. The arrow indicates the start of the fold from
the first bead and the dotted green line shows the ’H-H’ pairs
that contribute to energy. (a) d = (2, 1, 2, 0, 0, 3, 3) and
E(d) = −1. (b) d = (0, 0, 2, 1, 1, 2, 0) and E(d) = −2. (c)
d = (0, 0, 2, 1, 3, 3, 1) and since d breaks the self-avoiding
walk constraint by overlapping the second and sixth beads,
E(d) = 0.

Using the function M , we define the energy of a valid pro-
tein sequence fold d as

E(d) ≡ −NHH

=
1

2

N∑
i=0

(
(1− γi)(Ai − M̂i)

)
, (3)

where

M̂i =M(xi−1, yi) +M(xi+1, yi)

+M(xi, yi−1) +M(xi, yi+1)

and
Ai = (1− γi−1) + (1− γi+1).

Here, the energy function checks all four neighboring coor-
dinates of γi in the fold. An energy contribution of −1 is
added in proportion to the number of neighboring ’H’ beads
through the term proportional to M̂i. However, we know
for all beads, — except for the first and the last — two of
the four neighboring beads γi−1 and γi+1 cannot contribute
to the energy as they are consecutive to γi in the protein
sequence. Therefore, we substrate these contributions by
adding the term proportional to Ai. For the boundary cases
of the first and the last bead, we use γ−1 = 1 = γN+1. Note
that the double counting of ‘H-H’ adjacent pairs is taken into
account by dividing by a factor of 2. Lastly, if a fold d is in-
valid, its energy is set to 0 by default.

Variational Learning
Given the NP-completeness of the folding process, it is nat-
ural to treat the problem of finding the optimal solution as
a combinatorial problem. This leads us to our variational
learning approach which consists of sampling solutions from
a distribution Pθ characterized by a probabilistic model with
parameters θ. In particular, we want Pθ to approximate the
Boltzmann distribution at a given temperature T (Wu et al.
2019). To train the model parameters θ, we use the varia-
tional free energy

Fθ(T ) = E[E(d)] + TE[log(Pθ(d))], (4)



where−E[log(Pθ(d))] is the Shannon entropy. Here, Fθ(T )
computes the precise free energy over the entire state space
d ∈ {0, 1, 2, 3}N which is intractable to compute exactly.
To go around this challenge, we estimate Fθ(T ) by drawing
M independent samples {d(i)}Mi=1 from the RNN distribu-
tion Pθ and we compute an estimate of the free energy as
follows:

Fθ(T ) ≈
1

M

M∑
i=1

(
E(d(i)) + T log(Pθ(d

(i)))
)
. (5)

Lastly, we note that by virtue of autoregressive sampling,
the probability of sampling a fold d ∼ Pθ is given by the
probability chain rule

Pθ(d) =

N∏
i=1

Pθ(di|d1, . . . , di−1), (6)

where Pθ(d) is the joint probability obtained by the product
of all the conditional probabilities. Note that P (di|dj<i) is
the conditional probability of sampling the ith move di given
the realizations of all previous displacements {dj}i−1

j=1.

Variational Annealing
In Eq. (5), the term T log(Pθ(d

(i))) can be seen as an en-
tropy regularization term weighted by temperature T (Hibat-
Allah et al. 2021; Wu, Wang, and Zhang 2019; Khandoker,
Abedin, and Hibat-Allah 2023; Sanokowski et al. 2023).
We use this entropy regularization to mitigate the effects
of local minima in the optimization landscape (Hibat-Allah
et al. 2021) and also to avoid mode collapse (Wu, Wang,
and Zhang 2019). T is annealed or cooled from a starting
temperature T0 to a final temperature 0 with the possibility
of varying curvatures in its descent depending on the an-
nealing schedule – ranging from a steady, linear decay to
a faster, nonlinear decay that follows the curvature of the
inverse function for example. Selecting an annealing sched-
ule is a design choice that dictates how fast T decays dur-
ing the different stages of the annealing process. With these
schedules, entropy regularization can be seen as a mecha-
nism that encourages exploration in the folds landscape at
high temperatures before exploitation by targeting the low
energy folds near zero temperature.

Probabilistic Model
To model the probability distribution from which folds
are sampled from Pθ(d), we use a Dilated RNN archi-
tecture (Chang et al. 2017). The motivation behind using
an RNN architecture is to enable autoregressive sampling,
which is a form of perfect sampling that mitigates the chal-
lenges of Markov Chain sampling schemes of other neural
network architectures (Goodfellow 2017). Furthermore, un-
like the vanilla RNN model, Dilated RNNs have long recur-
rent skip connections that allow for the direct propagation of
hidden state information from earlier inputs xi to be utilized
further down in the folding process. This is particularly use-
ful in the context of folding as we may want to put an ‘H’
bead γi adjacent to an ‘H’ bead γj where i−j is large. These

long-term dependencies benefit from the introduced dilated
recurrent connections (Chang et al. 2017).

The Dilated RNN architecture is composed of multiple
layers of RNN cells stacked on top of each other as illus-
trated in Fig. 2. As a design choice, we use L = ⌈log2(N)⌉
layers, and each layer has N RNN cells (Hibat-Allah et al.
2021; Khandoker, Abedin, and Hibat-Allah 2023). Here ev-
ery RNN cell is indexed by layer l where 1 ≤ l ≤ L and
column n where 1 ≤ n ≤ N . Another design choice is
that each of the L × N RNN cells has its own set of dedi-
cated parameters compared to the traditional practice of us-
ing multiple RNN cells sharing the same set of parameters.
We use non-weight sharing to take account of the random-
ness of the chain sequences Γ in a similar spirit to previous
work (Khandoker, Abedin, and Hibat-Allah 2023; Hibat-
Allah et al. 2021). Parameter notations are as follows: an
RNN cell at layer l and column n has the set of weight pa-
rameters W

(l)
n and U

(l)
n , bias vector parameter b(l)n , and an

associated hidden state vector h(l)
n . The hidden state is com-

puted as

h(l)
n = tanh(W (l)

n h
(l)

max(0,n−2l−1)
+U (l)

n h(l−1)
n +b(l)n ). (7)

Here, xn−1 is the input (to the first layer of the Dilated RNN
stack) that is a concatenation of the one-hot encoding of the
protein bead for which we want to sample a fold for qn and
the one-hot encoding of the previously sampled output fold
dn−1. More concretely, qn is a one-hot encoding vector of
{0, 1} where 0 represents ’H’ and 1 represents ’P’, and dn

is the one-hot encoding vector of integer dn ∈ {0, 1, 2, 3}.
This gives us xn−1 = [qn ⌢ dn−1] where ⌢ is the con-
catenation operation. Also, note that the initializations of the
hidden state are defined as h0

n = xn−1 and hl
0 = [q0 ⌢ 0].

To get the output after the last layer of RNN cells, the nth

hidden state of the last layer h(L)
n is fed into the respective

dense layer having weight Vn and bias cn. As a result, we
get the probability distribution for all the four folding direc-
tions of the nth displacement. This probability distribution
vector P u

n ∈ [0, 1]4 is computed as

P u
n = Softmax(Vnhn + cn). (8)

Finally, the nth move is sampled from this distribution with
the unmasked conditional probability

Pu(dn|di<n) = P u
n · dn, (9)

where · is the dot product. All N conditional probabilities
are computed sequentially to compute the joint probability
of the list of displacements d in Eq. (6).

Masking and Upper Bound Optimization
Sampling from the valid space of folds is crucial to stabi-
lizing training the RNN architecture and getting low-energy
folds. To ensure sampling of the RNN is within the valid
space, we mask the invalid moves in each RNN conditional
probability Pu

θ (di|dj<i) as follows:

• If a direction di is invalid, then log (Pu
θ (di|dj<i)) is set

to −∞.



Figure 2: An illustration of a Dilated RNN architecture with
⌈log2(N)⌉ layers, where N represents the system size. The
architecture incorporates longer recurrent connections to ad-
dress long-range interactions in the HP lattice protein fold-
ing model. The use of distinct colors indicates the absence
of weight sharing across different RNN units in the layers.
h0 is an initial hidden state initialized as a zero vector and
xn are the inputs which include information about the pre-
vious move dn−1 and the nature of the bead qn to be added
to the chain at step n.

• We renormalize the four-dimensional log conditional
probability by applying the log-softmax activation and
we denote it as log (Pθ(.|dj<i)).

Note that there are dead-end folds, where at a certain step all
the local moves are invalid. In this case, the masking proce-
dure is forced to choose a random invalid direction which
results in an invalid fold. In this scenario, we discourage
the RNN from generating such folds by forcing an energy
penalty E = 0. Note that the masking step is similar in spirit
to other projection schemes explored in the literature (Soloz-
abal, Ceberio, and Takáč 2020; Hibat-Allah et al. 2020).

Although we sample a fold d from the valid fold space,
we use the unmasked RNN probability Pu

θ (d) for training,
which amounts to training an upper bound of the free energy.
This choice allows us to stabilize training and obtain lower
energy folds as demonstrated in the Results section. To show
the upper bound claim, let us focus on the fake loss function
used to estimate the gradients of the true free energy:

L(T ) =
∑
d

P⊥
θ (d) log(Pθ(d))

(
E(d) + T log(P⊥

θ (d))
)
,

(10)
such that P⊥

θ is the masked RNN probability with a stop gra-
dient assignment ⊥ (Hibat-Allah et al. 2021; Zhang, Wan,
and Yao 2023). Minimizing L(T ) corresponds to the REIN-
FORCE method (Sutton et al. 1999) with a vanilla policy
gradient rule (Mohamed et al. 2020; Grooten et al. 2022)
supplemented with an entropy term. To train our Dilated
RNNs, we use the following cost function:

L̃(T ) =
∑
d

P⊥
θ (d) log(Pu

θ (d))
(
E(d) + T log(Pu⊥

θ (d))
)

(11)

Figure 3: A diagram depicting a dilated recurrent neural net-
work (RNN) training process applied to an HP lattice struc-
ture. The RNN samples folds from its parameterized proba-
bility distribution with a mask to generate valid folds.

where Pu
θ is the unmasked RNN probability. The following

inequality
L(T ) ≤ L̃(T )

follows from the observation

Pθ(d) ≥ Pu
θ (d)

for all possible valid folds d, which implies that:

E(d) logPθ(d) ≤ E(d) logPu
θ (d)

log2 Pθ(d) ≤ log2 Pu
θ (d).

The first inequality follows from the fact that E(d) ≤ 0
for all possible folds d ∈ {0, 1, 2, 3}N . Training using the
upper bound loss function L̃(T ) follows a similar spirit to
the evidence lower bound (ELBO) when training variational
autoencoders (Kingma and Welling 2022). The gradient of
the free energy upper bound is given as:

∂θL̃(T ) =∑
d

P⊥
θ (d)∂θ log(P

u
θ (d))

(
E(d) + T log(Pu⊥

θ (d))
)
,

which can be estimated by sampling M folds autoregres-
sively from the RNN as follows:

∂θL̃(T ) ≈
1

M

∑
d∼Pθ

(∂θ logPθ(d))
(
E(d) + T log(Pθ(d))

)
.

(12)

Note that we used the notation O(d) ≡ O(d)− ⟨O⟩, where
subtracting the average of the energies and log probabilities
was shown to reduce the variance on the gradients as a con-
trol variate method (Mohamed et al. 2020; Hibat-Allah et al.
2020; Hibat-Allah, Melko, and Carrasquilla 2023).

Experiments & Results
Training Setup. The training strategy of our algorithm can
be summarized by the following steps repeated until temper-
ature T becomes 0:



HP Sequence Length E(d∗)

20merA HPHPPHHPHPPHPHHPPHPH 20 −9
20merB HHHPPHPHPHPPHPHPHPPH 20 −10
24mer HHPPHPPHPPHPPHPPHPPHPPHH 24 −9
25mer PPHPPHHPPPPHHPPPPHHPPPPHH 25 −8
36mer PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 36 −14
48mer PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH 48 −23
50mer HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH 50 −21

Table 1: HP sequences from the Istrail Benchmark with their best known energies E(d∗).

HP Sequence E(d∗) Folding-Zero AlphaGo-Zero DRL DQN-LSTM Variational
Annealing

(ours)

20merA -9 -9 -8 -6 -9 -9
20merB -10 - -9 -8 -10 -10
24mer -9 -8 -8 -6 -9 -9
25mer -8 -7 -7 - -8 -8
36mer -14 -13 -13 - -14 -14
48mer -23 -18 - - -23 -23
50mer -21 -18 - - -21 -21

Table 2: Lowest energy found by the following methods in order: Folding-Zero (Li et al. 2018), (best results among various
methods of) Deep Reinforcement Learning (Yu, Schreck, and Ma 2020), AlphaGo Zero with pretraining (Yu, Schreck, and
Ma 2020), Deep Q-Network using Long Short Term Memory (DQN-LSTM) (Yang et al. 2023), and our Variational Annealing
method. Bold font represents the lowest energy of the corresponding sequence. ’-’ means energy was not reported by the
corresponding authors.

• For each 5 training steps (i.e., one annealing step),

– Sample M = 200 independent folds from the Dilated
RNN.

– Compute the gradients ∂θL̃(T ) (Eq. 12).

– Update the RNN parameters using the Adam opti-
mizer (Kingma and Ba 2015).

• Anneal temperature: T ← T − δT .

The steps are also illustrated in Fig. 3. For the annealing pro-
cess, we use a simple linear schedule where the temperature
at the Nsteps ∈ {1, . . . , Nanneal} stage in the training has a
temperature T = T0(1−Nsteps/Nanneal).

Benchmarks. To demonstrate the empirical value of an-
nealing, we show in Fig. 4(a) a comparison between the
expectation values of the energy ⟨E⟩ between variational
learning with annealing (by setting T0 = 1) and without
annealing (by setting T0 = 0). Our findings show that start-
ing at a non-zero temperature during annealing allows our
dilated RNN to find a lower energy fold compared to a plain
optimization scheme that does not include an entropy regu-
larization.

Additionally, we empirically support the use of masking
in tandem with our derived upper bound loss based on the
ablation study in the training process as shown in Fig. 4(b).
We compare the results of masking with the upper bound
loss L̃(T ), masking with the fake free energy loss L(T ), and

no masking with the unmasked loss
Lu(T ) =∑

d

Pu⊥
θ (d) log(Pu

θ (d))
(
E(d) + T log(Pu⊥

θ (d))
)
.

From the results of Fig. 4(b), it is clear that enforcing the
self-avoiding walk constraint Eq. (2) by masking is a crucial
step for enhancing the training of our RNN model. More
specifically, both L̃(T ) and L(T ) have lower values com-
pared to Lu(T ) throughout annealing. Furthermore, we also
observe that optimizing the free energy upper bound loss
Lu(T ) can result in significantly lower energies compared
to the free energy fake loss function L(T ) as illustrated in
Fig. 4(b). We believe that masking the RNN probability Pu

θ
to obtain Pθ is constraining the optimization of L(T ) when
we apply the gradient on the logPθ terms in Eq. (10). In con-
trast, the loss upper bound L̃(T ) in Eq. (11) circumvents this
limitation where the gradients are applied on logPu

θ terms
(Eq. (11)) that are not constrained by projection steps.

To compare our results with the machine learning litera-
ture, we report in Tab. 1 a list of HP sequences with lengths
from 20 to 50 and their optimal energies that are often used
to benchmark HP folding algorithms (Yang et al. 2023). We
use these HP sequences to benchmark our algorithm and
compare with recent machine learning methods on the crite-
ria of the lowest energy fold found. The results are presented
in Tab. 2. Our findings demonstrate that our variational an-
nealing method with dilated RNNs can find the optimal fold



Figure 4: Figures of the training process of the variational
annealing approach with a total number of annealing steps
Nanneal = 10000. (a) Demonstrates the effect of annealing
in training for the sequence 20merA of the expectation value
of the energy ⟨E⟩ as a function of the number of tempera-
ture annealing steps Nsteps where each step corresponds to
5 training steps at the same temperature. Note that the user-
defined value Nanneal is the maximum value that Nsteps can
reach. (b) Demonstrates the training process using masking
with the upper bound loss L̃(T ), masking with the fake free
energy loss L(T ), and no masking with the unmasked loss
L̂(T ) for the sequence 25mer.

for all the sequences up to 50 beads. We also highlight that
our method performs better than previous studies that take
inspiration from the AlphaGo Zero algorithm (Li et al. 2018;
Yu, Schreck, and Ma 2020). Our method is also compet-
itive with the results reported by Ref. (Yang et al. 2023),
where we only use a simple policy gradient rule compared to
the advanced policy gradient rules used in Ref. (Yang et al.
2023). Additionally, we note that we only use dh = 50 as the
size of the hidden state in our dilated RNN compared to the
LSTM used in Ref. (Yang et al. 2023) with dh ∈ {256, 512}.
This observation highlights the computational efficiency of
our method.

Conclusion
In this paper, we have introduced a novel upper-bound train-
ing scheme with masking to find the lowest energy fold of
the 2D HP lattice protein folding. Using this scheme and
by supplementing Dilated RNNs with annealing through
temperature-like fluctuations, we found that our method can
find the optimal folds of prototypical lattice folding bench-
marks with system sizes up to 50 beads. We demonstrate that
it is possible to mask moves that lead to invalid folds without
compromising the autoregressive sampling feature of RNNs.
We also devise a free energy upper bound loss function that
enhances the trainability of RNNs that are prone to get com-
promised by masking the RNN probabilities.

Our scheme is generalizable to three spatial dimensions
and also other lattice protein folding models with more
than two alphabets such as the 20-letter Miyazawa-Jernigan
model (Miyazawa and Jernigan 1996) by enlarging the sizes
of the one-hot inputs xi without compromising inference
speed. We also expect inference time to be reduced by in-
troducing an encoder network to enable just-in-time infer-
ence of low-energy folds (Sanokowski et al. 2023). For a
broader scope, we also believe that our scheme could lead to
a promising machine learning-based solution to a wide class
of constrained combinatorial optimization problems.
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